Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
New Phytol ; 244(3): 997-1012, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39180241

RESUMEN

The retromer complex is a conserved sorting machinery that maintains cellular protein homeostasis by transporting vesicles containing cargo proteins to defined destinations. It is known to sort proteins at the vacuole membranes for retrograde trafficking, preventing their degradation in the vacuole. However, the detailed mechanism of retromer recruitment to the vacuole membrane has not yet been elucidated. Here, we show that the vacuolar SNARE complex MoPep12-MoVti1-MoVam7-MoYkt6 regulates retromer-mediated vesicle trafficking by recruiting the retromer to the vacuole membrane, which promotes host invasion in Magnaporthe oryzae. Such recruitment is also essential for the retrieval of the autophagy regulator MoAtg8 and enables appressorium-mediated host penetration. Furthermore, the vacuolar SNARE subunits are involved in suppressing the host defense response by regulating the deployment of retromer-MoSnc1-mediated effector secretion. Altogether, our results provide insights into the mechanism of vacuolar SNAREs-dependent retromer recruitment which is necessary for pathogenicity-related membrane trafficking events in the rice blast fungus.


Asunto(s)
Oryza , Enfermedades de las Plantas , Transporte de Proteínas , Proteínas SNARE , Vacuolas , Vacuolas/metabolismo , Proteínas SNARE/metabolismo , Oryza/microbiología , Oryza/metabolismo , Enfermedades de las Plantas/microbiología , Ascomicetos/fisiología , Ascomicetos/patogenicidad , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
2.
Annu Rev Microbiol ; 73: 601-619, 2019 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-31283431

RESUMEN

The blast disease, caused by the ascomycete Magnaporthe oryzae, poses a great threat to rice production worldwide. Increasing use of fungicides and/or blast-resistant varieties of rice (Oryza sativa) has proved to be ineffective in long-term control of blast disease under field conditions. To develop effective and durable resistance to blast, it is important to understand the cellular mechanisms underlying pathogenic development in M. oryzae. In this review, we summarize the latest research in phototropism, autophagy, nutrient and redox signaling, and intrinsic phytohormone mimics in M. oryzae for cellular and metabolic adaptation(s) during its interactions with the host plants.


Asunto(s)
Interacciones Huésped-Patógeno , Magnaporthe/patogenicidad , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Adaptación Fisiológica , Ascomicetos/patogenicidad , Autofagia , Coevolución Biológica , Carbono/metabolismo , Relojes Circadianos/genética , Resistencia a la Enfermedad , Genes de Plantas , Glucosiltransferasas/metabolismo , Glucógeno/metabolismo , Magnaporthe/metabolismo , Nitrógeno/metabolismo , Oxidación-Reducción , Fototropismo , Enfermedades de las Plantas/inmunología , Reguladores del Crecimiento de las Plantas/metabolismo , Inmunidad de la Planta , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
3.
New Phytol ; 239(4): 1384-1403, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291895

RESUMEN

Secretion is a fundamental process that plant pathogens utilize to deliver effectors into the host to downregulate immunity and promote infection. Here, we uncover a fascinating membrane trafficking and delivery route that originates from vacuolar membranes in Magnaporthe oryzae and conduits to the host interface and plasma membrane. To perform such secretory/trafficking function, MoRab7 first recruits the retromer complex to the vacuolar membrane, enabling recognition of a family of SNARE proteins, including MoSnc1. Live-cell imaging confirmed a highly dynamic vesicular trafficking of the retromer complex component(s) and MoSnc1 toward and across the host interface or plasma membrane, and subsequent fusion with target membranes. Interestingly, disruption of the MoRab7/Retromer/MoSnc1-based endolysosomal cascade affects effector secretion and fungal pathogenicity. Taken together, we discovered an unconventional protein and membrane trafficking route starting from the fungal endolysosomes to the M. oryzae-rice interaction interface and dissect the role of MoRab7/Retromer/MoSnc1 sorting machinery in effector secretion during biotrophy and invasive growth in rice blast fungus.


Asunto(s)
Magnaporthe , Oryza , Endosomas/metabolismo , Transporte de Proteínas , Vacuolas/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Oryza/metabolismo , Proteínas Fúngicas/metabolismo , Enfermedades de las Plantas/microbiología
4.
J Integr Plant Biol ; 63(12): 2136-2149, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34570416

RESUMEN

Flavonoids are polyphenolic secondary metabolites that function as signaling molecules, allopathic compounds, phytoalexins, detoxifying agents and antimicrobial defensive compounds in plants. Blast caused by the fungus Magnaporthe oryzae is a serious disease affecting rice cultivation. In this study, we revealed that a natural flavonoid, tangeretin, substantially delays the formation of M. oryzae appressoria and blocks the development of blast lesions on rice plants. Our data suggest that tangeretin has antioxidant activity that interferes with conidial cell death/ferroptosis, which is critical for M. oryzae pathogenicity. Tangeretin showed a ferroptosis inhibition efficacy comparable to the well-established liproxstatin-1. Furthermore, overexpression of the NADPH oxidases NOX1 or NOX2 significantly decreased sensitivity toward tangeretin treatment, suggesting Nox-mediated lipid peroxidation as a possible target for tangeretin in regulating redox signaling and ferroptosis in M. oryzae. Our nursery and field tests showed that application of tangeretin can effectively mitigate overall disease symptoms and prevent leaf blast. Our study reveals the plant-derived fungal ferroptosis inhibitor tangeretin as a potential and novel antifungal agrochemical for the sustainable prevention of the devastating blast disease in important cereal crops.


Asunto(s)
Ferroptosis , Magnaporthe , Oryza , Flavonas , Proteínas Fúngicas/metabolismo , Oryza/metabolismo , Enfermedades de las Plantas/microbiología
5.
New Phytol ; 227(6): 1831-1846, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32367535

RESUMEN

Ferroptosis, an iron-dependent cell death process, was found to occur in Magnaporthe oryzae, and plays a key role in infection-related development therein. Ferroptosis in the rice-blast fungus was confirmed based on five basic criteria. We confirmed the dependence of ferroptosis on ferric ions, and optimized ratio-fluorescence imaging of C11-BODIPY581/591 as a precise sensor for lipid peroxides that mediate ferroptosis in M. oryzae. We uncovered an important regulatory function for reduced glutathione and NADPH oxidases in modulating the superoxide moieties required for ferroptotic cell death. We found ferroptosis to be necessary for the developmental cell death of conidia during appressorium maturation in rice blast. Such ferroptotic cell death initiated first in the terminal cell and progressed sequentially to the entire conidium. Iron chelation or chemical inhibition of ferroptosis caused conidial cells to remain viable, and led to strong defects in host invasion by M. oryzae. Ferroptosis induction exclusively in the host severely constrained the invasive growth of M. oryzae. We found inter-reliant and independent roles for ferroptosis and autophagy in controlling such precise cell death in M. oryzae during pathogenic differentiation. Our study provides significant molecular insights into the role of developmental cell death and iron homeostasis in fungal pathogenesis.


Asunto(s)
Ferroptosis , Magnaporthe , Oryza , Ascomicetos , Muerte Celular , Oryza/genética , Enfermedades de las Plantas
6.
BMC Plant Biol ; 19(1): 326, 2019 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-31324141

RESUMEN

BACKGROUND: Autophagy is a conserved, highly-regulated catabolic process that plays important roles in growth, development and innate immunity in plants. In this study, we compared the rate of autophagy induction in Nicotiana benthamiana plants infected with Tobacco mosaic virus or the TMV 24A + UPD mutant variant, which replicates at a faster rate and induces more severe symptoms. Using a BirA* tag and proximity-dependent biotin identification (BioID) analysis, we identified host proteins that interact with the core autophagy protein, ATG8 in TMV 24A + UPD infected plants. By combining the use of a fast replicating TMV mutant and an in vivo protein-protein screening technique, we were able to gain functional insight into the role of autophagy in a compatible virus-host interaction. RESULTS: Our study revealed an increased autophagic flux induced by TMV 24A + UPD, as compared to TMV in N. benthamiana. Analysis of the functional proteome associated with ATG8 revealed a total of 67 proteins, 16 of which are known to interact with ATG8 or its orthologs in mammalian and yeast systems. The interacting proteins were categorized into four functional groups: immune system process, response to ROS, sulphur amino acid metabolism and calcium signalling. Due to the presence of an ubiquitin-associated (UBA) domain, which is demonstrated to interact with ATG8, the Huntingtin-interacting protein K-like (HYPK) was selected for validation of the physical interaction and function. We used yeast two hybrid (Y2H), bimolecular fluorescence complementation (BiFC) and subcellular localization to validate the ATG8-HYPK interaction. Subsequent down-regulation of ATG8 by virus-induced gene silencing (VIGS) showed enhanced TMV symptoms, suggesting a protective role for autophagy during TMV 24A + UPD infection. CONCLUSION: This study presents the use of BioID as a suitable method for screening ATG8 interacting proteins in planta. We have identified many putative binding partners of ATG8 during TMV 24A + UPD infection in N. benthamiana plants. In addition, we have verified that NbHYPK is an interacting partner of ATG8. We infer that autophagy plays a protective role in TMV 24A + UPD infected plants.


Asunto(s)
Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Nicotiana/virología , Enfermedades de las Plantas/virología , Proteínas de Plantas/metabolismo , Autofagosomas/metabolismo , Autofagia/genética , Autofagia/fisiología , Biotinilación , Inmunidad de la Planta , Nicotiana/metabolismo , Virus del Mosaico del Tabaco
7.
PLoS Genet ; 12(10): e1006383, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27749909

RESUMEN

Cytokinesis in many organisms requires a plasma membrane anchored actomyosin ring, whose contraction facilitates cell division. In yeast and fungi, actomyosin ring constriction is also coordinated with division septum assembly. How the actomyosin ring interacts with the plasma membrane and the plasma membrane-localized septum synthesizing machinery remains poorly understood. In Schizosaccharomyces pombe, an attractive model organism to study cytokinesis, the ß-1,3-glucan synthase Cps1p / Bgs1p, an integral membrane protein, localizes to the plasma membrane overlying the actomyosin ring and is required for primary septum synthesis. Through a high-dosage suppressor screen we identified an essential gene, sbg1+ (suppressor of beta glucan synthase 1), which suppressed the colony formation defect of Bgs1-defective cps1-191 mutant at higher temperatures. Sbg1p, an integral membrane protein, localizes to the cell ends and to the division site. Sbg1p and Bgs1p physically interact and are dependent on each other to localize to the division site. Loss of Sbg1p results in an unstable actomyosin ring that unravels and slides, leading to an inability to deposit a single contiguous division septum and an important reduction of the ß-1,3-glucan proportion in the cell wall, coincident with that observed in the cps1-191 mutant. Sbg1p shows genetic and / or physical interaction with Rga7p, Imp2p, Cdc15p, and Pxl1p, proteins known to be required for actomyosin ring integrity and efficient septum synthesis. This study establishes Sbg1p as a key member of a group of proteins that link the plasma membrane, the actomyosin ring, and the division septum assembly machinery in fission yeast.


Asunto(s)
Actomiosina/genética , Citocinesis/genética , Glucosiltransferasas/genética , Proteínas de la Membrana/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Citoesqueleto de Actina/genética , Actomiosina/metabolismo , Proteínas de Ciclo Celular/genética , División Celular/genética , Membrana Celular , Pared Celular/genética , Pared Celular/metabolismo , Glucosiltransferasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , beta-Glucanos/metabolismo
8.
Semin Cell Dev Biol ; 57: 84-92, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27133541

RESUMEN

Pathogenic fungi have evolved highly varied and remarkable strategies to invade and infect their plant hosts. Typically, such fungal pathogens utilize highly specialized infection structures, morphologies or cell types produced from conidia or ascospores on the cognate host surfaces to gain entry therein. Such diverse infection strategies require intricate coordination in cell signaling and differentiation in phytopathogenic fungi. Here, we present an overview of our current understanding of cell signaling and infection-associated development that primes host penetration in the top ten plant pathogenic fungi, which utilize specific receptors to sense and respond to different surface cues, such as topographic features, hydrophobicity, hardness, plant lipids, phytohormones, and/or secreted enzymes. Subsequently, diverse signaling components such as G proteins, cyclic AMP/Protein Kinase A and MAP kinases are activated to enable the differentiation of infection structures. Recent studies have also provided fascinating insights into the spatio-temporal dynamics and specialized sequestration and trafficking of signaling moieties required for proper development of infection structures in phytopathogenic fungi. Molecular insight in such infection-related morphogenesis and cell signaling holds promise for identifying novel strategies for intervention of fungal diseases in plants.


Asunto(s)
Hongos/metabolismo , Plantas/microbiología , Transducción de Señal , Modelos Biológicos , Enfermedades de las Plantas/microbiología , Receptores de Superficie Celular/metabolismo
9.
Mol Microbiol ; 105(3): 484-504, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28544028

RESUMEN

The cAMP-dependent PKA signalling plays a central role in growth, asexual development and pathogenesis in fungal pathogens. Here, we functionally characterised RPKA, the regulatory subunit of cAMP/PKA and studied the dynamics and organisation of the PKA subunits in the rice blast pathogen Magnaporthe oryzae. The RPKA subunit was essential for proper vegetative growth, asexual sporulation and surface hydrophobicity in M. oryzae. A spontaneous suppressor mutation, SMR19, that restored growth and conidiation in the RPKA deletion mutant was isolated and characterised. SMR19 enhanced conidiation and appressorium formation but failed to suppress the pathogenesis defects in rpkAΔ. The PKA activity was undetectable in the mycelial extracts of SMR19, which showed a single mutation (val242leu) in the highly conserved active site of the catalytic subunit (CPKA) of cAMP/PKA. The two subunits of cAMP/PKA showed different subcellular localisation patterns with RpkA being predominantly nucleocytoplasmic in conidia, while CpkA was largely cytosolic and/or vesicular. The CpkA anchored RpkA in cytoplasmic vesicles, and localisation of PKA in the cytoplasm was governed by CpkA in a cAMP-dependant or independent manner. We show that there exists a tight regulation of PKA subunits at the level of transcription, and the cAMP signalling is differentially compartmentalised in a stage-specific manner in rice blast.


Asunto(s)
Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Magnaporthe/genética , Secuencia de Aminoácidos , AMP Cíclico/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Magnaporthe/metabolismo , Mutación , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Transducción de Señal , Esporas Fúngicas/genética , Supresión Genética/genética , Virulencia/genética
11.
PLoS Genet ; 11(12): e1005704, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26658729

RESUMEN

The retromer mediates protein trafficking through recycling cargo from endosomes to the trans-Golgi network in eukaryotes. However, the role of such trafficking events during pathogen-host interaction remains unclear. Here, we report that the cargo-recognition complex (MoVps35, MoVps26 and MoVps29) of the retromer is essential for appressorium-mediated host penetration by Magnaporthe oryzae, the causal pathogen of the blast disease in rice. Loss of retromer function blocked glycogen distribution and turnover of lipid bodies, delayed nuclear degeneration and reduced turgor during appressorial development. Cytological observation revealed dynamic MoVps35-GFP foci co-localized with autophagy-related protein RFP-MoAtg8 at the periphery of autolysosomes. Furthermore, RFP-MoAtg8 interacted with MoVps35-GFP in vivo, RFP-MoAtg8 was mislocalized to the vacuole and failed to recycle from the autolysosome in the absence of the retromer function, leading to impaired biogenesis of autophagosomes. We therefore conclude that retromer is essential for autophagy-dependent plant infection by the rice blast fungus.


Asunto(s)
Magnaporthe/genética , Oryza/genética , Enfermedades de las Plantas/genética , Transporte de Proteínas/genética , Secuencia de Aminoácidos , Autofagia/genética , Glucógeno/metabolismo , Interacciones Huésped-Patógeno/genética , Gotas Lipídicas/metabolismo , Magnaporthe/patogenicidad , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Vacuolas/genética , Vacuolas/microbiología , Red trans-Golgi/genética
12.
PLoS Pathog ; 11(6): e1004972, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26102503

RESUMEN

Phototropic regulation of circadian clock is important for environmental adaptation, organismal growth and differentiation. Light plays a critical role in fungal development and virulence. However, it is unclear what governs the intracellular metabolic response to such dark-light rhythms in fungi. Here, we describe a novel circadian-regulated Twilight (TWL) function essential for phototropic induction of asexual development and pathogenesis in the rice-blast fungus Magnaporthe oryzae. The TWL transcript oscillates during circadian cycles and peaks at subjective twilight. GFP-Twl remains acetylated and cytosolic in the dark, whereas light-induced phosphorylation (by the carbon sensor Snf1 kinase) drives it into the nucleus. The mRNA level of the transcription/repair factor TFB5, was significantly down regulated in the twl∆ mutant. Overexpression of TFB5 significantly suppressed the conidiation defects in the twl∆ mutant. Furthermore, Tfb5-GFP translocates to the nucleus during the phototropic response and under redox stress, while it failed to do so in the twl∆ mutant. Thus, we provide mechanistic insight into Twl-based regulation of nutrient and redox homeostasis in response to light during pathogen adaptation to the host milieu in the rice blast pathosystem.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Homeostasis/fisiología , Luz , Magnaporthe/metabolismo , Fototropismo/genética , Enfermedades de las Plantas/microbiología , Ritmo Circadiano , Alimentos , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica/genética , Hifa/genética , Magnaporthe/efectos de los fármacos , Magnaporthe/genética , Magnaporthe/crecimiento & desarrollo , Oryza/microbiología , Oxidación-Reducción , Fototropismo/fisiología , Esporas Fúngicas/crecimiento & desarrollo
13.
New Phytol ; 214(1): 330-342, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27898176

RESUMEN

The interaction of Magnaporthe oryzae, the rice blast fungus, and rice begins when M. oryzae establishes contact with the host plant surface. On perception of appropriate surface signals, M. oryzae forms appressoria and initiates host invasion. Pth11, an important G-protein-coupled receptor necessary for appressorium formation in M. oryzae, contains seven transmembrane regions and a CFEM (common in several fungal extracellular membrane proteins) domain with the characteristic eight cysteine residues. We focused on gaining further insight into the role of the CFEM domain in the putative surface sensing/response function of Pth11. Increased/constitutive expression of CFEM resulted in precocious, albeit defective, appressoria formation in wild-type M. oryzae. The Pth11C63A/C65A mutant, probably with disrupted disulfide bonds in the CFEM, showed delayed appressorium formation and reduced virulence. Furthermore, the accumulation of reactive oxygen species (ROS) was found to be altered in the pth11Δ strain. Strikingly, antioxidant treatment induced appressorium formation in pth11Δ. The Gα subunit MagB and the mitogen-activated protein (MAP) kinase Pmk1 were required for the formation of antioxidant-induced appressoria. We conclude that the CFEM domain of Pth11 is required for proper development of the appressoria, appressoria-like structures and pathogenicity. Highly regulated ROS homeostasis is important for Pth11-mediated appressorium formation in M. oryzae.


Asunto(s)
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Magnaporthe/metabolismo , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Antioxidantes/farmacología , Secuencia Conservada , Cisteína , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Magnaporthe/patogenicidad , Oxidación-Reducción , Dominios Proteicos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/crecimiento & desarrollo , Relación Estructura-Actividad , Fracciones Subcelulares/metabolismo
14.
Nat Chem Biol ; 11(9): 733-40, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26258762

RESUMEN

Distinct modifications fine-tune the activity of jasmonic acid (JA) in regulating plant growth and immunity. Hydroxylated JA (12OH-JA) promotes flower and tuber development but prevents induction of JA signaling, plant defense or both. However, biosynthesis of 12OH-JA has remained elusive. We report here an antibiotic biosynthesis monooxygenase (Abm) that converts endogenous free JA into 12OH-JA in the model rice blast fungus Magnaporthe oryzae. Such fungal 12OH-JA is secreted during host penetration and helps evade the defense response. Loss of Abm in M. oryzae led to accumulation of methyl JA (MeJA), which induces host defense and blocks invasive growth. Exogenously added 12OH-JA markedly attenuated abmΔ-induced immunity in rice. Notably, Abm itself is secreted after invasion and most likely converts plant JA into 12OH-JA to facilitate host colonization. This study sheds light on the chemical arms race during plant-pathogen interaction, reveals Abm as an antifungal target and outlines a synthetic strategy for transformation of a versatile small-molecule phytohormone.


Asunto(s)
Ciclopentanos/metabolismo , Proteínas Fúngicas/inmunología , Regulación Fúngica de la Expresión Génica , Magnaporthe/genética , Oxigenasas de Función Mixta/inmunología , Oryza/inmunología , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Ciclopentanos/química , Ciclopentanos/inmunología , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Interacciones Huésped-Patógeno/inmunología , Hidroxilación , Magnaporthe/inmunología , Magnaporthe/patogenicidad , Metilación , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética , Modelos Moleculares , Oryza/microbiología , Oxilipinas/química , Oxilipinas/inmunología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/química , Reguladores del Crecimiento de las Plantas/inmunología , Inmunidad de la Planta , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Transducción de Señal
15.
PLoS Pathog ; 9(8): e1003527, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23935502

RESUMEN

In Magnaporthe oryzae, the causal ascomycete of the devastating rice blast disease, the conidial germ tube tip must sense and respond to a wide array of requisite cues from the host in order to switch from polarized to isotropic growth, ultimately forming the dome-shaped infection cell known as the appressorium. Although the role for G-protein mediated Cyclic AMP signaling in appressorium formation was first identified almost two decades ago, little is known about the spatio-temporal dynamics of the cascade and how the signal is transmitted through the intracellular network during cell growth and morphogenesis. In this study, we demonstrate that the late endosomal compartments, comprising of a PI3P-rich (Phosphatidylinositol 3-phosphate) highly dynamic tubulo-vesicular network, scaffold active MagA/GαS, Rgs1 (a GAP for MagA), Adenylate cyclase and Pth11 (a non-canonical GPCR) in the likely absence of AKAP-like anchors during early pathogenic development in M. oryzae. Loss of HOPS component Vps39 and consequently the late endosomal function caused a disruption of adenylate cyclase localization, cAMP signaling and appressorium formation. Remarkably, exogenous cAMP rescued the appressorium formation defects associated with VPS39 deletion in M. oryzae. We propose that sequestration of key G-protein signaling components on dynamic late endosomes and/or endolysosomes, provides an effective molecular means to compartmentalize and control the spatio-temporal activation and rapid downregulation (likely via vacuolar degradation) of cAMP signaling amidst changing cellular geometry during pathogenic development in M. oryzae.


Asunto(s)
Proteínas Fúngicas/metabolismo , Proteínas de Unión al GTP/metabolismo , Magnaporthe/metabolismo , Transducción de Señal/fisiología , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Proteínas Fúngicas/genética , Proteínas de Unión al GTP/genética , Magnaporthe/genética , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo
16.
New Phytol ; 206(4): 1463-75, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25659573

RESUMEN

We identified the Magnaporthe oryzae avirulence effector AvrPi9 cognate to rice blast resistance gene Pi9 by comparative genomics of requisite strains derived from a sequential planting method. AvrPi9 encodes a small secreted protein that appears to localize in the biotrophic interfacial complex and is translocated to the host cell during rice infection. AvrPi9 forms a tandem gene array with its paralogue proximal to centromeric region of chromosome 7. AvrPi9 is expressed highly at early stages during initiation of blast disease. Virulent isolate strains contain Mg-SINE within the AvrPi9 coding sequence. Loss of AvrPi9 did not lead to any discernible defects during growth or pathogenesis in M. oryzae. This study reiterates the role of diverse transposable elements as off-switch agents in acquisition of gain-of-virulence in the rice blast fungus. The prevalence of AvrPi9 correlates well with the avirulence pathotype in diverse blast isolates from the Philippines and China, thus supporting the broad-spectrum resistance conferred by Pi9 in different rice growing areas. Our results revealed that Pi9 and Piz-t at the Pi2/9 locus activate race specific resistance by recognizing sequence-unrelated AvrPi9 and AvrPiz-t genes, respectively.


Asunto(s)
Resistencia a la Enfermedad/genética , Proteínas Fúngicas/metabolismo , Genes de Plantas , Genómica/métodos , Magnaporthe/patogenicidad , Oryza/inmunología , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Alelos , Cromosomas de las Plantas/genética , Regulación Fúngica de la Expresión Génica , Prueba de Complementación Genética , Genoma Fúngico , Interacciones Huésped-Patógeno/genética , Magnaporthe/genética , Datos de Secuencia Molecular , Mutagénesis Insercional/genética , Oryza/citología , Oryza/crecimiento & desarrollo , Enfermedades de las Plantas/inmunología , Análisis de Secuencia de ADN , Elementos de Nucleótido Esparcido Corto/genética , Virulencia/genética
17.
Fungal Genet Biol ; 68: 71-6, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24769367

RESUMEN

A sulfonylurea-resistant allele of the ILV2 gene encoding an acetolactate synthase from the rice-blast fungus Magnaporthe oryzae has been extensively used in fungal transformation as a dominant selectable marker that confers resistance to chlorimuron ethyl. We devised a novel strategy for site-specific integration of foreign DNA via sulfonylurea resistance reconstitution (SRR) by replacing the native ILV2 with the sulfonylurea-resistant ILV2(SUR) variant. In contrast to random ectopic integration, SRR-based targeted incorporation at a defined locus eliminates position/orientation effects, unnecessary mutations and/or variation in gene expression. Independent transformants derived from the same SRR construct showed consistent and reproducible fluorescent signal in M. oryzae. Furthermore, the high frequency (>95%) of ILV2-specific targeted integration via SRR circumvents the need for a deficiency in non-homologous end joining (NHEJ) pathway in the recipient strain. Unlike the split-marker technique, which is particularly suitable for targeted gene replacement, the SRR strategy should prove useful for promoter analyses, gene tagging and/or complementation analyses in filamentous fungi.


Asunto(s)
Acetolactato Sintasa/genética , Magnaporthe/genética , Compuestos de Sulfonilurea/farmacología , Genes Fúngicos , Vectores Genéticos , Magnaporthe/efectos de los fármacos , Transformación Genética
19.
PLoS Pathog ; 8(8): e1002888, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22927822

RESUMEN

Magnaporthe oryzae, which causes the devastating rice-blast disease, invades its host plants via a specialized infection structure called the appressorium. Previously, we showed that the ATP-Binding Cassette 3 transporter is necessary for appressorial function (host penetration) in M. oryzae. However, thus far, the molecular basis underlying impaired appressorial function in the abc3Δ remains elusive. We hypothesized that the abc3Δ appressoria accumulate excessive amounts of specific efflux substrate(s) of the Abc3 transporter in M. oryzae. We devised an innovative yeast-based strategy and identified Abc3 Transporter efflux Substrate (ATS) to be a digoxin-like endogenous steroidal glycoside that accumulates to inhibitory levels in M. oryzae abc3Δ appressoria. Exogenous ATS altered cell wall biogenesis and viability in wild-type Schizosaccharomyces pombe, but not in S. pombe expressing M. oryzae Abc3. We show that ATS associates with the Translation Elongation factor Tef2 in M. oryzae, and propose that ATS regulates ion homeostasis during pathogenesis. Excessive ATS accumulation, either intracellularly due to impaired efflux in the abc3Δ or when added exogenously to the wild type, renders M. oryzae nonpathogenic. Furthermore, we demonstrate that the host penetration defects in the abc3Δ are due to aberrant F-actin dynamics as a result of altered Tef2 function and/or ion homeostasis defects caused by excess accumulation of ATS therein. Rather surprisingly, excessive exogenous ATS or digoxin elicited the hypersensitive response in rice, even in the absence of the blast fungus. Lastly, reduced disease symptoms in the inoculated host plants in the presence of excessive digoxin suggest a potential use for such related steroidal glycosides in controlling rice-blast disease.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Digoxina/metabolismo , Proteínas Fúngicas/metabolismo , Hordeum/microbiología , Magnaporthe/patogenicidad , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Transportadoras de Casetes de Unión a ATP/genética , Actinas/genética , Actinas/metabolismo , Proteínas Fúngicas/genética , Eliminación de Gen , Magnaporthe/genética , Magnaporthe/metabolismo , Oryza/genética , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Enfermedades de las Plantas/genética , Esteroides/metabolismo
20.
PLoS Pathog ; 8(2): e1002553, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22383884

RESUMEN

Heterotrimeric G-proteins are molecular switches integral to a panoply of different physiological responses that many organisms make to environmental cues. The switch from inactive to active Gαßγ heterotrimer relies on nucleotide cycling by the Gα subunit: exchange of GTP for GDP activates Gα, whereas its intrinsic enzymatic activity catalyzes GTP hydrolysis to GDP and inorganic phosphate, thereby reverting Gα to its inactive state. In several genetic studies of filamentous fungi, such as the rice blast fungus Magnaporthe oryzae, a G42R mutation in the phosphate-binding loop of Gα subunits is assumed to be GTPase-deficient and thus constitutively active. Here, we demonstrate that Gα(G42R) mutants are not GTPase deficient, but rather incapable of achieving the activated conformation. Two crystal structure models suggest that Arg-42 prevents a typical switch region conformational change upon Gα(i1)(G42R) binding to GDP·AlF(4)(-) or GTP, but rotameric flexibility at this locus allows for unperturbed GTP hydrolysis. Gα(G42R) mutants do not engage the active state-selective peptide KB-1753 nor RGS domains with high affinity, but instead favor interaction with Gßγ and GoLoco motifs in any nucleotide state. The corresponding Gα(q)(G48R) mutant is not constitutively active in cells and responds poorly to aluminum tetrafluoride activation. Comparative analyses of M. oryzae strains harboring either G42R or GTPase-deficient Q/L mutations in the Gα subunits MagA or MagB illustrate functional differences in environmental cue processing and intracellular signaling outcomes between these two Gα mutants, thus demonstrating the in vivo functional divergence of G42R and activating G-protein mutants.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP/fisiología , Magnaporthe/patogenicidad , Micosis/genética , Mutación Puntual , Pliegue de Proteína , Sustitución de Aminoácidos/fisiología , Dominio Catalítico/genética , Cristalografía por Rayos X , Subunidades alfa de la Proteína de Unión al GTP/química , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Hordeum/microbiología , Magnaporthe/genética , Magnaporthe/metabolismo , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/fisiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Mutación Puntual/fisiología , Estructura Terciaria de Proteína/genética , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA