Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 660: 6-12, 2023 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-37058844

RESUMEN

In this study, the ability of a mixture of four different alpha-thiol deoxynucleotide triphosphates (S-dNTPs) each at a concentration of 10µM when incorporated into the genomic DNA of proliferating human HL-60 and Mono-Mac-6 (MM-6) cells in vitro to provide protection from 2, 5, and 10 Gy of gamma radiation was investigated. Incorporation of the four different S-dNTPs into nuclear DNA at 10 µM concentration for five days was validated by agarose gel electrophoretic band shift analysis. S-dNTP-treated genomic DNA reacted with BODIPY-iodoacetamide demonstrated a band shift to higher molecular weight to confirm the presence of sulfur moieties in the resultant phosphorothioate DNA backbones. No overt signs of toxicity or obvious morphologic cellular differentiation were noted in the presence of 10 µM S-dNTPs even after 8 days in culture. Significantly reduced radiation-induced persistent DNA damage measured at 24 and 48 h post-exposure by γ-H2AX histone phosphorylation using FACS analysis in S-dNTP incorporated HL-60 and MM6 cells indicated protection against radiation-induced direct and indirect DNA damage. Statistically significant protection by S-dNTPs was noted at the cellular level by CellEvent™ Caspase-3/7 assay, which assess the extent of apoptotic events, and by trypan blue dye exclusion to assed cell viability. The results appear to support an innocuous antioxidant thiol radioprotective effect built into genomic DNA backbones as the last line of defense against ionizing radiation and free radical-induced DNA damage.


Asunto(s)
Protectores contra Radiación , Humanos , Protectores contra Radiación/farmacología , Compuestos de Sulfhidrilo/farmacología , ADN , Daño del ADN , Nucleótidos , Antioxidantes
2.
Cell Biol Toxicol ; 39(3): 1053-1076, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-34626302

RESUMEN

Neuroblastoma (NB) progression is branded with hematogenous metastasis and frequent relapses. Despite intensive multimodal clinical therapy, outcomes for patients with progressive disease remain poor, with negligible long-term survival. Therefore, understanding the acquired molecular rearrangements in NB cells with therapy pressure and developing improved therapeutic strategies is a critical need to improve the outcomes for high-risk NB patients. We investigated the rearrangement of MMP9 in NB with therapy pressure, and unveiled the signaling that facilitates NB evolution. Radiation-treatment (RT) significantly increased MMP9 expression/activity, and the induced enzyme activity was persistently maintained across NB cell lines. Furthermore, RT-triggered NFκB transcriptional activity and this RT-induced NFκB were required/adequate for MMP9 maintenance. RT-triggered NFκB-dependent MMP9 actuated a second-signaling feedback to NFκB, facilitating a NFκB-MMP9-NFκB positive feedback cycle (PFC). Critically, MMP9-NFκB feedback is mediated by MMP9-dependent activation of IKKß and ERK phosphotransferase activity. Beyond its tumor invasion/metastasis function, PFC-dependent MMP9 lessens RT-induced apoptosis and favors survival pathway through the activation of NFκB signaling. In addition, PFC-dependent MMP9 regulates 19 critical molecular determinants that play a pivotal role in tumor evolution. Interestingly, seven of 19 genes possess NFκB-binding sites, demonstrating that MMP9 regulates these molecules by activating NFκB. Collectively, these data suggest that RT-triggered NFκB-dependent MMP9 actuates feedback to NFκB though IKKß- and ERK1/2-dependent IκBα phosphorylation. This RT-triggered PFC prompts MMP9-dependent survival advantage, tumor growth, and dissemination. Targeting therapy-pressure-driven PFC and/or selective inhibition of MMP9 maintenance could serve as promising therapeutic strategies for treatment of progressive NB.


Asunto(s)
Metaloproteinasa 9 de la Matriz , Neuroblastoma , Humanos , Metaloproteinasa 9 de la Matriz/genética , Quinasa I-kappa B/metabolismo , Retroalimentación , Línea Celular Tumoral , FN-kappa B/metabolismo , Neuroblastoma/genética , Proteínas Serina-Treonina Quinasas
3.
J Fluoresc ; 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38109032

RESUMEN

There are no commercial antibodies for detection of Cyclospora cayetanensis, only a relatively slow polymerase chain reaction (PCR) test developed by the U.S. Food and Drug Administration (FDA). However, DNA aptamers have recently been developed by our group against known proteins and whole oocysts of C. cayetanensis and shown to specifically detect the oocysts when attached on their 5' ends to red-emitting fluorophores and used as probes for fluorescence microscopy. Aptamers developed against recombinant wall protein 2 and TA4 antigen-like protein as well as whole oocysts specifically stained C. cayetanensis oocysts while exhibiting little, if any, staining of numerous other waterborne parasite species. Interestingly, the aptamers stained both exterior cell wall moieties and internal structures, suggesting that the aptamers penetrate the oocysts even without added detergents.

4.
J Craniofac Surg ; 34(1): e46-e52, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36008879

RESUMEN

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has posed another serious threat, mucormycosis infection, affecting the maxilla and orbitocerebral region. This condition has not spared world population from its merciless claws. This article addresses the challenges faced by the maxillofacial surgeons in setting the protocols from preoperative diagnosis, surgical management to postoperative care, including short-term and long-term rehabilitation. To manage this relentlessly progressing condition, a multispecialty team approach is to be activated in diagnosing, managing, and rehabilitating the patients. PURPOSE: The purpose of this clinical study is to document and analyze the clinical and demographic data, presentation of the lesion, the diagnostic methods followed for early clinical detection, and management of post COVID-19 midface mucormycosis. The article also discusses postoperative medical management and prosthetic rehabilitation. RESULTS: Most of the mucormycosis cases reporting to our center were treated and recovered patients of Severe Acute Respiratory Syndrome Coronavirus 2 infection. Thirty-four (n=34) case were operated for post COVID-19 midface mucormycosis between October 2020 and December 2021. Male to Female ratio is 1:42. The average age of the patients was 57.5 years. Maximum patients were in fifth and sixth decade of life. Maxilla was the involved bone. Treatment was primarily surgical debridement to extended or radical maxillectomy. All patients were treated with Liposomal Amphotericin B and tab posaconazole for 3 to 4 weeks depending upon the age, weight, and physiological state of the patients to attain an optimal cumulative load. Three patients succumbed to illness postoperatively (n=3, 1.02%). Average duration of hospital stay was 47 days. The average review period was 5.1 months.


Asunto(s)
COVID-19 , Mucormicosis , Humanos , Femenino , Masculino , Persona de Mediana Edad , Mucormicosis/diagnóstico , Mucormicosis/cirugía , Cara , Cuidados Posoperatorios , Antifúngicos/uso terapéutico
5.
Clin Infect Dis ; 71(9): e392-e398, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31955202

RESUMEN

BACKGROUND: Diabetes was identified as a tuberculosis (TB) risk factor mostly in retrospective studies with limited assessments of metabolic variables. The prospective Effects of Diabetes on Tuberculosis Severity study compared adults with pulmonary TB in Chennai, India, who were classified as having either diabetes or a normal glucose tolerance at enrollment. METHODS: Baseline TB severity, sputum conversion, and treatment outcomes (cure, failure, death, or loss to follow-up) were compared between groups with respect to glycemic status and body mass index (BMI). RESULTS: The cohort of 389 participants included 256 with diabetes and 133 with a normal glucose tolerance. Low BMIs (<18.5 kg/m2) were present in 99 (74.4%) of nondiabetic participants and 85 (33.2%) of those with diabetes. Among participants with normal or high BMIs, rates of cure, treatment failure, or death did not vary by glycemic status. Participants with low BMIs had the highest radiographic severity of disease, the longest time to sputum culture conversion, and the highest rates of treatment failure and death. Among participants with low BMIs, poorly controlled diabetes (glycohemoglobin [HbA1c] ≥8.0%) was unexpectedly associated with better TB treatment outcomes. A high visceral adiposity index was associated with adverse outcomes and, despite an overall correlation with HbA1c, was elevated in some low-BMI individuals with normal glucose tolerance. CONCLUSIONS: In this South Indian cohort, a low BMI was significantly associated with an increased risk for adverse TB treatment outcomes, while comorbid, poorly controlled diabetes lessened that risk. A high visceral adiposity index, either with or without dysglycemia, might reflect a novel TB susceptibility mechanism linked to adipose tissue dysfunction.


Asunto(s)
Diabetes Mellitus , Tuberculosis , Adulto , Índice de Masa Corporal , Diabetes Mellitus/epidemiología , Humanos , India/epidemiología , Estudios Prospectivos , Estudios Retrospectivos , Resultado del Tratamiento , Tuberculosis/tratamiento farmacológico , Tuberculosis/epidemiología
6.
Cytokine ; 125: 154824, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31472402

RESUMEN

Tuberculosis - diabetes (TB-DM) co-morbidity is characterized by heterogeneity in clinical and biochemical parameters between newly diagnosed diabetic individuals with TB (TB-NDM) and known diabetic individuals at incident TB (TB-KDM). However, the immunological profile underlying this heterogeneity is not explored. To identify the cytokine profiles in TB-NDM and TB-KDM individuals, we examined the plasma cytokine levels as well as TB-antigen stimulated levels of pro-inflammatory cytokines. TB-KDM individuals exhibit significantly higher levels of IFNγ, IL-2, TNFα, IL-17A, IL-1α, IL-1ß and IL-6 in comparison to TB-NDM, TB alone and DM alone individuals. TB-NDM individuals are characterized by significantly lower levels of blood glucose and glycated hemoglobin in comparison to TB-KDM with both groups exhibiting a significant lowering of glycated hemoglobin levels at 6  months of anti-tuberculosis therapy (ATT). TB-NDM individuals are characterized by significantly diminished - unstimulated levels of IFNγ, IL-2, TNFα, IL-17A, IL-1α, IL-1ß and IL-12 at pre-treatment, of IFNγ, IL-2 and IL-1α at 2  months of ATT and IL-2 at post-treatment in comparison to TB-KDM. TB-NDM individuals are also characterized by significantly diminished TB-antigen stimulated levels of IFNγ, IL-2, TNFα, IL-17A, IL-17F, IL-1α, IL-1ß and/or IL-6 at pre-treatment and at 2  months of ATT and IFNγ, IL-2, IL-1α and IL-1ß at post-treatment. In addition, TB-NDM individuals are characterized by significantly diminished mitogen - stimulated levels of IL-17F and IL-6 at pre-treatment and IL-6 alone at 6 months of ATT. Therefore, our data reveal considerable heterogeneity in the immunological underpinnings of TB-DM co-morbidity. Our data also suggest that TB-NDM exhibits a characteristic profile, which is both biochemically and immunologically distinct from TB-KDM.


Asunto(s)
Citocinas/sangre , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/complicaciones , Tuberculosis/sangre , Tuberculosis/inmunología , Adulto , Anciano , Glucemia/metabolismo , Comorbilidad , Regulación hacia Abajo , Femenino , Hemoglobina Glucada/metabolismo , Humanos , Interferón gamma/sangre , Interleucina-17/sangre , Interleucina-1alfa/sangre , Interleucina-1beta/sangre , Interleucina-6/sangre , Masculino , Persona de Mediana Edad , Tuberculosis/complicaciones , Tuberculosis/terapia , Factor de Necrosis Tumoral alfa/sangre , Regulación hacia Arriba
7.
Carcinogenesis ; 40(6): 782-790, 2019 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-30508035

RESUMEN

Kidneys are one of the main dose-limiting organs in radiotherapeutic procedures of lower abdomen. Likewise, the threat of exposure of radiosensitive organs such as kidneys in warfare or radiation accidents among military personal or due to terrorist activities in general public is of increasing concern. These events warrant the need for appropriate animal models to study the acute and chronic effects of low- and high-dose rate radiation exposures. In this study, for the first time, we validated Tsc2+/- mouse model to study whether radiation accelerates carcinogenesis in kidneys. Tsc2+/- mice at increasing age groups at 8 and 10 months were exposed to repeated doses of gamma radiation (0.4 Gy × 5) and assessed for aggravated kidney tumor formation at 2 months post-irradiation. Animals from irradiated group showed a significant increase in numbers of bilateral, multifocal tumors compared with mock-irradiated animals. Intra-glomerular reactive oxygen species (ROS) levels measured by dihydroethidium florescence showed significant increases in ROS production in irradiated Tsc2+/- mice compared with non-irradiated animals. Similarly, selective hematological parameters and glomerular filtration rate were further reduced significantly in irradiated Tsc2+/- mice. Tsc2 protein, tuberin in irradiated mice, however, remains at the same reduced levels as that of the mock-irradiated heterozygous Tsc2 mice. The results indicate that radiation alters kidney homeostatic function and influences high spontaneous incidence of renal cell carcinoma in this rodent model. Repurposing of Tsc2+/- mice model will, therefore, provide a unique opportunity to study acute and delayed effects of radiation in the development of kidney cancers.


Asunto(s)
Neoplasias Renales/radioterapia , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta en la Radiación , Glomérulos Renales/metabolismo , Neoplasias Renales/genética , Neoplasias Renales/patología , Ratones , Ratones Transgénicos , Especies Reactivas de Oxígeno/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética
8.
Immunology ; 156(3): 249-258, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30427060

RESUMEN

Alteration in the frequency of monocyte subsets is a hallmark of tuberculosis-diabetes co-morbidity (TB-DM). To study this association, we examined the plasma levels of sCD14, sCD163, C-reactive protein (CRP) and soluble tissue factor (sTF) in individuals with TB-DM, TB or diabetes mellitus (DM), and in healthy controls (HC). Circulating levels of sCD14, sCD163 and sTF were significantly increased in TB-DM and DM compared with TB and HC; however, CRP was significantly increased in TB-DM and TB compared with DM and HC. During longitudinal follow up, sCD14, CRP and sTF levels remained significantly increased in TB-DM compared with TB from baseline (pre-treatment), during treatment (2nd month) and at the completion (6th month) of anti-TB treatment (ATT), whereas sCD163 was significantly higher in TB-DM compared with TB only at baseline. Moreover, the levels of sCD14 and sCD163 were significantly higher in TB-DM individuals with bilateral and cavitary disease and exhibited a significant positive relationship with bacterial burden. Levels of sCD14, sCD163 and CRP exhibited a positive relationship with HbA1c levels. Within the TB-DM group, those with known diabetes before incident TB (KDM) exhibited significantly higher levels of sCD14 and sCD163 compared with individuals with newly diagnosed DM with TB (NDM). Finally, KDM individuals on metformin treatment exhibited significantly lower levels of sCD14, sCD163 and CRP compared with those on non-metformin-containing regimens. Our data demonstrate that systemic monocyte activation marker levels reflect baseline disease severity and extent in TB-DM, differentiate KDM from NDM and are modulated by ATT and metformin therapy.


Asunto(s)
Biomarcadores/sangre , Diabetes Mellitus Tipo 2/inmunología , Monocitos/inmunología , Tuberculosis/inmunología , Adulto , Anciano , Comorbilidad , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Femenino , Humanos , Masculino , Metformina/uso terapéutico , Persona de Mediana Edad , Monocitos/efectos de los fármacos , Tuberculosis/sangre , Adulto Joven
9.
Mol Cell Biochem ; 460(1-2): 175-193, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31367889

RESUMEN

The upsurge of marine-derived therapeutics for cancer treatment is evident, with many drugs in clinical use and in clinical trials. Seaweeds harbor large amounts of polyphenols and their anti-cancer benefit is linear to their anti-oxidant activity. Our studies identified three superlative anti-cancer seaweed polyphenol drug candidates (SW-PD). We investigated the acquisition of oncogenic burden in radiation-resilient pancreatic cancer (PC) that could drive tumor relapse, and elucidated the efficacy of SW-PD candidates as adjuvants in genetically diverse in vitro systems and a mouse model of radiation-residual disease. QPCR profiling of 88 oncogenes in therapy-resilient PC cells identified a 'shared' activation of 40 oncogenes. SW-PD pretreatment inflicted a significant mitigation of acquired (shared) oncogenic burden, in addition to drug- and cell-line-specific repression signatures. Tissue microarray with IHC of radiation-residual tumors in mice signified acquired cellular localization of key oncoproteins and other critical architects. Conversely, SW-PD treatment inhibited the acquisition of these critical drivers of tumor genesis, dissemination, and evolution. Heightened death of resilient PC cells with SW-PD treatment validated the translation aspects. The results defined the acquisition of oncogenic burden in resilient PC and demonstrated that the marine polyphenols effectively target the acquired oncogenic burden and could serve as adjuvant(s) for PC treatment.


Asunto(s)
Organismos Acuáticos/química , Carcinogénesis/patología , Neoplasias Pancreáticas/patología , Polifenoles/farmacología , Acetatos/química , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Progresión de la Enfermedad , Humanos , Ratones Desnudos , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/radioterapia , Polifenoles/uso terapéutico , Algas Marinas/química
10.
Am J Physiol Cell Physiol ; 308(8): C673-83, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25652452

RESUMEN

Endothelial nitric oxide (NO) synthase (eNOS) is the predominant isoform that generates NO in the blood vessels. Many different regulators, including heat shock protein 90 (Hsp90), govern eNOS function. Hsp90-dependent phosphorylation of eNOS is a critical event that determines eNOS activity. In our earlier study we demonstrated an inhibitor-κB kinase-ß (IKKß)-Hsp90 interaction in a high-glucose environment. In the present study we further define the putative binding domain of IKKß on Hsp90. Interestingly, IKKß binds to the middle domain of Hsp90, which has been shown to interact with eNOS to stimulate its activity. This new finding suggests a tighter regulation of eNOS activity than was previously assumed. Furthermore, addition of purified recombinant IKKß to the eNOS-Hsp90 complex reduces the eNOS-Hsp90 interaction and eNOS activity, indicating a competition for Hsp90 between eNOS and IKKß. The pathophysiological relevance of the IKKß-Hsp90 interaction has also been demonstrated using in vitro vascular endothelial growth factor-mediated signaling and an Ins2(Akita) in vivo model. Our study further defines the preferential involvement of α- vs. ß-isoforms of Hsp90 in the IKKß-eNOS-Hsp90 interaction, even though both Hsp90α and Hsp90ß stimulate NO production. These studies not only reinforce the significance of maintaining a homeostatic balance of eNOS and IKKß within the cell system that regulates NO production, but they also confirm that the IKKß-Hsp90 interaction is favored in a high-glucose environment, leading to impairment of the eNOS-Hsp90 interaction, which contributes to endothelial dysfunction and vascular complications in diabetes.


Asunto(s)
Células Endoteliales/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Quinasa I-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Animales , Aorta/citología , Sitios de Unión , Bovinos , Células Cultivadas , Diabetes Mellitus/patología , Células Endoteliales/enzimología , Glucosa/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Humanos , Quinasa I-kappa B/genética , Insulina/metabolismo , Ratones , Ratones Endogámicos NOD , Óxido Nítrico/metabolismo , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Interferencia de ARN , ARN Interferente Pequeño , Factor A de Crecimiento Endotelial Vascular/metabolismo
11.
J Biol Chem ; 289(20): 14178-93, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24711449

RESUMEN

TNF-α, a pro-inflammatory cytokine, is highly expressed after being irradiated (IR) and is implicated in mediating radiobiological bystander responses (RBRs). Little is known about specific TNF receptors in regulating TNF-induced RBR in bone marrow-derived endothelial progenitor cells (BM-EPCs). Full body γ-IR WT BM-EPCs showed a biphasic response: slow decay of p-H2AX foci during the initial 24 h and increase between 24 h and 7 days post-IR, indicating a significant RBR in BM-EPCs in vivo. Individual TNF receptor (TNFR) signaling in RBR was evaluated in BM-EPCs from WT, TNFR1/p55KO, and TNFR2/p75KO mice, in vitro. Compared with WT, early RBR (1-5 h) were inhibited in p55KO and p75KO EPCs, whereas delayed RBR (3-5 days) were amplified in p55KO EPCs, suggesting a possible role for TNFR2/p75 signaling in delayed RBR. Neutralizing TNF in γ-IR conditioned media (CM) of WT and p55KO BM-EPCs largely abolished RBR in both cell types. ELISA protein profiling of WT and p55KO EPC γ-IR-CM over 5 days showed significant increases in several pro-inflammatory cytokines, including TNF-α, IL-1α (Interleukin-1 alpha), RANTES (regulated on activation, normal T cell expressed and secreted), and MCP-1. In vitro treatments with murine recombinant (rm) TNF-α and rmIL-1α, but not rmMCP-1 or rmRANTES, increased the formation of p-H2AX foci in nonirradiated p55KO EPCs. We conclude that TNF-TNFR2 signaling may induce RBR in naïve BM-EPCs and that blocking TNF-TNFR2 signaling may prevent delayed RBR in BM-EPCs, conceivably, in bone marrow milieu in general.


Asunto(s)
Células de la Médula Ósea/citología , Células Progenitoras Endoteliales/citología , Células Progenitoras Endoteliales/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Efecto Espectador/efectos de los fármacos , Efecto Espectador/efectos de la radiación , Células Progenitoras Endoteliales/efectos de los fármacos , Células Progenitoras Endoteliales/efectos de la radiación , Técnicas de Inactivación de Genes , Histonas/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Interleucina-1alfa/farmacología , Ligandos , Ratones , Receptores Tipo I de Factores de Necrosis Tumoral/deficiencia , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/deficiencia , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Factores de Tiempo , Factor de Necrosis Tumoral alfa/farmacología
12.
Lab Invest ; 95(10): 1092-104, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26214584

RESUMEN

The balance of nitric oxide (NO) versus superoxide generation has a major role in the initiation and progression of endothelial dysfunction. Under conditions of high glucose, endothelial nitric oxide synthase (eNOS) functions as a chief source of superoxide rather than NO. In order to improve NO bioavailability within the vessel wall in type-1 diabetes, we investigated treatment strategies that improve eNOS phosphorylation and NO-dependent vasorelaxation. We evaluated methods to increase the eNOS activity by (1) feeding Ins2(Akita) spontaneously diabetic (type-1) mice with l-arginine in the presence of sepiapterin, a precursor of tetrahydrobiopterin; (2) preventing eNOS/NO deregulation by the inclusion of inhibitor kappa B kinase beta (IKKß) inhibitor, salsalate, in the diet regimen in combination with l-arginine and sepiapterin; and (3) independently increasing eNOS expression to improve eNOS activity and associated NO production through generating Ins2(Akita) diabetic mice that overexpress human eNOS predominantly in vascular endothelial cells. Our results clearly demonstrated that diet supplementation with l-arginine, sepiapterin along with salsalate improved phosphorylation of eNOS and enhanced vasorelaxation of thoracic/abdominal aorta in type-1 diabetic mice. More interestingly, despite the overexpression of eNOS, the in-house generated transgenic eNOS-GFP (TgeNOS-GFP)-Ins2(Akita) cross mice showed an unanticipated effect of reduced eNOS phosphorylation and enhanced superoxide production. Our results demonstrate that enhancement of endogenous eNOS activity by nutritional modulation is more beneficial than increasing the endogenous expression of eNOS by gene therapy modalities.


Asunto(s)
Diabetes Mellitus Tipo 1/prevención & control , Suplementos Dietéticos , Endotelio Vascular/metabolismo , Hipoglucemiantes/uso terapéutico , Óxido Nítrico Sintasa de Tipo III/metabolismo , Inhibidores de Proteínas Quinasas/uso terapéutico , Procesamiento Proteico-Postraduccional , Animales , Aorta/citología , Aorta/metabolismo , Aorta/fisiopatología , Arginina/metabolismo , Arginina/uso terapéutico , Bovinos , Células Cultivadas , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/fisiopatología , Endotelio Vascular/citología , Endotelio Vascular/fisiopatología , Femenino , Heterocigoto , Humanos , Hipoglucemiantes/metabolismo , Insulina/genética , Insulina/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Óxido Nítrico Sintasa de Tipo III/química , Óxido Nítrico Sintasa de Tipo III/genética , Fosforilación , Inhibidores de Proteínas Quinasas/metabolismo , Pterinas/metabolismo , Pterinas/uso terapéutico , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Salicilatos/metabolismo , Salicilatos/uso terapéutico , Destete
13.
Am J Physiol Heart Circ Physiol ; 309(11): H1947-63, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26408534

RESUMEN

There are 160,000 cancer patients worldwide treated with particle radiotherapy (RT). With the advent of proton, and high (H) charge (Z) and energy (E) HZE ionizing particle RT, the cardiovascular diseases risk estimates are uncertain. In addition, future deep space exploratory-type missions will expose humans to unknown but low doses of particle irradiation (IR). We examined molecular responses using transcriptome profiling in left ventricular murine cardiomyocytes isolated from mice that were exposed to 90 cGy, 1 GeV proton ((1)H) and 15 cGy, 1 GeV/nucleon iron ((56)Fe) over 28 days after exposure. Unsupervised clustering analysis of gene expression segregated samples according to the IR response and time after exposure, with (56)Fe-IR showing the greatest level of gene modulation. (1)H-IR showed little differential transcript modulation. Network analysis categorized the major differentially expressed genes into cell cycle, oxidative responses, and transcriptional regulation functional groups. Transcriptional networks identified key nodes regulating expression. Validation of the signal transduction network by protein analysis and gel shift assay showed that particle IR clearly regulates a long-lived signaling mechanism for ERK1/2, p38 MAPK signaling and identified NFATc4, GATA4, STAT3, and NF-κB as regulators of the response at specific time points. These data suggest that the molecular responses and gene expression to (56)Fe-IR in cardiomyocytes are unique and long-lasting. Our study may have significant implications for the efforts of National Aeronautics and Space Administration to develop heart disease risk estimates for astronauts and for patients receiving conventional and particle RT via identification of specific HZE-IR molecular markers.


Asunto(s)
Redes Reguladoras de Genes/efectos de la radiación , Radioisótopos de Hierro/toxicidad , Miocitos Cardíacos/efectos de la radiación , Radioterapia de Alta Energía/efectos adversos , Transducción de Señal/efectos de la radiación , Animales , Células Cultivadas , Análisis por Conglomerados , Activación Enzimática , Fibrosis , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/efectos de la radiación , Masculino , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa , Medición de Riesgo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Factores de Tiempo , Transcripción Genética/efectos de la radiación , Transcriptoma/efectos de la radiación , Irradiación Corporal Total
14.
Breast Cancer Res Treat ; 150(3): 487-99, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25788226

RESUMEN

Triple-negative breast cancer (TNBC), the most aggressive breast cancer subtype, occurs in younger women and is associated with poor prognosis. Gain-of-function mutations in TP53 are a frequent occurrence in TNBC and have been demonstrated to repress apoptosis and up-regulate cell cycle progression. Even though TNBC responds to initial chemotherapy, resistance to chemotherapy develops and is a major clinical problem. Tumor recurrence eventually occurs and most patients die from their disease. An urgent need exists to identify molecular-targeted therapies that can enhance chemotherapy response. In the present study, we report that targeting PELP1, an oncogenic co-regulator molecule, could enhance the chemotherapeutic response of TNBC through the inhibition of cell cycle progression and activation of apoptosis. We demonstrate that PELP1 interacts with MTp53, regulates its recruitment, and alters epigenetic marks at the target gene promoters. PELP1 knockdown reduced MTp53 target gene expression, resulting in decreased cell survival and increased apoptosis upon genotoxic stress. Mechanistic studies revealed that PELP1 depletion contributes to increased stability of E2F1, a transcription factor that regulates both cell cycle and apoptosis in a context-dependent manner. Further, PELP1 regulates E2F1 stability in a KDM1A-dependent manner, and PELP1 phosphorylation at the S1033 residue plays an important role in mediating its oncogenic functions in TNBC cells. Accordingly, depletion of PELP1 increased the expression of E2F1 target genes and reduced TNBC cell survival in response to genotoxic agents. PELP1 phosphorylation was significantly greater in the TNBC tumors than in the other subtypes of breast cancer and in the normal tissues. These findings suggest that PELP1 is an important molecular target in TNBC, and that PELP1-targeted therapies may enhance response to chemotherapies.


Asunto(s)
Proteínas Co-Represoras/metabolismo , Factor de Transcripción E2F1/metabolismo , Mutación , Factores de Transcripción/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Proteína p53 Supresora de Tumor/genética , Antineoplásicos/farmacología , Apoptosis , Línea Celular Tumoral , Proteínas Co-Represoras/antagonistas & inhibidores , Proteínas Co-Represoras/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Fosforilación , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Proteína p53 Supresora de Tumor/metabolismo
15.
BMC Cancer ; 15: 514, 2015 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-26159519

RESUMEN

BACKGROUND: Determining the driving factors and molecular flow-through that define the switch from favorable to aggressive high-risk disease is critical to the betterment of neuroblastoma cure. METHODS: In this study, we examined the cytogenetic and tumorigenic physiognomies of distinct population of metastatic site- derived aggressive cells (MSDACs) from high-risk tumors, and showed the influence of acquired genetic rearrangements on poor patient outcomes. RESULTS: Karyotyping in SH-SY5Y and MSDACs revealed trisomy of 1q, with additional non-random chromosomal rearrangements on 1q32, 8p23, 9q34, 15q24, 22q13 (additions), and 7q32 (deletion). Array CGH analysis of individual clones of MSDACs revealed genetic alterations in chromosomes 1, 7, 8, and 22, corresponding to a gain in the copy numbers of LOC100288142, CD1C, CFHR3, FOXP2, MDFIC, RALYL, CSMD3, SAMD12-AS1, and MAL2, and a loss in ADAM5, LOC400927, APOBEC3B, RPL3, MGAT3, SLC25A17, EP300, L3MBTL2, SERHL, POLDIP3, A4GALT, and TTLL1. QPCR analysis and immunoblotting showed a definite association between DNA-copy number changes and matching transcriptional/translational expression in clones of MSDACs. Further, MSDACs exert a stem-like phenotype. Under serum-free conditions, MSDACs demonstrated profound tumorosphere formation ex vivo. Moreover, MSDACs exhibited high tumorigenic capacity in vivo and prompted aggressive metastatic disease. Tissue microarray analysis coupled with automated IHC revealed significant association of RALYL to the tumor grade in a cohort of 25 neuroblastoma patients. Clinical outcome association analysis showed a strong correlation between the expression of CFHR3, CSMD3, MDFIC, FOXP2, RALYL, POLDIP3, SLC25A17, SERHL, MGAT3, TTLL1, or LOC400927 and overall and relapse-free survival in patients with neuroblastoma. CONCLUSION: Together, these data highlight the ongoing acquired genetic rearrangements in undifferentiated tumor-forming neural crest cells, and suggest that these alterations could switch favorable neuroblastoma to high-risk aggressive disease, promoting poor clinical outcomes.


Asunto(s)
Estudios de Asociación Genética , Neuroblastoma/genética , Neuroblastoma/mortalidad , Animales , Línea Celular Tumoral , Aberraciones Cromosómicas , Bandeo Cromosómico , Hibridación Genómica Comparativa , Variaciones en el Número de Copia de ADN , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Xenoinjertos , Humanos , Metástasis de la Neoplasia , Estadificación de Neoplasias , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Neuroblastoma/patología , Pronóstico , Proteína Ribosomal L3
16.
Cancer Lett ; 597: 217063, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38925361

RESUMEN

In this study we have identified POLθ-S6K-p62 as a novel druggable regulator of radiation response in prostate cancer. Despite significant advances in delivery, radiotherapy continues to negatively affect treatment outcomes and quality of life due to resistance and late toxic effects to the surrounding normal tissues such as bladder and rectum. It is essential to develop new and effective strategies to achieve better control of tumor. We found that ribosomal protein S6K (RPS6KB1) is elevated in human prostate tumors, and contributes to resistance to radiation. As a downstream effector of mTOR signaling, S6K is known to be involved in growth regulation. However, the impact of S6K signaling on radiation response has not been fully explored. Here we show that loss of S6K led to formation of smaller tumors with less metastatic ability in mice. Mechanistically we found that S6K depletion reduced NFκB and SQSTM1 (p62) reporter activity and DNA polymerase θ (POLθ) that is involved in alternate end-joining repair. We further show that the natural compound berberine interacts with S6K in a in a hitherto unreported novel mode and that pharmacological inhibition of S6K with berberine reduces Polθ and downregulates p62 transcriptional activity via NFκB. Loss of S6K or pre-treatment with berberine improved response to radiation in prostate cancer cells and prevented radiation-mediated resurgence of PSA in animals implanted with prostate cancer cells. Notably, silencing POLQ in S6K overexpressing cells enhanced response to radiation suggesting S6K sensitizes prostate cancer cells to radiation via POLQ. Additionally, inhibition of autophagy with CQ potentiated growth inhibition induced by berberine plus radiation. These observations suggest that pharmacological inhibition of S6K with berberine not only downregulates NFκB/p62 signaling to disrupt autophagic flux but also decreases Polθ. Therefore, combination treatment with radiation and berberine inhibits autophagy and alternate end-joining DNA repair, two processes associated with radioresistance leading to increased radiation sensitivity.

17.
Biochem Biophys Rep ; 35: 101516, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37521374

RESUMEN

Human serum samples from individuals living in Vietnam and Taiwan suspected of past Clonorchis sinensis or Opisthorchis viverrini infection were screened using several novel peptides and recombinant liver fluke proteins to determine if any consistent patterns could be discerned and used as the basis for future liver fluke ELISA development. Absorbance values at 405 nm were compared to those of pooled unexposed normal human serum and analyzed for statistical significance. The data exhibited some interesting patterns consistent with egg antigen sequestration in the gut possibly leading to lower serum antibody levels and potential regional exposure differences between Vietnamese and Taiwanese subjects. In particular, antibodies against Cathepsin B and B2 peptides, as well as a partial Cahedrin Domain peptide may be elevated in some Taiwanese serum samples while antibodies against recombinant Clonorchis egg protein and Hepatocellular Carcinoma Peptide Antigen 59 may be elevated in some samples from both Taiwan and Vietnam. The data appear to suggest that some of the novel recombinant protein and peptide antigens selected and tested herein warrant further study with larger sample sizes as possible targets for detecting anti-liver fluke antibodies by ELISA from humans suspected of liver fluke infections.

18.
Artículo en Inglés | MEDLINE | ID: mdl-38249515

RESUMEN

Neuroblastoma is the most common extracranial solid tumor in children and comprises one-tenth of all childhood cancer deaths. The current clinical therapy for this deadly disease is multimodal, involving an induction phase with alternating regimens of high-dose chemotherapeutic drugs and load reduction surgery; a consolidation phase with more intensive chemotherapy, radiotherapy, and stem cell transplant; and a maintenance phase with immunotherapy and immune-activating cytokine treatment. Despite such intensive treatment, children with neuroblastoma have unacceptable life quality and survival, warranting preventive measures to regulate the cellular functions that orchestrate tumor progression, therapy resistance, metastasis, and tumor relapse/recurrence. Globally, active efforts are underway to identify novel chemopreventive agents, define their mechanism(s) of action, and assess their clinical benefit. Some chemoprevention strategies (e.g., retinoids, difluoromethylornithine) have already been adopted clinically as part of maintenance phase therapy. Several agents are in the pipeline, while many others are in preclinical characterization. Here we review the classes of chemopreventive agents investigated for neuroblastoma, including cellular events targeted, mode(s) of action, and the level of development. Our review: (i) highlights the pressing need for new and improved chemopreventive strategies for progressive neuroblastoma; (ii) lists the emerging classes of chemopreventive agents for neuroblastoma; and (iii) recognizes the relevance of targeting dynamically evolving hallmark functions of tumor evolution (e.g., survival, differentiation, lineage transformation). With recent gains in the understanding of tumor evolution processes and preclinical and clinical efforts, it is our strong opinion that effective chemopreventive strategies for aggressive neuroblastoma are a near reality.

19.
J Biol Chem ; 286(24): 21588-600, 2011 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-21527635

RESUMEN

Induced radioresistance in the surviving cancer cells after radiotherapy could be associated with clonal selection leading to tumor regrowth at the treatment site. Previously we reported that post-translational modification of IκBα activates NFκB in response to ionizing radiation (IR) and plays a key role in regulating apoptotic signaling. Herein, we investigated the orchestration of NFκB after IR in human neuroblastoma. Both in vitro (SH-SY5Y, SK-N-MC, and IMR-32) and in vivo (xenograft) studies showed that IR persistently induced NFκB DNA binding activity and NFκB-dependent TNFα transactivation and secretion. Approaches including silencing NFκB transcription, blocking post-translational NFκB nuclear import, muting TNF receptor, overexpression, and physiological induction of either NFκB or TNFα precisely demonstrated the initiation and occurrence of NFκB → TNFα → NFκB positive feedback cycle after IR that leads to and sustains NFκB activation. Selective TNF-dependent NFκB regulation was confirmed with futile inhibition of AP-1 and SP-1 in TNF receptor muted cells. Moreover, IR increased both transactivation and translation of Birc1, Birc2, and Birc5 and induced metabolic activity and clonal expansion. This pathway was further defined to show that IR-induced functional p65 transcription (not NFκB1, NFκB2, or c-Rel) is necessary for activation of these survival molecules and associated survival advantage. Together, these results demonstrate for the first time the functional orchestration of NFκB in response to IR and further imply that p65-dependent survival advantage and initiation of clonal expansion may correlate with an unfavorable prognosis of human neuroblastoma.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , FN-kappa B/metabolismo , Neuroblastoma/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Apoptosis , Línea Celular Tumoral , Supervivencia Celular , Humanos , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Pronóstico , Radiación Ionizante , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA