Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant J ; 79(1): 127-38, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24798377

RESUMEN

Short interfering RNAs (siRNAs) homologous to transcriptional regulatory regions can induce RNA-directed DNA methylation (RdDM) and transcriptional gene silencing (TGS) of target genes. In our system, siRNAs are produced by transcribing an inverted DNA repeat (IR) of enhancer sequences, yielding a hairpin RNA that is processed by several Dicer activities into siRNAs of 21-24 nt. Primarily 24-nt siRNAs trigger RdDM of the target enhancer in trans and TGS of a downstream GFP reporter gene. We analyzed siRNA accumulation from two different structural forms of a trans-silencer locus in which tandem repeats are embedded in the enhancer IR and distinguished distinct RNA polymerase II (Pol II)- and Pol IV-dependent pathways of siRNA biogenesis. At the original silencer locus, Pol-II transcription of the IR from a 35S promoter produces a hairpin RNA that is diced into abundant siRNAs of 21-24 nt. A silencer variant lacking the 35S promoter revealed a normally masked Pol IV-dependent pathway that produces low levels of 24-nt siRNAs from the tandem repeats. Both pathways operate concurrently at the original silencer locus. siRNAs accrue only from specific regions of the enhancer and embedded tandem repeat. Analysis of these sequences and endogenous tandem repeats producing siRNAs revealed the preferential accumulation of siRNAs at GC-rich regions containing methylated CG dinucleotides. In addition to supporting a correlation between base composition, DNA methylation and siRNA accumulation, our results highlight the complexity of siRNA biogenesis at repetitive loci and show that Pol II and Pol IV use different promoters to transcribe the same template.


Asunto(s)
Arabidopsis/genética , ARN Polimerasas Dirigidas por ADN/genética , Regulación de la Expresión Génica de las Plantas , ARN Polimerasa II/genética , ARN Interferente Pequeño/genética , Secuencias Repetidas en Tándem/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Metilación de ADN , ARN Polimerasas Dirigidas por ADN/metabolismo , Silenciador del Gen , Genes Reporteros , Secuenciación de Nucleótidos de Alto Rendimiento , Meristema/genética , Meristema/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , ARN Polimerasa II/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , ARN Interferente Pequeño/metabolismo , Análisis de Secuencia
2.
EMBO J ; 28(1): 48-57, 2009 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-19078964

RESUMEN

We used a transgene system to study spreading of RNA-directed DNA methylation (RdDM) during transcriptional gene silencing in Arabidopsis thaliana. Forward and reverse genetics approaches using this system delineated a stepwise pathway for the biogenesis of secondary siRNAs and unidirectional spreading of methylation from an upstream enhancer element into downstream sequences. Trans-acting, hairpin-derived primary siRNAs induce primary RdDM, independently of an enhancer-associated 'nascent' RNA, at the target enhancer region. Primary RdDM is a key step in the pathway because it attracts the secondary siRNA-generating machinery, including RNA polymerase IV, RNA-dependent RNA polymerase2 and Dicer-like3 (DCL3). These factors act in a turnover pathway involving a nascent RNA, which normally accumulates stably in non-silenced plants, to produce cis-acting secondary siRNAs that induce methylation in the downstream region. The identification of DCL3 in a forward genetic screen for silencing-defective mutants demonstrated a strict requirement for 24-nt siRNAs to direct methylation. A similar stepwise process for spreading of DNA methylation may occur in mammalian genomes, which are extensively transcribed in upstream regulatory regions.


Asunto(s)
Arabidopsis/metabolismo , Arabidopsis/fisiología , Metilación de ADN , Silenciador del Gen , ARN Interferente Pequeño/metabolismo , Proteínas de Arabidopsis/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Unión Proteica , ARN Polimerasa Dependiente del ARN/metabolismo , Ribonucleasa III/metabolismo
3.
Genetics ; 192(4): 1271-80, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23023006

RESUMEN

The dms4 (defective in meristem silencing 4) mutant of Arabidopsis thaliana is unique in having defects in both RNA-directed DNA methylation (RdDM) and plant development. DMS4 is an evolutionarily conserved, putative transcription factor of the Iwr1 (interacts with RNA polymerase II) type. DMS4 interacts with Pol II and also with RNA polymerases IV and V, which function in RdDM. Interactions with multiple polymerases may account for the diverse phenotypic effects of dms4 mutations. To dissect further the roles of DMS4 in RdDM and development, we performed a genetic suppressor screen using the dms4-1 allele, which contains in the sixth intron a splice site acceptor mutation that alters splicing and destroys the open reading frame. Following mutagenesis of dms4-1 seeds using ethyl methanesulfonate (EMS), we retrieved four dominant intragenic suppressor mutations that restored DMS4 function and wild-type phenotypes. Three of the four intragenic suppressor mutations created new splice site acceptors, which resulted in reestablishment of the wild-type open reading frame. Remarkably, the intragenic suppressor mutations were recovered at frequencies ranging from 35 to 150 times higher than expected for standard EMS mutagenesis in Arabidopsis. Whole-genome sequencing did not reveal an elevated mutation frequency genome-wide, indicating that the apparent hypermutation was confined to four specific sites in the dms4 gene. The localized high mutation frequency correlated with restoration of DMS4 function implies an efficient mechanism for targeted mutagenesis or selection of more fit revertant cells in the shoot apical meristem, thereby rapidly restoring a wild-type phenotype that is transmitted to future generations.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Mutación , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Metilación de ADN , Metanosulfonato de Etilo/farmacología , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Genes Supresores , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Meristema/genética , Meristema/metabolismo , Datos de Secuencia Molecular , Mutagénesis , Plantas Modificadas Genéticamente , Sitios de Empalme de ARN , Semillas/efectos de los fármacos , Semillas/genética
4.
Curr Biol ; 22(10): 933-8, 2012 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-22560611

RESUMEN

RNA-directed DNA methylation (RdDM) is a small interfering RNA (siRNA)-mediated epigenetic modification that contributes to transposon silencing in plants. RdDM requires a complex transcriptional machinery comprising two RNA polymerase II-related RNA polymerases, called Pol IV and Pol V, as well as chromatin remodelers, transcription factors, and other novel proteins whose roles in the RdDM mechanism remain poorly understood. We have identified a new component of the RdDM machinery, DMS11 (defective in meristem silencing 11), which has a GHKL (gyrase, Hsp90, histidine kinase, MutL) ATPase domain. siRNAs accumulate in the dms11 mutant, and repressive epigenetic modifications undergo only modest reductions at target sequences. DMS11 interacts physically with another RdDM component, DMS3, an unusual structural maintenance of chromosomes (SMC) hinge domain-containing protein that lacks the ATPase motifs of authentic SMC proteins. The hinge region of DMS3 resembles that of the mammalian epigenetic factor SMCHD1, which also has a GHKL-type ATPase. In vitro, DMS11 has ATPase activity that is stimulated by DMS3. We suggest that DMS11 provides the missing ATPase function for DMS3 and that these proteins cooperate in the RdDM pathway to promote transcriptional repression. GHKL ATPases are thus emerging as new players in epigenetic regulation in plants and mammals.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Cromosómicas no Histona/metabolismo , Metilación de ADN/fisiología , Adenosina Trifosfatasas/genética , Arabidopsis/enzimología , Proteínas de Arabidopsis/genética , Western Blotting , Proteínas Cromosómicas no Histona/genética , Electroforesis en Gel de Poliacrilamida , Regulación de la Expresión Génica de las Plantas , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
5.
Genetics ; 187(3): 977-9, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21212233

RESUMEN

RNA-directed DNA methylation (RdDM) is a small RNA-mediated epigenetic modification in plants. We report here the identification of DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2) in a forward screen for mutants defective in RdDM in Arabidopsis thaliana. The finding of a mutation in the presumptive active site argues in favor of direct catalytic activity for DRM2.


Asunto(s)
Arabidopsis/genética , Metilación de ADN/genética , Metiltransferasas/genética , ARN/genética , ARN/metabolismo , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Metiltransferasas/metabolismo , Datos de Secuencia Molecular , Mutación Puntual , ARN Interferente Pequeño/genética
6.
PLoS One ; 6(10): e25730, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21998686

RESUMEN

RNA-directed DNA methylation (RdDM) is a small interfering RNA (siRNA)-mediated epigenetic modification that contributes to transposon silencing in plants. RdDM requires a complex transcriptional machinery that includes specialized RNA polymerases, named Pol IV and Pol V, as well as chromatin remodelling proteins, transcription factors, RNA binding proteins, and other plant-specific proteins whose functions are not yet clarified. In Arabidopsis thaliana, DICER-LIKE3 and members of the ARGONAUTE4 group of ARGONAUTE (AGO) proteins are involved, respectively, in generating and using 24-nt siRNAs that trigger methylation and transcriptional gene silencing of homologous promoter sequences. AGO4 is the main AGO protein implicated in the RdDM pathway. Here we report the identification of the related AGO6 in a forward genetic screen for mutants defective in RdDM and transcriptional gene silencing in shoot and root apical meristems in Arabidopsis thaliana. The identification of AGO6, and not AGO4, in our screen is consistent with the primary expression of AGO6 in shoot and root growing points.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Argonautas/metabolismo , Silenciador del Gen , Meristema/genética , Raíces de Plantas/genética , ARN de Planta/genética , Transcripción Genética/genética , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas Argonautas/química , Proteínas Argonautas/genética , Secuencia de Bases , Metilación de ADN/genética , Regulación de la Expresión Génica de las Plantas/genética , Meristema/metabolismo , Datos de Secuencia Molecular , Raíces de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Transgenes/genética
7.
Plant Methods ; 6: 2, 2010 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-20148117

RESUMEN

BACKGROUND: Interphase chromosome organization and dynamics can be studied in living cells using fluorescent tagging techniques that exploit bacterial operator/repressor systems and auto-fluorescent proteins. A nuclear-localized Repressor Protein-Fluorescent Protein (RP-FP) fusion protein binds to operator repeats integrated as transgene arrays at defined locations in the genome. Under a fluorescence microscope, the tagged sites appear as bright fluorescent dots in living cells. This technique has been used successfully in plants, but is often hampered by low expression of genes encoding RP-FP fusion proteins, perhaps owing to one or more gene silencing mechanisms that are prevalent in plant cells. RESULTS: We used two approaches to overcome this problem. First, we tested mutations in four factors involved in different types of gene silencing and/or epigenetic modifications for their effects on nuclear fluorescence. Only mutations in DDM1, a chromatin remodelling ATPase involved in repeat-induced heterochromatin formation and DNA methylation, released silencing of the RP-FP fusion protein. This result suggested that the operator repeats can trigger silencing of the adjacent gene encoding the RP-FP fusion protein. In the second approach, we transformed the tagged lines with a second T-DNA encoding the RP-FP fusion protein but lacking operator repeats. This strategy avoided operator repeat-induced gene silencing and increased the number of interphase nuclei displaying fluorescent dots. In a further extension of the technique, we show that green fluorescent-tagged sites can be visualized on moving mitotic chromosomes stained with red fluorescent-labelled histone H2B. CONCLUSIONS: The results illustrate the propensity of operator repeat arrays to form heterochromatin that can silence the neighbouring gene encoding the RP-FP fusion protein. Supplying the RP-FP fusion protein in trans from a second T-DNA largely alleviates this problem. Depending on the promoter used to drive expression of the RP-FP fusion protein gene, the fluorescent tagged sites can be visualized at high frequency in different cell types. The ability to observe fluorescent dots on both interphase and mitotic chromosomes allows tagged sites to be tracked throughout the cell cycle. These improvements enhance the versatility of the fluorescent tagging technique for future studies of chromosome arrangement and dynamics in living plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA