Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell ; 186(2): 363-381.e19, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36669472

RESUMEN

Advanced solid cancers are complex assemblies of tumor, immune, and stromal cells characterized by high intratumoral variation. We use highly multiplexed tissue imaging, 3D reconstruction, spatial statistics, and machine learning to identify cell types and states underlying morphological features of known diagnostic and prognostic significance in colorectal cancer. Quantitation of these features in high-plex marker space reveals recurrent transitions from one tumor morphology to the next, some of which are coincident with long-range gradients in the expression of oncogenes and epigenetic regulators. At the tumor invasive margin, where tumor, normal, and immune cells compete, T cell suppression involves multiple cell types and 3D imaging shows that seemingly localized 2D features such as tertiary lymphoid structures are commonly interconnected and have graded molecular properties. Thus, while cancer genetics emphasizes the importance of discrete changes in tumor state, whole-specimen imaging reveals large-scale morphological and molecular gradients analogous to those in developing tissues.


Asunto(s)
Adenocarcinoma , Neoplasias Colorrectales , Humanos , Adenocarcinoma/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Procesamiento de Imagen Asistido por Computador , Oncogenes , Microambiente Tumoral
2.
Nat Methods ; 19(3): 311-315, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34824477

RESUMEN

Highly multiplexed tissue imaging makes detailed molecular analysis of single cells possible in a preserved spatial context. However, reproducible analysis of large multichannel images poses a substantial computational challenge. Here, we describe a modular and open-source computational pipeline, MCMICRO, for performing the sequential steps needed to transform whole-slide images into single-cell data. We demonstrate the use of MCMICRO on tissue and tumor images acquired using multiple imaging platforms, thereby providing a solid foundation for the continued development of tissue imaging software.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Neoplasias , Diagnóstico por Imagen , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/patología , Programas Informáticos
3.
Biophys J ; 120(17): 3820-3830, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34246629

RESUMEN

Bacterial cells construct many structures, such as the flagellar hook and the type III secretion system (T3SS) injectisome, that aid in crucial physiological processes such as locomotion and pathogenesis. Both of these structures involve long extracellular channels, and the length of these channels must be highly regulated in order for these structures to perform their intended functions. There are two leading models for how length control is achieved in the flagellar hook and T3SS needle: the substrate switching model, in which the length is controlled by assembly of an inner rod, and the ruler model, in which a molecular ruler controls the length. Although there is qualitative experimental evidence to support both models, comparatively little has been done to quantitatively characterize these mechanisms or make detailed predictions that could be used to unambiguously test these mechanisms experimentally. In this work, we constructed a mathematical model of length control based on the ruler mechanism and found that the predictions of this model are consistent with experimental data-not just for the scaling of the average length with the ruler protein length, but also for the variance. Interestingly, we found that the ruler mechanism allows for the evolution of needles with large average lengths without the concomitant large increase in variance that occurs in the substrate switching mechanism. In addition to making further predictions that can be tested experimentally, these findings shed new light on the trade-offs that may have led to the evolution of different length control mechanisms in different bacterial species.


Asunto(s)
Proteínas Bacterianas , Flagelos , Proteínas Bacterianas/genética , Sistemas de Secreción Tipo III
4.
PLoS Comput Biol ; 16(12): e1008492, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33370258

RESUMEN

Protein turnover is vital to cellular homeostasis. Many proteins are degraded efficiently only after they have been post-translationally "tagged" with a polyubiquitin chain. Ubiquitylation is a form of Post-Translational Modification (PTM): addition of a ubiquitin to the chain is catalyzed by E3 ligases, and removal of ubiquitin is catalyzed by a De-UBiquitylating enzyme (DUB). Nearly four decades ago, Goldbeter and Koshland discovered that reversible PTM cycles function like on-off switches when the substrates are at saturating concentrations. Although this finding has had profound implications for the understanding of switch-like behavior in biochemical networks, the general behavior of PTM cycles subject to synthesis and degradation has not been studied. Using a mathematical modeling approach, we found that simply introducing protein turnover to a standard modification cycle has profound effects, including significantly reducing the switch-like nature of the response. Our findings suggest that many classic results on PTM cycles may not hold in vivo where protein turnover is ubiquitous. We also found that proteins sharing an E3 ligase can have closely related changes in their expression levels. These results imply that it may be difficult to interpret experimental results obtained from either overexpressing or knocking down protein levels, since changes in protein expression can be coupled via E3 ligase crosstalk. Understanding crosstalk and competition for E3 ligases will be key in ultimately developing a global picture of protein homeostasis.


Asunto(s)
Proteínas/química , Catálisis , Humanos , Procesamiento Proteico-Postraduccional , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo
5.
PLoS Comput Biol ; 12(4): e1004851, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27078235

RESUMEN

Type III Secretion Systems (T3SS) are complex bacterial structures that provide gram-negative pathogens with a unique virulence mechanism whereby they grow a needle-like structure in order to inject bacterial effector proteins into the cytoplasm of a host cell. Numerous experiments have been performed to understand the structural details of this nanomachine during the past decade. Despite the concerted efforts of molecular and structural biologists, several crucial aspects of the assembly of this structure, such as the regulation of the length of the needle itself, remain unclear. In this work, we used a combination of mathematical and computational techniques to better understand length control based on the timing of substrate switching, which is a possible mechanism for how bacteria ensure that the T3SS needles are neither too short nor too long. In particular, we predicted the form of the needle length distribution based on this mechanism, and found excellent agreement with available experimental data from Salmonella typhimurium with only a single free parameter. Although our findings provide preliminary evidence in support of the substrate switching model, they also make a set of quantitative predictions that, if tested experimentally, would assist in efforts to unambiguously characterize the regulatory mechanisms that control the growth of this crucial virulence factor.


Asunto(s)
Modelos Biológicos , Salmonella typhimurium/fisiología , Sistemas de Secreción Tipo III/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/fisiología , Biología Computacional , Simulación por Computador , Interacciones Huésped-Patógeno/fisiología , Modelos Moleculares , Unión Proteica , Proteolisis , Salmonella typhimurium/patogenicidad , Procesos Estocásticos , Sistemas de Secreción Tipo III/química , Virulencia/fisiología , Factores de Virulencia/química , Factores de Virulencia/fisiología
6.
Patterns (N Y) ; 4(8): 100824, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37602216

RESUMEN

[This corrects the article DOI: 10.1016/j.patter.2023.100791.].

7.
Patterns (N Y) ; 4(8): 100791, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37602225

RESUMEN

The true accuracy of a machine-learning model is a population-level statistic that cannot be observed directly. In practice, predictor performance is estimated against one or more test datasets, and the accuracy of this estimate strongly depends on how well the test sets represent all possible unseen datasets. Here we describe paired evaluation as a simple, robust approach for evaluating performance of machine-learning models in small-sample biological and clinical studies. We use the method to evaluate predictors of drug response in breast cancer cell lines and of disease severity in patients with Alzheimer's disease, demonstrating that the choice of test data can cause estimates of performance to vary by as much as 20%. We show that paired evaluation makes it possible to identify outliers, improve the accuracy of performance estimates in the presence of known confounders, and assign statistical significance when comparing machine-learning models.

8.
Sci Data ; 10(1): 514, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542042

RESUMEN

We performed quantitative proteomics on 60 human-derived breast cancer cell line models to a depth of ~13,000 proteins. The resulting high-throughput datasets were assessed for quality and reproducibility. We used the datasets to identify and characterize the subtypes of breast cancer and showed that they conform to known transcriptional subtypes, revealing that molecular subtypes are preserved even in under-sampled protein feature sets. All datasets are freely available as public resources on the LINCS portal. We anticipate that these datasets, either in isolation or in combination with complimentary measurements such as genomics, transcriptomics and phosphoproteomics, can be mined for the purpose of predicting drug response, informing cell line specific context in models of signalling pathways, and identifying markers of sensitivity or resistance to therapeutics.


Asunto(s)
Neoplasias de la Mama , Proteómica , Femenino , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular , Línea Celular Tumoral , Genómica , Proteómica/métodos , Reproducibilidad de los Resultados
9.
J Pharm Sci ; 106(11): 3242-3256, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28743606

RESUMEN

Crofelemer is a botanical polymeric proanthocyanidin that inhibits chloride channel activity and is used clinically for treating HIV-associated secretory diarrhea. Crofelemer lots may exhibit significant physicochemical variation due to the natural source of the raw material. A variety of physical, chemical, and biological assays were used to identify potential critical quality attributes (CQAs) of crofelemer, which may be useful in characterizing differently sourced and processed drug products. Crofelemer drug substance was extracted from tablets of one commercial drug product lot, fractionated, and subjected to accelerated thermal degradation studies to produce derivative lots with variations in chemical and physical composition potentially representative of manufacturing and raw material variation. Liquid chromatography, UV absorbance spectroscopy, mass spectrometry, and nuclear magnetic resonance analysis revealed substantial changes in the composition of derivative lots. A chloride channel inhibition cell-based bioassay suggested that substantial changes in crofelemer composition did not necessarily result in major changes to bioactivity. In 2 companion papers, machine learning and data mining approaches were applied to the analytical and biological data sets presented herein, along with chemical stability data sets derived from forced degradation studies, to develop an integrated mathematical model that can identify CQAs which are most relevant in distinguishing between different populations of crofelemer.


Asunto(s)
Antidiarreicos/química , Canales de Cloruro/antagonistas & inhibidores , Proantocianidinas/química , Antidiarreicos/aislamiento & purificación , Antidiarreicos/farmacología , Línea Celular , Canales de Cloruro/metabolismo , Cromatografía en Gel , Cromatografía Líquida de Alta Presión , Dicroismo Circular , Estabilidad de Medicamentos , Humanos , Espectroscopía de Resonancia Magnética , Proantocianidinas/aislamiento & purificación , Proantocianidinas/farmacología , Espectrometría de Masa por Ionización de Electrospray , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Comprimidos
10.
J Pharm Sci ; 106(11): 3270-3279, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28743607

RESUMEN

There is growing interest in generating physicochemical and biological analytical data sets to compare complex mixture drugs, for example, products from different manufacturers. In this work, we compare various crofelemer samples prepared from a single lot by filtration with varying molecular weight cutoffs combined with incubation for different times at different temperatures. The 2 preceding articles describe experimental data sets generated from analytical characterization of fractionated and degraded crofelemer samples. In this work, we use data mining techniques such as principal component analysis and mutual information scores to help visualize the data and determine discriminatory regions within these large data sets. The mutual information score identifies chemical signatures that differentiate crofelemer samples. These signatures, in many cases, would likely be missed by traditional data analysis tools. We also found that supervised learning classifiers robustly discriminate samples with around 99% classification accuracy, indicating that mathematical models of these physicochemical data sets are capable of identifying even subtle differences in crofelemer samples. Data mining and machine learning techniques can thus identify fingerprint-type attributes of complex mixture drugs that may be used for comparative characterization of products.


Asunto(s)
Antidiarreicos/química , Canales de Cloruro/antagonistas & inhibidores , Proantocianidinas/química , Antidiarreicos/farmacología , Línea Celular , Canales de Cloruro/metabolismo , Dicroismo Circular , Minería de Datos , Estabilidad de Medicamentos , Humanos , Aprendizaje Automático , Análisis de Componente Principal , Proantocianidinas/farmacología , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier
11.
J Pharm Sci ; 106(11): 3257-3269, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28688843

RESUMEN

As the second of a 3-part series of articles in this issue concerning the development of a mathematical model for comparative characterization of complex mixture drugs using crofelemer (CF) as a model compound, this work focuses on the evaluation of the chemical stability profile of CF. CF is a biopolymer containing a mixture of proanthocyanidin oligomers which are primarily composed of gallocatechin with a small contribution from catechin. CF extracted from drug product was subjected to molecular weight-based fractionation and thiolysis. Temperature stress and metal-catalyzed oxidation were selected for accelerated and forced degradation studies. Stressed CF samples were size fractionated, thiolyzed, and analyzed with a combination of negative-ion electrospray ionization mass spectrometry (ESI-MS) and reversed-phase-HPLC with UV absorption and fluorescence detection. We further analyzed the chemical stability data sets for various CF samples generated from reversed-phase-HPLC-UV and ESI-MS using data-mining and machine learning approaches. In particular, calculations based on mutual information of over 800,000 data points in the ESI-MS analytical data set revealed specific CF cleavage and degradation products that were differentially generated under specific storage/degradation conditions, which were not initially identified using traditional analysis of the ESI-MS results.


Asunto(s)
Antidiarreicos/química , Proantocianidinas/química , Cromatografía Líquida de Alta Presión/métodos , Estabilidad de Medicamentos , Almacenaje de Medicamentos , Aprendizaje Automático , Oxidación-Reducción , Espectrometría de Masa por Ionización de Electrospray/métodos , Compuestos de Sulfhidrilo/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA