Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 22(2): e3002544, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38422166

RESUMEN

Ebolavirus (EBOV) belongs to a family of highly pathogenic viruses that cause severe hemorrhagic fever in humans. EBOV replication requires the activity of the viral polymerase complex, which includes the cofactor and Interferon antagonist VP35. We previously showed that the covalent ubiquitination of VP35 promotes virus replication by regulating interactions with the polymerase complex. In addition, VP35 can also interact non-covalently with ubiquitin (Ub); however, the function of this interaction is unknown. Here, we report that VP35 interacts with free (unanchored) K63-linked polyUb chains. Ectopic expression of Isopeptidase T (USP5), which is known to degrade unanchored polyUb chains, reduced VP35 association with Ub and correlated with diminished polymerase activity in a minigenome assay. Using computational methods, we modeled the VP35-Ub non-covalent interacting complex, identified the VP35-Ub interacting surface, and tested mutations to validate the interface. Docking simulations identified chemical compounds that can block VP35-Ub interactions leading to reduced viral polymerase activity. Treatment with the compounds reduced replication of infectious EBOV in cells and in vivo in a mouse model. In conclusion, we identified a novel role of unanchored polyUb in regulating Ebola virus polymerase function and discovered compounds that have promising anti-Ebola virus activity.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Proteínas de la Nucleocápside , Ubiquitina , Replicación Viral , Animales , Humanos , Ratones , Ebolavirus/genética , Ubiquitina/metabolismo , Proteínas Reguladoras y Accesorias Virales , Replicación Viral/genética
2.
Bioinformatics ; 39(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37079725

RESUMEN

The DynaSig-ML ('Dynamical Signatures-Machine Learning') Python package allows the efficient, user-friendly exploration of 3D dynamics-function relationships in biomolecules, using datasets of experimental measures from large numbers of sequence variants. It does so by predicting 3D structural dynamics for every variant using the Elastic Network Contact Model (ENCoM), a sequence-sensitive coarse-grained normal mode analysis model. Dynamical Signatures represent the fluctuation at every position in the biomolecule and are used as features fed into machine learning models of the user's choice. Once trained, these models can be used to predict experimental outcomes for theoretical variants. The whole pipeline can be run with just a few lines of Python and modest computational resources. The compute-intensive steps are easily parallelized in the case of either large biomolecules or vast amounts of sequence variants. As an example application, we use the DynaSig-ML package to predict the maturation efficiency of human microRNA miR-125a variants from high-throughput enzymatic assays. AVAILABILITY AND IMPLEMENTATION: DynaSig-ML is open-source software available at https://github.com/gregorpatof/dynasigml_package.


Asunto(s)
Aprendizaje Automático , Programas Informáticos , Humanos
3.
Bioinformatics ; 39(10)2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37788107

RESUMEN

SUMMARY: Computational methods for the quantification and visualization of the relative contribution of molecular interactions to the stability of biomolecular structures and complexes are fundamental to understand, modulate and engineer biological processes. Here, we present Surfaces, an easy to use, fast and customizable software for quantification and visualization of molecular interactions based on the calculation of surface areas in contact. Surfaces calculations shows equivalent or better correlations with experimental data as computationally expensive methods based on molecular dynamics. AVAILABILITY AND IMPLEMENTATION: All scripts are available at https://github.com/NRGLab/Surfaces. Surface's documentation is available at https://surfaces-tutorial.readthedocs.io/en/latest/index.html.


Asunto(s)
Proteínas , Programas Informáticos , Proteínas/química , Simulación de Dinámica Molecular , Documentación , Ligandos
4.
Bioinformatics ; 38(15): 3827-3829, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35695776

RESUMEN

SUMMARY: We present Systematic ProtEin AnnotatoR (SPEAR), a lightweight and rapid SARS-CoV-2 variant annotation and scoring tool, for identifying mutations contributing to potential immune escape and transmissibility (ACE2 binding) at point of sequencing. SPEAR can be used in the field to evaluate genomic surveillance results in real time and features a powerful interactive data visualization report. AVAILABILITY AND IMPLEMENTATION: SPEAR and documentation are freely available on GitHub: https://github.com/m-crown/SPEAR and are implemented in Python and installable via Conda environment. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Programas Informáticos , Genómica
5.
PLoS Comput Biol ; 18(12): e1010777, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36516216

RESUMEN

The Elastic Network Contact Model (ENCoM) is a coarse-grained normal mode analysis (NMA) model unique in its all-atom sensitivity to the sequence of the studied macromolecule and thus to the effect of mutations. We adapted ENCoM to simulate the dynamics of ribonucleic acid (RNA) molecules, benchmarked its performance against other popular NMA models and used it to study the 3D structural dynamics of human microRNA miR-125a, leveraging high-throughput experimental maturation efficiency data of over 26 000 sequence variants. We also introduce a novel way of using dynamical information from NMA to train multivariate linear regression models, with the purpose of highlighting the most salient contributions of dynamics to function. ENCoM has a similar performance profile on RNA than on proteins when compared to the Anisotropic Network Model (ANM), the most widely used coarse-grained NMA model; it has the advantage on predicting large-scale motions while ANM performs better on B-factors prediction. A stringent benchmark from the miR-125a maturation dataset, in which the training set contains no sequence information in common with the testing set, reveals that ENCoM is the only tested model able to capture signal beyond the sequence. This ability translates to better predictive power on a second benchmark in which sequence features are shared between the train and test sets. When training the linear regression model using all available data, the dynamical features identified as necessary for miR-125a maturation point to known patterns but also offer new insights into the biogenesis of microRNAs. Our novel approach combining NMA with multivariate linear regression is generalizable to any macromolecule for which relatively high-throughput mutational data is available.


Asunto(s)
MicroARNs , Humanos , MicroARNs/química , Movimiento (Física) , Conformación Proteica , Proteínas/química , Modelos Lineales
6.
Bioinformatics ; 37(19): 3369-3371, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-33742655

RESUMEN

SUMMARY: The Najmanovich Research Group Toolkit for Elastic Networks (NRGTEN) is a Python toolkit that implements four different NMA models in addition to popular and novel metrics to benchmark and measure properties from these models. Furthermore, the toolkit is available as a public Python package and is easily extensible for the development or implementation of additional normal mode analysis models. The inclusion of the Elastic Network Contact Model developed in our group within NRGTEN is noteworthy, owing to its account for the specific chemical nature of atomic interactions. AVAILABILITY AND IMPLEMENTATION: https://github.com/gregorpatof/nrgten_package/.

7.
PLoS Comput Biol ; 17(8): e1009286, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34351895

RESUMEN

The SARS-CoV-2 Spike protein needs to be in an open-state conformation to interact with ACE2 to initiate viral entry. We utilise coarse-grained normal mode analysis to model the dynamics of Spike and calculate transition probabilities between states for 17081 variants including experimentally observed variants. Our results correctly model an increase in open-state occupancy for the more infectious D614G via an increase in flexibility of the closed-state and decrease of flexibility of the open-state. We predict the same effect for several mutations on glycine residues (404, 416, 504, 252) as well as residues K417, D467 and N501, including the N501Y mutation recently observed within the B.1.1.7, 501.V2 and P1 strains. This is, to our knowledge, the first use of normal mode analysis to model conformational state transitions and the effect of mutations on such transitions. The specific mutations of Spike identified here may guide future studies to increase our understanding of SARS-CoV-2 infection mechanisms and guide public health in their surveillance efforts.


Asunto(s)
COVID-19/virología , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Humanos , Mutación , Conformación Proteica , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/genética
8.
J Biol Chem ; 293(19): 7176-7188, 2018 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-29588365

RESUMEN

L-type CaV1.2 channels are essential for the excitation-contraction coupling in cardiomyocytes and are hetero-oligomers of a pore-forming CaVα1C assembled with CaVß and CaVα2δ1 subunits. A direct interaction between CaVα2δ1 and Asp-181 in the first extracellular loop of CaVα1 reproduces the native properties of the channel. A 3D model of the von Willebrand factor type A (VWA) domain of CaVα2δ1 complexed with the voltage sensor domain of CaVα1C suggests that Ser-261 and Ser-263 residues in the metal ion-dependent adhesion site (MIDAS) motif are determinant in this interaction, but this hypothesis is untested. Here, coimmunoprecipitation assays and patch-clamp experiments of single-substitution variants revealed that CaVα2δ1 Asp-259 and Ser-261 are the two most important residues in regard to protein interactions and modulation of CaV1.2 currents. In contrast, mutating the side chains of CaVα2δ1 Ser-263, Thr-331, and Asp-363 with alanine did not completely prevent channel function. Molecular dynamics simulations indicated that the carboxylate side chain of CaVα2δ1 Asp-259 coordinates the divalent cation that is further stabilized by the oxygen atoms from the hydroxyl side chain of CaVα2δ1 Ser-261 and the carboxylate group of CaVα1C Asp-181. In return, the hydrogen atoms contributed by the side chain of Ser-261 and the main chain of Ser-263 bonded the oxygen atoms of CaV1.2 Asp-181. We propose that CaVα2δ1 Asp-259 promotes Ca2+ binding necessary to produce the conformation of the VWA domain that locks CaVα2δ1 Ser-261 and Ser-263 within atomic distance of CaVα1C Asp-181. This three-way network appears to account for the CaVα2δ1-induced modulation of CaV1.2 currents.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Sustitución de Aminoácidos , Animales , Sitios de Unión , Canales de Calcio Tipo L/química , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/fisiología , Células Cultivadas , Humanos , Inmunoprecipitación , Metales/metabolismo , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Técnicas de Placa-Clamp , Mutación Puntual , Unión Proteica , Conformación Proteica , Conejos , Ratas , Electricidad Estática , Factor de von Willebrand/metabolismo
9.
Bioinformatics ; 32(4): 621-3, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26504139

RESUMEN

UNLABELLED: IsoMIF Finder is an online server for the identification of molecular interaction field (MIF) similarities. User defined binding site MIFs can be compared to datasets of pre-calculated MIFs or against a user-defined list of PDB entries. The interface can be used for the prediction of function, identification of potential cross-reactivity or polypharmacological targets and drug repurposing. Detected similarities can be viewed in a browser or within a PyMOL session. AVAILABILITY AND IMPLEMENTATION: IsoMIF Finder uses JSMOL (no java plugin required), is cross-browser and freely available at bcb.med.usherbrooke.ca/imfi.


Asunto(s)
Preparaciones Farmacéuticas/química , Proteínas/química , Programas Informáticos , Sitios de Unión , Bases de Datos de Proteínas , Humanos , Modelos Moleculares
10.
Nucleic Acids Res ; 43(W1): W395-400, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25883149

RESUMEN

ENCoM is a coarse-grained normal mode analysis method recently introduced that unlike previous such methods is unique in that it accounts for the nature of amino acids. The inclusion of this layer of information was shown to improve conformational space sampling and apply for the first time a coarse-grained normal mode analysis method to predict the effect of single point mutations on protein dynamics and thermostability resulting from vibrational entropy changes. Here we present a web server that allows non-technical users to have access to ENCoM calculations to predict the effect of mutations on thermostability and dynamics as well as to generate geometrically realistic conformational ensembles. The server is accessible at: http://bcb.med.usherbrooke.ca/encom.


Asunto(s)
Mutación Puntual , Conformación Proteica , Estabilidad Proteica , Programas Informáticos , Entropía , Internet , Modelos Moleculares , Temperatura , Vibración
11.
Bioinformatics ; 31(23): 3856-8, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26249810

RESUMEN

UNLABELLED: Ligand protein docking simulations play a fundamental role in understanding molecular recognition. Herein we introduce the NRGsuite, a PyMOL plugin that permits the detection of surface cavities in proteins, their refinements, calculation of volume and use, individually or jointly, as target binding-sites for docking simulations with FlexAID. The NRGsuite offers the users control over a large number of important parameters in docking simulations including the assignment of flexible side-chains and definition of geometric constraints. Furthermore, the NRGsuite permits the visualization of the docking simulation in real time. The NRGsuite give access to powerful docking simulations that can be used in structure-guided drug design as well as an educational tool. The NRGsuite is implemented in Python and C/C++ with an easy to use package installer. The NRGsuite is available for Windows, Linux and MacOS. AVAILABILITY AND IMPLEMENTATION: http://bcb.med.usherbrooke.ca/flexaid. CONTACT: rafael.najmanovich@usherbroke.ca. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Simulación del Acoplamiento Molecular/métodos , Proteínas/química , Programas Informáticos , Sitios de Unión , Ligandos , Proteínas/metabolismo
12.
Bioinformatics ; 31(1): 146-50, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25488929

RESUMEN

MOTIVATION: The field of structural bioinformatics and computational biophysics has undergone a revolution in the last 10 years. Developments that are captured annually through the 3DSIG meeting, upon which this article reflects. RESULTS: An increase in the accessible data, computational resources and methodology has resulted in an increase in the size and resolution of studied systems and the complexity of the questions amenable to research. Concomitantly, the parameterization and efficiency of the methods have markedly improved along with their cross-validation with other computational and experimental results. CONCLUSION: The field exhibits an ever-increasing integration with biochemistry, biophysics and other disciplines. In this article, we discuss recent achievements along with current challenges within the field.


Asunto(s)
Investigación Biomédica/tendencias , Biofisica/tendencias , Biología Computacional/tendencias , Logro , Humanos
13.
PLoS Comput Biol ; 10(4): e1003569, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24762569

RESUMEN

Normal mode analysis (NMA) methods are widely used to study dynamic aspects of protein structures. Two critical components of NMA methods are coarse-graining in the level of simplification used to represent protein structures and the choice of potential energy functional form. There is a trade-off between speed and accuracy in different choices. In one extreme one finds accurate but slow molecular-dynamics based methods with all-atom representations and detailed atom potentials. On the other extreme, fast elastic network model (ENM) methods with Cα-only representations and simplified potentials that based on geometry alone, thus oblivious to protein sequence. Here we present ENCoM, an Elastic Network Contact Model that employs a potential energy function that includes a pairwise atom-type non-bonded interaction term and thus makes it possible to consider the effect of the specific nature of amino-acids on dynamics within the context of NMA. ENCoM is as fast as existing ENM methods and outperforms such methods in the generation of conformational ensembles. Here we introduce a new application for NMA methods with the use of ENCoM in the prediction of the effect of mutations on protein stability. While existing methods are based on machine learning or enthalpic considerations, the use of ENCoM, based on vibrational normal modes, is based on entropic considerations. This represents a novel area of application for NMA methods and a novel approach for the prediction of the effect of mutations. We compare ENCoM to a large number of methods in terms of accuracy and self-consistency. We show that the accuracy of ENCoM is comparable to that of the best existing methods. We show that existing methods are biased towards the prediction of destabilizing mutations and that ENCoM is less biased at predicting stabilizing mutations.


Asunto(s)
Modelos Teóricos , Mutación , Proteínas/química , Cristalografía , Elasticidad , Proteínas/genética
14.
J Chem Inf Model ; 55(8): 1600-15, 2015 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-26158641

RESUMEN

Protein binding-site similarity detection methods can be used to predict protein function and understand molecular recognition, as a tool in drug design for drug repurposing and polypharmacology, and for the prediction of the molecular determinants of drug toxicity. Here, we present IsoMIF, a method able to identify binding site molecular interaction field similarities across protein families. IsoMIF utilizes six chemical probes and the detection of subgraph isomorphisms to identify geometrically and chemically equivalent sections of protein cavity pairs. The method is validated using six distinct data sets, four of those previously used in the validation of other methods. The mean area under the receiver operator curve (AUC) obtained across data sets for IsoMIF is higher than those of other methods. Furthermore, while IsoMIF obtains consistently high AUC values across data sets, other methods perform more erratically across data sets. IsoMIF can be used to predict function from structure, to detect potential cross-reactivity or polypharmacology targets, and to help suggest bioisosteric replacements to known binding molecules. Given that IsoMIF detects spatial patterns of molecular interaction field similarities, its predictions are directly related to pharmacophores and may be readily translated into modeling decisions in structure-based drug design. IsoMIF may in principle detect similar binding sites with distinct amino acid arrangements that lead to equivalent interactions within the cavity. The source code to calculate and visualize MIFs and MIF similarities are freely available.


Asunto(s)
Diseño de Fármacos , Proteínas/química , Proteínas/metabolismo , Adenosina Trifosfato/metabolismo , Algoritmos , Animales , Sitios de Unión , Ligasas de Carbono-Nitrógeno/química , Ligasas de Carbono-Nitrógeno/metabolismo , Bases de Datos de Proteínas , Escherichia coli/enzimología , Humanos , Ligandos , Modelos Moleculares , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/metabolismo , Unión Proteica , Conformación Proteica , Mapas de Interacción de Proteínas , Proteínas Inactivadoras de Ribosomas/química , Proteínas Inactivadoras de Ribosomas/metabolismo , Porcinos
15.
J Chem Inf Model ; 55(7): 1323-36, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-26076070

RESUMEN

Small-molecule protein docking is an essential tool in drug design and to understand molecular recognition. In the present work we introduce FlexAID, a small-molecule docking algorithm that accounts for target side-chain flexibility and utilizes a soft scoring function, i.e. one that is not highly dependent on specific geometric criteria, based on surface complementarity. The pairwise energy parameters were derived from a large dataset of true positive poses and negative decoys from the PDBbind database through an iterative process using Monte Carlo simulations. The prediction of binding poses is tested using the widely used Astex dataset as well as the HAP2 dataset, while performance in virtual screening is evaluated using a subset of the DUD dataset. We compare FlexAID to AutoDock Vina, FlexX, and rDock in an extensive number of scenarios to understand the strengths and limitations of the different programs as well as to reported results for Glide, GOLD, and DOCK6 where applicable. The most relevant among these scenarios is that of docking on flexible non-native-complex structures where as is the case in reality, the target conformation in the bound form is not known a priori. We demonstrate that FlexAID, unlike other programs, is robust against increasing structural variability. FlexAID obtains equivalent sampling success as GOLD and performs better than AutoDock Vina or FlexX in all scenarios against non-native-complex structures. FlexAID is better than rDock when there is at least one critical side-chain movement required upon ligand binding. In virtual screening, FlexAID results are lower on average than those of AutoDock Vina and rDock. The higher accuracy in flexible targets where critical movements are required, intuitive PyMOL-integrated graphical user interface and free source code as well as precompiled executables for Windows, Linux, and Mac OS make FlexAID a welcome addition to the arsenal of existing small-molecule protein docking methods.


Asunto(s)
Simulación del Acoplamiento Molecular/métodos , Proteínas/química , Proteínas/metabolismo , Gráficos por Computador , Bases de Datos de Proteínas , Evaluación Preclínica de Medicamentos , Ligandos , Movimiento , Conformación Proteica , Interfaz Usuario-Computador
16.
bioRxiv ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38948778

RESUMEN

SARS-CoV-2 is a highly transmissible virus that causes COVID-19 disease. Mechanisms of viral pathogenesis include excessive inflammation and viral-induced cell death, resulting in tissue damage. We identified the host E3-ubiquitin ligase TRIM7 as an inhibitor of apoptosis and SARS-CoV-2 replication via ubiquitination of the viral membrane (M) protein. Trim7 -/- mice exhibited increased pathology and virus titers associated with epithelial apoptosis and dysregulated immune responses. Mechanistically, TRIM7 ubiquitinates M on K14, which protects cells from cell death. Longitudinal SARS-CoV-2 sequence analysis from infected patients revealed that mutations on M-K14 appeared in circulating variants during the pandemic. The relevance of these mutations was tested in a mouse model. A recombinant M-K14/K15R virus showed reduced viral replication, consistent with the role of K15 in virus assembly, and increased levels of apoptosis associated with the loss of ubiquitination on K14. TRIM7 antiviral activity requires caspase-6 inhibition, linking apoptosis with viral replication and pathology.

17.
Bioinformatics ; 28(11): 1438-45, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22467916

RESUMEN

MOTIVATION: An increasing amount of evidence from experimental and computational analysis suggests that rare codon clusters are functionally important for protein activity. Most of the studies on rare codon clusters were performed on a limited number of proteins or protein families. In the present study, we present the Sherlocc program and how it can be used for large scale protein family analysis of evolutionarily conserved rare codon clusters and their relation to protein function and structure. This large-scale analysis was performed using the whole Pfam database covering over 70% of the known protein sequence universe. Our program Sherlocc, detects statistically relevant conserved rare codon clusters and produces a user-friendly HTML output. RESULTS: Statistically significant rare codon clusters were detected in a multitude of Pfam protein families. The most statistically significant rare codon clusters were predominantly identified in N-terminal Pfam families. Many of the longest rare codon clusters are found in membrane-related proteins which are required to interact with other proteins as part of their function, for example in targeting or insertion. We identified some cases where rare codon clusters can play a regulating role in the folding of catalytically important domains. Our results support the existence of a widespread functional role for rare codon clusters across species. Finally, we developed an online filter-based search interface that provides access to Sherlocc results for all Pfam families. AVAILABILITY: The Sherlocc program and search interface are open access and are available at http://bcb.med.usherbrooke.ca


Asunto(s)
Algoritmos , Codón , Proteínas/química , Programas Informáticos , Bacterias/química , Bacterias/metabolismo , Bacteriófagos/química , Bacteriófagos/metabolismo , Análisis por Conglomerados , Biosíntesis de Proteínas , Proteínas/genética
18.
Bioinformatics ; 28(18): i423-i430, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22962462

RESUMEN

MOTIVATION: Protein movements form a continuum from large domain rearrangements (including folding and restructuring) to side-chain rotamer changes and small rearrangements. Understanding side-chain flexibility upon binding is important to understand molecular recognition events and predict ligand binding. METHODS: In the present work, we developed a well-curated non-redundant dataset of 188 proteins in pairs of structures in the Apo (unbound) and Holo (bound) forms to study the extent and the factors that guide side-chain rotamer changes upon binding. RESULTS: Our analysis shows that side-chain rotamer changes are widespread with only 10% of binding sites displaying no conformational changes. Overall, at most five rotamer changes account for the observed movements in 90% of the cases. Furthermore, rotamer changes are essential in 32% of flexible binding sites. The different amino acids have a 11-fold difference in their probability to undergo changes. Side-chain flexibility represents an intrinsic property of amino acids as it correlates well with configurational entropy differences. Furthermore, on average b-factors and solvent accessible surface areas can discriminate flexible side-chains in the Apo form. Finally, there is a rearrangement of the hydrogen-bonding network upon binding primarily with a loss of H-bonds with water molecules and a gain of H-bonds with protein residues for flexible residues. Interestingly, only 25% of side chains capable of forming H-bonds do so with the ligand upon binding. In terms of drug design, this last result shows that there is a large number of potential interactions that may be exploited to modulate the specificity and sensitivity of inhibitors. CONTACT: rafael.najmanovich@usherbrooke.ca.


Asunto(s)
Aminoácidos/química , Unión Proteica , Proteínas/química , Sitios de Unión , Bases de Datos de Proteínas , Entropía , Enlace de Hidrógeno , Ligandos , Conformación Proteica
19.
bioRxiv ; 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37503276

RESUMEN

Ebolavirus (EBOV) belongs to a family of highly pathogenic viruses that cause severe hemorrhagic fever in humans. EBOV replication requires the activity of the viral polymerase complex, which includes the co-factor and Interferon antagonist VP35. We previously showed that the covalent ubiquitination of VP35 promotes virus replication by regulating interactions with the polymerase complex. In addition, VP35 can also interact non-covalently with ubiquitin (Ub); however, the function of this interaction is unknown. Here, we report that VP35 interacts with free (unanchored) K63-linked polyUb chains. Ectopic expression of Isopeptidase T (USP5), which is known to degrade unanchored polyUb chains, reduced VP35 association with Ub and correlated with diminished polymerase activity in a minigenome assay. Using computational methods, we modeled the VP35-Ub non-covalent interacting complex, identified the VP35-Ub interacting surface and tested mutations to validate the interface. Docking simulations identified chemical compounds that can block VP35-Ub interactions leading to reduced viral polymerase activity that correlated with reduced replication of infectious EBOV. In conclusion, we identified a novel role of unanchored polyUb in regulating Ebola virus polymerase function and discovered compounds that have promising anti-Ebola virus activity.

20.
J Lipid Res ; 53(12): 2677-89, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23018617

RESUMEN

Steroidogenic acute regulatory-related lipid transfer (START) domain proteins are involved in the nonvesicular intracellular transport of lipids and sterols. The STARD1 (STARD1 and STARD3) and STARD4 subfamilies (STARD4-6) have an internal cavity large enough to accommodate sterols. To provide a deeper understanding on the structural biology of this domain, the binding of sterols to STARD5, a member of the STARD4 subfamily, was monitored. The SAR by NMR [(1)H-(15)N heteronuclear single-quantum coherence (HSQC)] approach, complemented by circular dichroism (CD) and isothermal titration calorimetry (ITC), was used. Titration of STARD5 with cholic (CA) and chenodeoxycholic acid (CDCA), ligands of the farnesoid X receptor (FXR), leads to drastic perturbation of the (1)H-(15)N HSQC spectra and the identification of the residues in contact with those ligands. The most perturbed residues in presence of ligands are lining the internal cavity of the protein. Ka values of 1.8·10-(4) M(-1) and 6.3·10(4) M(-1) were measured for CA and CDCA, respectively. This is the first report of a START domain protein in complex with a sterol ligand. Our original findings indicate that STARD5 may be involved in the transport of bile acids rather than cholesterol.


Asunto(s)
Proteínas Portadoras/química , Ácido Quenodesoxicólico/química , Ácido Cólico/química , Proteínas Adaptadoras del Transporte Vesicular , Sitios de Unión , Proteínas Portadoras/genética , Proteínas Portadoras/aislamiento & purificación , Clonación Molecular , Humanos , Ligandos , Espectroscopía de Resonancia Magnética/normas , Modelos Moleculares , Estabilidad Proteica , Estándares de Referencia , Relación Estructura-Actividad , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA