Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
New Phytol ; 242(1): 170-191, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38348532

RESUMEN

Plants activate immunity upon recognition of pathogen-associated molecular patterns. Although phytopathogens have evolved a set of effector proteins to counteract plant immunity, some effectors are perceived by hosts and induce immune responses. Here, we show that two secreted ribonuclease effectors, SRN1 and SRN2, encoded in a phytopathogenic fungus, Colletotrichum orbiculare, induce cell death in a signal peptide- and catalytic residue-dependent manner, when transiently expressed in Nicotiana benthamiana. The pervasive presence of SRN genes across Colletotrichum species suggested the conserved roles. Using a transient gene expression system in cucumber (Cucumis sativus), an original host of C. orbiculare, we show that SRN1 and SRN2 potentiate host pattern-triggered immunity responses. Consistent with this, C. orbiculare SRN1 and SRN2 deletion mutants exhibited increased virulence on the host. In vitro analysis revealed that SRN1 specifically cleaves single-stranded RNAs at guanosine, leaving a 3'-end phosphate. Importantly, the potentiation of C. sativus responses by SRN1 and SRN2, present in the apoplast, depends on ribonuclease catalytic residues. We propose that the pathogen-derived apoplastic guanosine-specific single-stranded endoribonucleases lead to immunity potentiation in plants.


Asunto(s)
Cucumis sativus , Ribonucleasas , Cucumis sativus/microbiología , Hongos , Plantas , Inmunidad , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta
2.
New Phytol ; 238(4): 1578-1592, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36939621

RESUMEN

The hemibiotrophic fungal plant pathogen Colletotrichum orbiculare is predicted to secrete hundreds of effector proteins when the pathogen infects cucurbit crops, such as cucumber and melon, and tobacco (Nicotiana benthamiana), a distantly related Solanaceae species. Here, we report the identification of sets of C. orbiculare effector genes that are differentially required for fungal virulence to two phylogenetically distant host species. Through targeted gene knockout screening of C. orbiculare 'core' effector candidates defined based on in planta gene expression, we identified: four host-specific virulence effectors (named effector proteins for cucurbit infection, or EPCs) that are required for full virulence of C. orbiculare to cucurbit hosts, but not to the Solanaceae host N. benthamiana; and five host-nonspecific virulence effectors, which collectively contribute to fungal virulence to both hosts. During host infection, only a small subset of genes, including the host-specific EPC effector genes, showed preferential expression on one of the hosts, while gene expression profiles of the majority of other genes, including the five host-nonspecific effector genes, were common to both hosts. This work suggests that C. orbiculare adopts a host-specific effector deployment strategy, in addition to general host-blind virulence mechanisms, for adaptation to cucurbit hosts.


Asunto(s)
Cucumis sativus , Cucurbitaceae , Virulencia/genética , Especificidad del Huésped , Cucumis sativus/microbiología , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Cucurbitaceae/microbiología , Transcriptoma , Nicotiana/genética , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
3.
Environ Microbiol ; 23(10): 6004-6018, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33780109

RESUMEN

Members of the Colletotrichum gloeosporioides species complex are causal agents of anthracnose in many commercially important plants. Closely related strains have different levels of pathogenicity on hosts despite their close phylogenetic relationship. To gain insight into the genetics underlying these differences, we generated and annotated whole-genome assemblies of multiple isolates of C. fructicola (Cf) and C. siamense (Cs), as well as three previously unsequenced species, C. aenigma (Ca), C. tropicale and C. viniferum with different pathogenicity on strawberry. Based on comparative genomics, we identified accessory regions with a high degree of conservation in strawberry-pathogenic Cf, Cs and Ca strains. These regions encode homologs of pathogenicity-related genes known as effectors, organized in syntenic gene clusters, with copy number variations in different strains of Cf, Cs and Ca. Analysis of highly contiguous assemblies of Cf, Cs and Ca revealed the association of related accessory effector gene clusters with telomeres and repeat-rich chromosomes and provided evidence of exchange between these two genomic compartments. In addition, expression analysis indicated that orthologues in syntenic gene clusters showed a tendency for correlated gene expression during infection. These data provide insight into mechanisms by which Colletotrichum genomes evolve, acquire and organize effectors.


Asunto(s)
Colletotrichum , Colletotrichum/genética , Variaciones en el Número de Copia de ADN , Familia de Multigenes , Filogenia , Enfermedades de las Plantas , Telómero/genética
4.
EMBO J ; 35(22): 2468-2483, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27679653

RESUMEN

Perception of microbe-associated molecular patterns by host cell surface pattern recognition receptors (PRRs) triggers the intracellular activation of mitogen-activated protein kinase (MAPK) cascades. However, it is not known how PRRs transmit immune signals to MAPK cascades in plants. Here, we identify a complete phospho-signaling transduction pathway from PRR-mediated pathogen recognition to MAPK activation in plants. We found that the receptor-like cytoplasmic kinase PBL27 connects the chitin receptor complex CERK1-LYK5 and a MAPK cascade. PBL27 interacts with both CERK1 and the MAPK kinase kinase MAPKKK5 at the plasma membrane. Knockout mutants of MAPKKK5 compromise chitin-induced MAPK activation and disease resistance to Alternaria brassicicola PBL27 phosphorylates MAPKKK5 in vitro, which is enhanced by phosphorylation of PBL27 by CERK1. The chitin perception induces disassociation between PBL27 and MAPKKK5 in vivo Furthermore, genetic evidence suggests that phosphorylation of MAPKKK5 by PBL27 is essential for chitin-induced MAPK activation in plants. These data indicate that PBL27 is the MAPKKK kinase that provides the missing link between the cell surface chitin receptor and the intracellular MAPK cascade in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Quitina/metabolismo , MAP Quinasa Quinasa Quinasa 5/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Alternaria/inmunología , Alternaria/patogenicidad , Arabidopsis/enzimología , Arabidopsis/genética , Membrana Celular/metabolismo , Técnicas de Inactivación de Genes , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología
5.
Plant Cell Physiol ; 60(11): 2573-2583, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31368495

RESUMEN

Lysin motif (LysM) receptor-like kinase CERK1 is a co-receptor essential for plant immune responses against carbohydrate microbe-associated molecular patterns (MAMPs). Concerning the immediate downstream signaling components of CERK1, receptor-like cytoplasmic kinases such as PBL27 and other RLCK VII members have been reported to regulate immune responses positively. In this study, we report that a novel CERK1-interacting E3 ubiquitin ligase, PUB4, is also involved in the regulation of MAMP-triggered immune responses. Knockout of PUB4 resulted in the alteration of chitin-induced defense responses, indicating that PUB4 positively regulates reactive oxygen species generation and callose deposition but negatively regulates MAPK activation and defense gene expression. On the other hand, detailed analyses of a double knockout mutant of pub4 and sid2, a mutant of salicylic acid (SA) synthesis pathway, showed that the contradictory phenotype of the pub4 mutant was actually caused by abnormal accumulation of SA in this mutant and that PUB4 is a positive regulator of immune responses. The present and recent findings on the role of PUB4 indicate that PUB4 is a unique E3 ubiquitin ligase involved in the regulation of both plant immunity and growth/development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Enfermedades de las Plantas , Inmunidad de la Planta/genética , Inmunidad de la Planta/fisiología , Transducción de Señal/fisiología , Ubiquitina/metabolismo
6.
Mol Plant Microbe Interact ; 31(1): 101-111, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29059009

RESUMEN

The hemibiotrophic pathogen Colletotrichum orbiculare preferentially expresses a necrosis and ethylene-inducing peptide 1 (Nep1)-like protein named NLP1 during the switch to necrotrophy. Here, we report that the constitutive expression of NLP1 in C. orbiculare blocks pathogen infection in multiple Cucurbitaceae cultivars via their enhanced defense responses. NLP1 has a cytotoxic activity that induces cell death in Nicotiana benthamiana. However, C. orbiculare transgenic lines constitutively expressing a mutant NLP1 lacking the cytotoxic activity still failed to infect cucumber, indicating no clear relationship between cytotoxic activity and the NLP1-dependent enhanced defense. NLP1 also possesses the microbe-associated molecular pattern (MAMP) sequence called nlp24, recognized by Arabidopsis thaliana at its central region, similar to NLPs of other pathogens. Surprisingly, inappropriate expression of a mutant NLP1 lacking the MAMP signature is also effective for blocking pathogen infection, uncoupling the infection block from the corresponding MAMP. Notably, the deletion analyses of NLP1 suggested that the C-terminal region of NLP1 is critical to enhance defense in cucumber. The expression of mCherry fused with the C-terminal 32 amino acids of NLP1 was enough to trigger the defense of cucurbits, revealing that the C-terminal region of the NLP1 protein is recognized by cucurbits and, then, terminates C. orbiculare infection.


Asunto(s)
Colletotrichum/metabolismo , Cucurbitaceae/microbiología , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Enfermedades de las Plantas/microbiología , Secuencia de Aminoácidos , Muerte Celular , Colletotrichum/patogenicidad , Cucurbitaceae/inmunología , Fenotipo , Relación Estructura-Actividad , Virulencia
7.
Proc Natl Acad Sci U S A ; 110(23): 9589-94, 2013 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-23696664

RESUMEN

The hypersensitive response (HR) is a type of strong immune response found in plants that is accompanied by localized cell death. However, it is unclear how HR can block a broad range of pathogens with different infective modes. In this study, we report that γ-glutamylcysteine synthetase GSH1, which is critical for glutathione biosynthesis, and tryptophan (Trp) metabolism contribute to HR and block development of fungal pathogens with hemibiotrophic infective modes. We found that GSH1 is involved in the penetration2 (PEN2)-based entry control of the nonadapted hemibiotroph Colletotrichum gloeosporioides. However, Arabidopsis mutants specifically defective in entry control terminated further growth of the pathogen in the presence of HR cell death, whereas gsh1 mutants supported pathogen invasive growth in planta, demonstrating the requirement of GSH1 for postinvasive nonhost resistance. Remarkably, on the basis of the phenotypic and metabolic analysis of Arabidopsis mutants defective in Trp metabolism, we showed that biosynthesis of Trp-derived phytochemicals is also essential for resistance to C. gloeosporioides during postinvasive HR. By contrast, GSH1 and these metabolites are likely to be dispensable for the induction of cell death during postinvasive HR. Furthermore, the resistance to Ralstonia solanacearum 1/resistance to Pseudomonas syringae 4 dual Resistance gene-dependent immunity of Arabidopsis to the adapted hemibiotroph shared GSH1 and cytochromes P450 CYP79B2/CYP79B3 with postinvasive nonhost resistance, whereas resistance to P. syringae pv. maculicola 1 and resistance to P. syringae 2-based Resistance gene resistance against bacterial pathogens did not. These data suggest that the synthesis of glutathione and Trp-derived metabolites during HR play crucial roles in terminating the invasive growth of both nonadapted and adapted hemibiotrophs.


Asunto(s)
Arabidopsis , Colletotrichum/inmunología , Resistencia a la Enfermedad/inmunología , Glutatión/metabolismo , Enfermedades de las Plantas/microbiología , Triptófano/metabolismo , Proteínas de Arabidopsis/inmunología , Proteínas de Arabidopsis/metabolismo , Muerte Celular/inmunología , Cartilla de ADN/genética , Resistencia a la Enfermedad/genética , Genotipo , Glutamato-Cisteína Ligasa/inmunología , Glutamato-Cisteína Ligasa/metabolismo , Microscopía Fluorescente , N-Glicosil Hidrolasas/inmunología , N-Glicosil Hidrolasas/metabolismo , Enfermedades de las Plantas/inmunología , Pseudomonas syringae/inmunología , Ralstonia solanacearum/inmunología , Reacción en Cadena en Tiempo Real de la Polimerasa
8.
Plant J ; 79(1): 56-66, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24750441

RESUMEN

Recognition of microbe-associated molecular patterns (MAMPs) initiates pattern-triggered immunity in host plants. Pattern recognition receptors (PRRs) and receptor-like cytoplasmic kinases (RLCKs) are the major components required for sensing and transduction of these molecular patterns. However, the regulation of RLCKs by PRRs and their specificity remain obscure. In this study we show that PBL27, an Arabidopsis ortholog of OsRLCK185, is an immediate downstream component of the chitin receptor CERK1 and contributes to the regulation of chitin-induced immunity in Arabidopsis. Knockout of PBL27 resulted in the suppression of several chitin-induced defense responses, including the activation of MPK3/6 and callose deposition as well as in disease resistance against fungal and bacterial infections. On the other hand, the contribution of PBL27 to flg22 signaling appears to be very limited, suggesting that PBL27 selectively regulates defense signaling downstream of specific PRR complexes. In vitro phosphorylation experiments showed that CERK1 preferentially phosphorylated PBL27 in comparison to BIK1, whereas phosphorylation of PBL27 by BAK1 was very low compared with that of BIK1. Thus, the substrate specificity of the signaling receptor-like kinases, CERK1 and BAK1, may determine the preference of downstream RLCKs.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/enzimología , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/inmunología , Transducción de Señal , Alternaria/fisiología , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Quitina/metabolismo , Técnicas de Inactivación de Genes , Glucanos/metabolismo , Modelos Biológicos , Fosforilación , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/fisiología , Plantas Modificadas Genéticamente , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Reconocimiento de Patrones , Especificidad por Sustrato , Nicotiana/enzimología , Nicotiana/genética , Nicotiana/inmunología , Nicotiana/fisiología
9.
New Phytol ; 197(4): 1236-1249, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23252678

RESUMEN

Hemibiotrophic fungal plant pathogens represent a group of agronomically significant disease-causing agents that grow first on living tissue and then cause host death in later, necrotrophic growth. Among these, Colletotrichum spp. are devastating pathogens of many crops. Identifying expanded classes of genes in the genomes of phytopathogenic Colletotrichum, especially those associated with specific stages of hemibiotrophy, can provide insights on how these pathogens infect a large number of hosts. The genomes of Colletotrichum orbiculare, which infects cucurbits and Nicotiana benthamiana, and C. gloeosporioides, which infects a wide range of crops, were sequenced and analyzed, focusing on features with potential roles in pathogenicity. Regulation of C. orbiculare gene expression was investigated during infection of N. benthamiana using a custom microarray. Genes expanded in both genomes compared to other fungi included sequences encoding small, secreted proteins (SSPs), secondary metabolite synthesis genes, proteases and carbohydrate-degrading enzymes. Many SSP and secondary metabolite synthesis genes were upregulated during initial stages of host colonization, whereas the necrotrophic stage of growth is characterized by upregulation of sequences encoding degradative enzymes. Hemibiotrophy in C. orbiculare is characterized by distinct stage-specific gene expression profiles of expanded classes of potential pathogenicity genes.


Asunto(s)
Colletotrichum/fisiología , Genómica , Transcriptoma , Composición de Base , Colletotrichum/genética , Cucurbitaceae/microbiología , ADN de Hongos , Perfilación de la Expresión Génica , Genes Fúngicos , Genoma Fúngico , Enfermedades de las Plantas/microbiología , Análisis de Secuencia de ADN , Nicotiana/microbiología
10.
Fitoterapia ; 158: 105141, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35124163

RESUMEN

Proanthocyanidins (PACs) have various bioactivities, such as being anti-bacterial, anti-cancer, and anti-oxidant. Consequently, they have been vigorously studied for the development of new natural bioactive compounds. Recently, PAC was isolated from leaves and pseudostems of the medicinal plant Alpinia zerumbet (Pers.) B.L. Burtt and R.M. Smith, and it had shown in vitro antiviral activity against influenza A H1N1 viruses (IAVs). The 50% endpoint dilution method indicated that 0.1 mg/mL A. zerumbet-derived PAC (AzPAC) reduced the titer of IAVs by >3 logs. The antiviral activity of AzPAC means that it can interact directly with viral particles since the antiviral activity test was done by coincubation of PAC with and IAVs before viral infection. However, few studies have investigated the preventive mechanism utilized by AzPAC on influenza virus replication. In this study, the composition of AzPAC and the affinity between AzPAC and IAVs was investigated in detail. We found that AzPAC was composed of an epicatechin, which was linked by inter-flavan bonds between the C4 and C8 positions (B2-type) and the C4 and C6 positions (B5-type) in the terminal units. A quenching assay indicated that AzPAC interacted with IAV membrane proteins, hemagglutinin and neuraminidase. Additionally, circular dichroism analysis indicated that AzPAC affected the change in the secondary structure rate of the viral membrane proteins. AzPAC was able to impair the infective process of IAVs via direct interaction with their viral membrane proteins. These results indicate that A. zerumbet is a bioresource for the development of preventive drugs against IAV infection.


Asunto(s)
Alpinia , Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Proantocianidinas , Alpinia/química , Antivirales/farmacología , Estructura Molecular , Proantocianidinas/farmacología , Replicación Viral
11.
Plant Biotechnol (Tokyo) ; 38(4): 453-455, 2021 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-35087311

RESUMEN

Alpinia zerumbet (Pers.) B.L. Burtt and R.M. Smith belongs to the Alpinia genus in the Zingiberaceae family. In East Asia, Alpinia zerumbet has been widely used as food and traditional medicine. Previously, we identified proanthocyanidins (PACs), an anti-plant-virus molecule in A. zerumbet, using Nicotiana benthamiana and tomato mosaic virus (ToMV). Here, we found that PACs from A. zerumbet, apple, and green tea effectively inhibited ToMV infection. Additionally, the PACs from A. zerumbet exhibited greater antiviral activity than those from apple and green tea. The PACs from A. zerumbet also effectively inactivated influenza A virus and porcine epidemic diarrhea virus (PEDV), which acts as a surrogate for human coronaviruses, in a dose-dependent manner. The results from the cytopathic effect assays indicated that 0.1 mg/ml PACs from A. zerumbet decreased the titer of influenza A virus and PEDV by >3 log. These findings suggested that the direct treatment of viruses with PACs from A. zerumbet before inoculation reduced viral activity; thus, PACs might inhibit infections by an influenza virus, coronaviruses, and plant viruses.

12.
Bioresour Bioprocess ; 8(1): 17, 2021 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38650184

RESUMEN

In plants, viral diseases are second only to fungal diseases in terms of occurrence, and cause substantial damage to agricultural crops. The aqueous extracts of shell ginger, Alpinia zerumbet exhibit inhibitory effects against virus infections in belonging to the Solanaceae family. In this study, we isolated an anti-plant-virus molecule from the extracts using a conventional method involving a combination of reversed phase column chromatography, dialysis, and lyophilization. The anti-plant-virus molecule was identified as proanthocyanidin, which mostly consisted of epicatechin and exhibited more than 40 degrees of polymerization.

13.
Front Microbiol ; 12: 682155, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539598

RESUMEN

Plant pathogens secrete proteins, known as effectors, that promote infection by manipulating host cells. Members of the phytopathogenic fungal genus Colletotrichum collectively have a broad host range and generally adopt a hemibiotrophic lifestyle that includes an initial biotrophic phase and a later necrotrophic phase. We hypothesized that Colletotrichum fungi use a set of conserved effectors during infection to support the two phases of their hemibiotrophic lifestyle. This study aimed to examine this hypothesis by identifying and characterizing conserved effectors among Colletotrichum fungi. Comparative genomic analyses using genomes of ascomycete fungi with different lifestyles identified seven effector candidates that are conserved across the genus Colletotrichum. Transient expression assays showed that one of these putative conserved effectors, CEC3, induces nuclear expansion and cell death in Nicotiana benthamiana, suggesting that CEC3 is involved in promoting host cell death during infection. Nuclear expansion and cell death induction were commonly observed in CEC3 homologs from four different Colletotrichum species that vary in host specificity. Thus, CEC3 proteins could represent a novel class of core effectors with functional conservation in the genus Colletotrichum.

14.
Plant J ; 60(2): 218-26, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19519800

RESUMEN

Colletotrichum higginsianum is a fungal pathogen that infects a wide variety of cruciferous plants, causing important crop losses. We have used map-based cloning and natural variation analysis of 19 Arabidopsis ecotypes to identify a dominant resistance locus against C. higginsianum. This locus named RCH2 (for recognition of C. higginsianum) maps in an extensive cluster of disease-resistance loci known as MRC-J in the Arabidopsis ecotype Ws-0. By analyzing natural variations within the MRC-J region, we found that alleles of RRS1 (resistance to Ralstonia solanacearum 1) from susceptible ecotypes contain single nucleotide polymorphisms that may affect the encoded protein. Consistent with this finding, two susceptible mutants, rrs1-1 and rrs1-2, were identified by screening a T-DNA-tagged mutant library for the loss of resistance to C. higginsianum. The screening identified an additional susceptible mutant (rps4-21) that has a 5-bp deletion in the neighboring gene, RPS4-Ws, which is a well-characterized R gene that provides resistance to Pseudomonas syringae pv. tomato strain DC3000 expressing avrRps4 (Pst-avrRps4). The rps4-21/rrs1-1 double mutant exhibited similar levels of susceptibility to C. higginsianum as the single mutants. We also found that both RRS1 and RPS4 are required for resistance to R. solanacearum and Pst-avrRps4. Thus, RPS4-Ws and RRS1-Ws function as a dual resistance gene system that prevents infection by three distinct pathogens.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Enfermedades de las Plantas/genética , Arabidopsis/inmunología , Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Clonación Molecular , Colletotrichum/patogenicidad , ADN Bacteriano , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Inmunidad Innata , Mutación , Proteínas de Plantas , Polimorfismo de Nucleótido Simple , Pseudomonas syringae/patogenicidad , Ralstonia solanacearum/patogenicidad
15.
Plant J ; 60(4): 602-13, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19686535

RESUMEN

Colletotrichum higginsianum is a hemibiotrophic fungal pathogen that causes anthracnose disease on Arabidopsis and other crucifer hosts. By exploiting natural variation in Arabidopsis we identified a resistance locus that is shared by four geographically distinct accessions (Ws-0, Kondara, Gifu-2 and Can-0). A combination of quantitative trait loci (QTL) and Mendelian mapping positioned this locus within the major recognition gene complex MRC-J on chromosome 5 containing the Toll-interleukin-1 receptor/nucleotide-binding site/leucine-rich repeat (TIR-NB-LRR) genes RPS4 and RRS1 that confer dual resistance to C. higginsianum in Ws-0 (Narusaka et al., 2009). We find that the resistance shared by these diverse Arabidopsis accessions is expressed at an early stage of fungal invasion, at the level of appressorial penetration and establishment of intracellular biotrophic hyphae, and that this determines disease progression. Resistance is not associated with host hypersensitive cell death, an oxidative burst or callose deposition in epidermal cells but requires the defense regulator EDS1, highlighting new functions of TIR-NB-LRR genes and EDS1 in limiting early establishment of fungal biotrophy. While the Arabidopsis accession Ler-0 is fully susceptible to C. higginsianum infection, Col-0 displays intermediate resistance that also maps to MRC-J. By analysis of null mutants of RPS4 and RRS1 in Col-0 we show that these genes, individually, do not contribute strongly to C. higginsianum resistance but are both required for resistance to Pseudomonas syringae bacteria expressing the Type III effector, AvrRps4. We conclude that distinct allelic forms of RPS4 and RRS1 probably cooperate to confer resistance to different pathogens.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/metabolismo , Alelos , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Mapeo Cromosómico , Colletotrichum , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Geografía , Inmunidad Innata , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/genética , Pseudomonas syringae , Sitios de Carácter Cuantitativo
16.
Plant Physiol ; 151(4): 2046-57, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19837816

RESUMEN

Transcription factors of the DRE-Binding1 (DREB1)/C-repeat binding factor family specifically interact with a cis-acting dehydration-responsive element/C-repeat involved in low-temperature stress-responsive gene expression in Arabidopsis (Arabidopsis thaliana). Expression of DREB1s is induced by low temperatures and is regulated by the circadian clock under unstressed conditions. Promoter sequences of DREB1s contain six conserved motifs, boxes I to VI. We analyzed the promoter region of DREB1C using transgenic plants and found that box V with the G-box sequence negatively regulates DREB1C expression under circadian control. The region around box VI contains positive regulatory elements for low-temperature-induced expression of DREB1C. Using yeast one-hybrid screens, we isolated cDNA encoding the transcriptional factor Phytochrome-Interacting Factor7 (PIF7), which specifically binds to the G-box of the DREB1C promoter. The PIF7 gene was expressed in rosette leaves, and the PIF7 protein was localized in the nuclei of the cells. Transactivation experiments using Arabidopsis protoplasts indicated that PIF7 functions as a transcriptional repressor for DREB1C expression and that its activity is regulated by PIF7-interacting factors TIMING OF CAB EXPRESSION1 and Phytochrome B, which are components of the circadian oscillator and the red light photoreceptor, respectively. Moreover, in the pif7 mutant, expression of DREB1B and DREB1C was not repressed under light conditions, indicating that PIF7 functions as a transcriptional repressor for the expression of DREB1B and DREB1C under circadian control. This negative regulation of DREB1 expression may be important for avoiding plant growth retardation by the accumulation of DREB1 proteins under unstressed conditions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Ritmo Circadiano/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Fitocromo/metabolismo , Factores de Transcripción/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/aislamiento & purificación , Emparejamiento Base/genética , Secuencia de Bases , Análisis Mutacional de ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/aislamiento & purificación , Genes de Plantas/genética , Modelos Genéticos , Datos de Secuencia Molecular , Mutación/genética , Hojas de la Planta/citología , Hojas de la Planta/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Transporte de Proteínas , Protoplastos/metabolismo , Fracciones Subcelulares/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Activación Transcripcional/genética
17.
Genome ; 53(4): 257-65, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20616857

RESUMEN

The level of self-incompatibility (SI) is important to the purity of F1 seeds produced using the SI system of Brassica vegetables. To analyze the genetic basis of the level of SI, we generated an F2 population derived from a cross between a turnip inbred line showing a high level of SI and a Chinese cabbage inbred line showing a low level, and evaluated the level of SI under insect pollination in two years. We constructed a detailed linkage map of Brassica rapa from the F2 progeny, consisting of SSR, SNP, indel, and CAPS loci segregating into 10 linkage groups covering approximately 700 cM. Five quantitative trait loci (QTL) for high-level SI were identified. The phenotypic variation explained by the QTL ranged between 7.2% and 23.8%. Two QTL were detected in both years. Mapping of SI-related genes revealed that these QTL were co-localized with SLG on R07 and MLPK on R03. This is the first report of QTL for high-level SI evaluated under insect pollination in a Brassica vegetable. Our results could be useful for the marker-assisted selection of parental lines with a stable SI.


Asunto(s)
Brassica rapa/genética , Cromosomas de las Plantas/genética , Polinización/genética , Sitios de Carácter Cuantitativo/genética , Animales , Brassica rapa/crecimiento & desarrollo , Brassica rapa/parasitología , Mapeo Cromosómico , ADN de Plantas/genética , Ligamiento Genético , Marcadores Genéticos/genética , Endogamia , Insectos/fisiología , Polinización/fisiología , Reacción en Cadena de la Polimerasa , Semillas/genética , Semillas/crecimiento & desarrollo
18.
Proc Natl Acad Sci U S A ; 104(49): 19613-8, 2007 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-18042724

RESUMEN

Chitin is a major component of fungal cell walls and serves as a microbe-associated molecular pattern (MAMP) for the detection of various potential pathogens in innate immune systems of both plants and animals. We recently showed that chitin elicitor-binding protein (CEBiP), plasma membrane glycoprotein with LysM motifs, functions as a cell surface receptor for chitin elicitor in rice. The predicted structure of CEBiP does not contain any intracellular domains, suggesting that an additional component(s) is required for signaling through the plasma membrane into the cytoplasm. Here, we identified a receptor-like kinase, designated CERK1, which is essential for chitin elicitor signaling in Arabidopsis. The KO mutants for CERK1 completely lost the ability to respond to the chitin elicitor, including MAPK activation, reactive oxygen species generation, and gene expression. Disease resistance of the KO mutant against an incompatible fungus, Alternaria brassicicola, was partly impaired. Complementation with the WT CERK1 gene showed cerk1 mutations were responsible for the mutant phenotypes. CERK1 is a plasma membrane protein containing three LysM motifs in the extracellular domain and an intracellular Ser/Thr kinase domain with autophosphorylation/myelin basic protein kinase activity, suggesting that CERK1 plays a critical role in fungal MAMP perception in plants.


Asunto(s)
Alternaria , Proteínas de Arabidopsis/fisiología , Arabidopsis/enzimología , Quitina/metabolismo , Enfermedades de las Plantas/genética , Proteínas Serina-Treonina Quinasas/fisiología , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/análisis , Proteínas de Arabidopsis/genética , Membrana Celular/enzimología , Expresión Génica , Prueba de Complementación Genética , Genoma de Planta , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Datos de Secuencia Molecular , Mutación , Enfermedades de las Plantas/microbiología , Proteínas Serina-Treonina Quinasas/análisis , Proteínas Serina-Treonina Quinasas/genética , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/genética
19.
Plant Biotechnol (Tokyo) ; 37(1): 93-97, 2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32362754

RESUMEN

Tomato mosaic virus (ToMV) and tobacco mosaic virus (TMV) are critical pathogens causing severe crop production losses of solanaceous plants. The present study was undertaken to evaluate the antiviral effects of extracts of Alpinia plants on ToMV and TMV infection in Nicotiana benthamiana. The aqueous extracts of Alpinia zerumbet (Pers.) B.L. Burtt and R.M. Smith and Alpinia kumatake, which grow widely in subtropical and tropical regions including East Asia, were effective in reducing ToMV infection when plants were treated prior to virus inoculation. We also found that the extracts of A. zerumbet isolated from Okinawa (Japan), locally referred to as shima-gettou, strongly inhibited ToMV and TMV infection. To obtain an active fraction, the aqueous extract of A. zerumbet isolate OG1 was separated by ethyl acetate, and the antiviral active compound was found to be present in the water layer. Based on our results, the extract of Alpinia plants has potential as an antiviral reagent for practical application in solanaceous crop production.

20.
Plant Cell Physiol ; 50(12): 2112-22, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19892832

RESUMEN

ABA and salicylic acid (SA) are believed to act antagonistically. We previously reported that an ABA-hypersensitive mutant ahg2-1, which had reduced expression of poly(A)-specific ribonuclease (PARN), exhibited pleiotropic phenotypes including unique enhanced ABA- and SA-sensitive phenotypes. In this study, we characterized the increased SA-sensitive phenotype of this mutant in detail and addressed its relationship with ABA-related and dwarf phenotypes. We found that the ahg2-1 mutant had a high endogenous SA level and an elevated resistance to bacterial pathogens. Double mutant analyses showed that Arabidopsis plants defective in the SA signaling pathway (npr1 and pad4 mutants and nahG transgenic plants) could suppress neither the ABA hypersensitivity nor the dwarf phenotypes. These results indicate that ABA-related, SA-related and dwarf phenotypes of the ahg2-1 mutant are independent of each other. To obtain more insight into the molecular basis of the effect of ahg2-1, microarray analyses were conducted not only for ahg2-1 but also for ahg2sid2 or ahg2abi1 so as to reduce the secondary effects of SA or ABA. The resulting data indicate that ahg2-1 has a unique gene expression profile, consistent with the novel phenotype of this mutant. Detailed comparison of the expression profiles of up- or down-regulated genes implied that ahg2-1 somehow affects mitochondrial function. Our data suggest that a partial loss of PARN activity affects ABA, SA and mitochondrial function independently, and that the regulation of mRNA levels is deeply implicated in diverse cellular functions.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Exorribonucleasas/metabolismo , Ácido Salicílico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Exorribonucleasas/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Inmunidad Innata , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Pseudomonas syringae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA