Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(6): e202314595, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-37991081

RESUMEN

Lanthanides have unique photoluminescence (PL) emission properties, including very long PL lifetimes. This makes them ideal for biological imaging applications, especially using PL lifetime imaging microscopy (PLIM). PLIM is an inherently multidimensional technique with exceptional advantages for quantitative biological imaging. Unfortunately, due to the required prolonged acquisitions times, photobleaching of lanthanide PL emission currently constitutes one of the main drawbacks of PLIM. In this study, we report a small aqueous-soluble, lanthanide antenna, 8-methoxy-2-oxo-1,2,4,5-tetrahydrocyclopenta[de]quinoline-3-phosphonic acid, PAnt, specifically designed to dynamically interact with lanthanide ions, serving as exchangeable dye aimed at mitigating photobleaching in PLIM microscopy in cellulo. Thus, self-assembled lanthanide complexes that may be photobleached during image acquisition are continuously replenished by intact lanthanide antennas from a large reservoir. Remarkably, our self-assembled lanthanide complex clearly demonstrated a significant reduction of PL photobleaching when compared to well-established lanthanide cryptates, used for bioimaging. This concept of exchangeable lanthanide antennas opens new possibilities for quantitative PLIM bioimaging.


Asunto(s)
Elementos de la Serie de los Lantanoides , Microscopía , Luminiscencia , Fotoblanqueo
2.
J Am Chem Soc ; 145(9): 5474-5485, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36812073

RESUMEN

Stable redox-active conjugated molecules with exceptional electron-donating abilities are key components for the design and synthesis of ultralow band gap conjugated polymers. While hallmark electron-rich examples such as pentacene derivatives have been thoroughly explored, their poor air stability has hampered their broad incorporation into conjugated polymers for practical applications. Herein, we describe the synthesis of the electron-rich, fused pentacyclic pyrazino[2,3-b:5,6-b']diindolizine (PDIz) motif and detail its optical and redox behavior. The PDIz ring system exhibits a lower oxidation potential and a reduced optical band gap than the isoelectronic pentacene while retaining greater air stability in both solution and the solid state. The enhanced stability and electron density, together with readily installed solubilizing groups and polymerization handles, allow for the use of the PDIz motif in the synthesis of a series of conjugated polymers with band gaps as small as 0.71 eV. The tunable absorbance throughout the biologically relevant near-infrared I and II regions enables the use of these PDIz-based polymers as efficient photothermal therapeutic reagents for laser ablation of cancer cells.

3.
Chemistry ; 26(61): 13990-14001, 2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-32667100

RESUMEN

Different molecular strategies have been carefully evaluated to produce solid-state luminescence enhancement (SLE) in compounds that show dark states in solution. A set of α-phenylstyrylarene derivatives with a butterfly shape have been designed and synthesised, for the first time, with the aim of improving the solid-state fluorescence emission of their parent styrylarene compounds. Although these butterfly molecules are not fluorescent in solution, one of them (1,2,4,5-tetra(α-phenylstyryl)benzene) exhibits a fluorescence quantum yield as high as 68 % in a drop-cast sample and 31 % in its crystalline form. In contrast, 1,3,5-tris(α-phenylstyryl)benzene and 4,6-bis(α-phenylstyryl)pyrimidine do not show SLE. A range of fluorescence spectroscopy experiments and DFT calculations were carried out to unravel the origin of different photophysical behaviour of these compounds in the solid state. The results indicate that a rational strategy to control the SLE effect in luminogens depends on a delicate balance between molecular properties and inter-/intramolecular interactions in the solid state.

4.
Chemistry ; 26(15): 3373-3384, 2020 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-31967698

RESUMEN

This work is focused on unraveling the mechanisms responsible for the aggregation-induced enhanced emission and solid-state luminescence enhancement effects observed in star-shaped molecules based on 1,3,5-tris(styryl)benzene and tri(styryl)-s-triazine cores. To achieve this, the photophysical properties of this set of molecules were analyzed in three states: free molecules, molecular aggregates in solution, and the solid state. Different spectroscopy and microscopy experiments and DFT calculations were conducted to scrutinize the causative mechanisms of the luminescence enhancement phenomenon observed in some experimental conditions. Enhanced luminescence emission was interpreted in the context of short- and long-range excitonic coupling mechanisms and the restriction of intramolecular vibrations. Additionally, we found that the formation of π-stacking aggregates could block E/Z photoisomerization through torsional motions between phenylene rings in the excited state, and hence, enhancing the luminescence of the system.

5.
J Chem Phys ; 150(6): 064309, 2019 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-30770014

RESUMEN

Electronic, optical, and semiconducting properties of a series of propeller-shaped oligo(styryl)benzenes have been systematically investigated to monitor the effect of the number of styryl branches (three, four, and six) around a central benzene core. In order to clarify the relationships between their structures and properties, Density Functional Theory calculations were carried out at several levels of theory considering solvents with different polarity. Absorption and vibrational Raman spectroscopies showed that cruciform, four-branched derivatives present the most effective π-conjugation in agreement with the lowest calculated bond length alternation and bandgap. Deviations from the mirror image symmetry between absorption and fluorescence spectra were related to changes in the molecular conformation upon electronic excitation. Furthermore, in order to investigate the semiconducting behavior of oligo(styryl)benzenes, molecular structure changes and different electronic properties related to ionization processes were calculated and analyzed. Hole and electron reorganization energies were also computed to provide a first approximation on the n- or p-type character of these compounds. In some cases, electron reorganization energies comparable to common n-type semiconductors were found.

6.
Chemistry ; 24(66): 17459-17463, 2018 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-30238538

RESUMEN

Computational and experimental studies unravel the structural and electronic properties of a novel supramolecular liquid crystal built through a hierarchical assembly process resulting in an H-bonded melamine rosette decorated with peripheral triphenylenes. The six-fold symmetry of the mesogen facilitates the formation of a highly organized hexagonal columnar mesophase stable at room temperature. X-ray diffraction and electron density maps confirm additional intra- and intercolumn segregation of functional subunits, and this paves the way for 1D charge transport. Indeed, hole mobility has been measured and found to be higher than for related mesogens. DFT calculations of HOMO and LUMO levels and parameters such as reorganization energy and transfer integral of the rosette structure have been achieved, and not only validate the columnar organization but also establish the way it translates into a favorable electronic architecture and molecular orbital interactions to promote charge carrier mobility.

7.
J Chem Phys ; 145(5): 054903, 2016 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-27497578

RESUMEN

Density functional theory calculations were carried out to investigate the evolvement of charge transport properties of a set of new discotic systems as a function of ring and heteroatom (B, Si, S, and Se) substitution on the basic structure of perylene. The replacement of six-membered rings by five-membered rings in the reference compound has shown a prominent effect on the electron reorganization energy that decreases ∼0.2 eV from perylene to the new carbon five-membered ring derivative. Heteroatom substitution with boron also revealed to lower the LUMO energy level and increase the electron affinity, therefore lowering the electron injection barrier compared to perylene. Since the rate of the charge transfer between two molecules in columnar discotic systems is strongly dependent on the orientation of the stacked cores, the total energy and transfer integral of a dimer as a disc is rotated with respect to the other along the stacking axis have been predicted. Aimed at obtaining a more realistic approach to the bulk structure, the molecular geometry of clusters made up of five discs was fully optimized, and charge transfer rate and mobilities were estimated for charge transport along a one dimensional pathway. Heteroatom substitution with selenium yields electron transfer integral values ∼0.3 eV with a relative disc orientation of 25°, which is the preferred angle according to the dimer energy profile. All the results indicate that the tetraselenium-substituted derivative, not synthetized so far, could be a promising candidate among those studied in this work for the fabrication of n-type semiconductors based on columnar discotic liquid crystals materials.

8.
Phys Chem Chem Phys ; 17(1): 605-18, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25406827

RESUMEN

We present a density functional theory (DFT) study on charge-transport related properties in a series of discotic systems based on 1,3,5-triazine and tris[1,2,4]triazolo[1,3,5]triazine central cores as electron acceptor units, and phenyl-thiophene and N-carbazolyl-thiophene segments as electron donor units. The presence of both electron donor and acceptor moieties in the π-conjugated core could lead to new discotic liquid crystal (DLC) materials which are predicted to display ambipolar charge transport behavior in such a way that electrons could move through the central part of the next cores while holes mainly do through the peripheral groups. A significant increase in hole mobility when N-carbazolyl is present as an electron donor unit in the peripheral region is predicted. In addition, a detailed topological analysis of the electron charge density within the framework provided by Quantum Theory of Atoms in Molecules (QTAIM) has been performed in order to characterize intra- and intermolecular interactions in terms of hydrogen bonds and/or π···π stacking which contribute to the stabilization of the columnar stack and the helical self-assembly at the molecular scale.

9.
J Chem Phys ; 140(4): 044908, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25669584

RESUMEN

Aimed to optimize the ratio accuracy/computational cost, in this work we study the performance of three different theoretical methodologies in the calculation of the optical bandgap for a test set made of a number of poly(aryl-ethynylene)s related polymers. Infinite, ideal polymer chains were first optimized by means of periodic calculations. Different length oligomers were afterward generated by direct replication of the corresponding periodic structure and their optical bandgaps were calculated by means of different time dependent-density functional theory (TD-DFT) methodologies. These results were fitted to an exponential function for each oligomer family in order to get a theoretical estimation of the optical bandgap for each polymer to be compared to the experimental reported values. The best result was obtained for TD-M06-2X yielding an average deviation of 3.4% with respect to the experimental values.


Asunto(s)
Modelos Teóricos , Polímeros/química , Estructura Molecular
10.
Dalton Trans ; 53(21): 8988-9000, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38721696

RESUMEN

A new family of six complexes based on 5-nitropicolinic acid (5-npic) and transition metals has been obtained: [M(5-npic)2]n (MII = Mn (1) and Cd (2)), [Cu(5-npic)2]n (3), and [M(5-npic)2(H2O)2] (MII = Co (4), Ni (5), and Zn (6)), which display 1D, 2D, and mononuclear structures, respectively, thanks to different coordination modes of 5-npic. After their physicochemical characterization by single-crystal X-ray diffraction (SCXRD), elemental analyses (EA), and spectroscopic techniques, quantum chemical calculations using Time-Dependent Density Functional Theory (TD-DFT) were performed to further study the luminescence properties of compounds 2 and 6. The potential anticancer activity of all complexes was tested against three tumor cell lines, B16-F10, HT29, and HepG2, which are models widely used for studying melanoma, colon cancer, and liver cancer, respectively. The best results were found for compounds 2 and 4 against B16-F10 (IC50 = 26.94 and 45.10 µg mL-1, respectively). In addition, anti-inflammatory studies using RAW 264.7 cells exhibited promising activity for 2, 3, and 6 (IC50 NO = 5.38, 24.10, and 17.63 µg mL-1, respectively). This multidisciplinary study points to complex 2, based on CdII, as a promising anticancer and anti-inflammatory material.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Ácidos Picolínicos , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/síntesis química , Ratones , Animales , Ácidos Picolínicos/química , Ácidos Picolínicos/farmacología , Teoría Funcional de la Densidad , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Antiinflamatorios/farmacología , Antiinflamatorios/química , Diseño de Fármacos , Proliferación Celular/efectos de los fármacos , Estructura Molecular , Modelos Moleculares , Células RAW 264.7 , Supervivencia Celular/efectos de los fármacos
11.
ACS Appl Mater Interfaces ; 14(21): 24964-24979, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35579566

RESUMEN

The development of fluorescence materials with switched on/off emission has attracted great attention owing to the potential application of these materials in chemical sensing. In this work, the photophysical properties of a series of original 2-(2'-hydroxyphenyl)pyrimidines were thoroughly studied. The compounds were prepared by following well-established and straightforward methodologies and showed very little or null photoluminescence both in solution and in the solid state. This absence of emission can be explained by a fast proton transfer from the OH group to the nitrogen atoms of the pyrimidine ring to yield an excited tautomer that deactivates through a nonradiative pathway. The key role of the OH group in the emission quenching was demonstrated by the preparation of 2'-unsubstituted derivatives, all of which exhibited violet or blue luminescence. Single crystals of some compounds suitable for an X-ray diffraction analysis could be obtained, which permitted us to investigate inter- and intramolecular interactions and molecular packing structures. The protonation of the pyrimidine ring by an addition of trifluoroacetic acid inhibited the excited-state intramolecular proton transfer (ESIPT) process, causing a reversible switch on fluorescence response detectable by the naked eye. This acidochromic behavior allows 2-(2'-hydroxyphenyl)pyrimidines to be used as solid-state acid-base vapor sensors and anticounterfeiting agents. Extensive density functional theory and its time-dependent counterpart calculations at the M06-2X/6-31+G** level of theory were performed to rationalize all the experimental results and understand the impact of protonation on the different optical transitions.

12.
Pharmaceutics ; 14(7)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35890395

RESUMEN

A pharmaceutical vehicle based on lyophilized liposomes is proposed for the buccal administration of drugs aimed at systemic delivery through the sublingual mucosa. Liposomes made of egg phosphatidylcholine and cholesterol (7/3 molar ratio) were prepared and lyophilized in the presence of different additive mixtures with mucoadhesive and taste-masking properties. Palatability was assayed on healthy volunteers. The lyophilization cycle was optimized, and the lyophilized product was compressed to obtain round and capsule-shaped tables that were evaluated in healthy volunteers. Tablets were also assayed regarding weight and thickness uniformities, swelling index and liposome release. The results proved that lyophilized liposomes in unidirectional round tablets have palatability, small size, comfortability and buccal retention adequate for sublingual administration. In contact with water fluids, the tablets swelled, and rehydrated liposomes were released at a slower rate than permeation efficiency determined using a biomimetic membrane. Permeability efficiency values of 0.72 ± 0.34 µg/cm2/min and 4.18 ± 0.95 µg/cm2/min were obtained for the liposomes with and without additives, respectively. Altogether, the results point to the vehicle proposed as a liposomal formulation suitable for systemic drug delivery through the sublingual mucosa.

13.
ACS Sens ; 7(1): 37-43, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35020353

RESUMEN

Here we present a new approach for the development of fluoride chemosensors taking advantage of aggregation induced emission (AIE) properties. Although AIE-based chemosensors have been described, they rely primarily on the analyte causing aggregation and hence fluorescence. We propose a new concept in the use of AIE for the development of fluorescent sensors. Our hypothesis is based on the fact that a turn-off chemosensor in solution can be transformed into turn-on in the solid state if the properties of ACQ and AIE are properly combined between the fluorescent molecules involved. To demonstrate this hypothesis, we have selected a fluorescent chemosensor for the fluoride anion with a conjugated structure of bis(styryl)pyrimidine that, while showing turn-off behavior in solution, becomes turn-on when it is brought to the solid state. We have also combined it with the advantages of a detection system based on the microfluidic paper-based analytical devices (µPAD). The system is fully characterized spectroscopically both in solution and in the solid state, and quantum mechanical calculations were performed to explain how the sensor works. The prepared device presents a high sensitivity, with no interference and with an LoD and LoQ that allow determination of fluoride concentrations in water 2 orders of magnitude below the maximum allowed by WHO.


Asunto(s)
Colorantes Fluorescentes , Fluoruros , Aniones , Colorantes Fluorescentes/química , Agua/química
14.
Phys Chem Chem Phys ; 13(21): 10091-9, 2011 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-21519632

RESUMEN

Density Functional Theory has been used to study the structural, electronic and charge-transport properties of two regio-regular head-to-tail polythiophene derivatives, i.e. poly(3-hexyl-thiophene), P3HT, and poly(3-oxyhexyl-thiophene), P3OHT. The effect of substituents on the electronic structure was analyzed by means of bandwidth, bandgap, effective mass, total and partial densities of states and crystal orbital overlap populations. Electronic couplings were estimated from band diagrams as the splitting of the valence band. The neutral and cationic states of isolated oligomers were optimized using the supercell approximation. The hole-transfer rates and mobilities were evaluated according to Marcus's theory. Results provide a compelling illustration of the effect of side chains on the crystal packing, electronic structure and charge-transport properties. Thus, the hole mobility calculated for the alkyl derivative was 0.15 cm(2) V(-1) s(-1) (experimental mobility is 0.10 cm(2) V(-1) s(-1)), while the alkoxy derivative has a theoretical mobility of 0.49 cm(2) V(-1) s(-1). The obtained results hopefully could motivate experimentalists to try out P3OHT for an improved charge carrier mobility.

15.
Polymers (Basel) ; 13(2)2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33435293

RESUMEN

Aggregation-Induced Emission (AIE) in organic molecules has recently attracted the attention of the scientific community because of their potential applications in different fields. Compared to small molecules, little attention has been paid to polymers and oligomers that exhibit AIE, despite having excellent properties such as high emission efficiency in aggregate and solid states, signal amplification effect, good processability and the availability of multiple functionalization sites. In addition to these features, if the molecular structure is fully conjugated, intramolecular electronic interactions between the composing chromophores may appear, thus giving rise to a wealth of new photophysical properties. In this review, we focus on selected fully conjugated oligomers, dendrimers and polymers, and briefly summarize their synthetic routes, fluorescence properties and potential applications. An exhaustive comparison between spectroscopic results in solution and aggregates or in solid state has been collected in almost all examples, and an opinion on the future direction of the field is briefly stated.

16.
Pharmaceutics ; 13(8)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34452127

RESUMEN

The lyoprotective effects of mannitol and lactose have been evaluated in the production of sildenafil citrate liposomes. Liposomes were prepared by mixing the components under ultrasonic agitation, followed by a transmembrane pH gradient for remote drug loading. Mannitol and lactose, as compared to sucrose and trehalose, were used as the stabilizing agents, and different freeze-drying cycles were assayed. The remaining moisture and the thermal characteristics of the lyophilized samples were analyzed. Size, entrapment efficiency, biocompatibility, and cell internalization of original and rehydrated liposomes were compared. The type of additive did not affect the biocompatibility or cell internalization, but did influence other liposome attributes, including the thermal characteristics and the remaining moisture of the lyophilized samples. A cut-off of 5% (w/w) remaining moisture was an indicator of primary drying completion-information useful for scaling up and transfer from laboratory to large-scale production. Lactose increased the glass transition temperature to over 70 °C, producing lyoprotective effects similar to those obtained with sucrose. Based on these results, formulations containing liposomes lyophilized with lactose meet the FDA's requirements and can be used as a biocompatible and biodegradable vehicle for the pulmonary delivery of therapeutic doses of sildenafil citrate.

17.
ACS Sens ; 6(10): 3632-3639, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34498459

RESUMEN

Unraveling cellular physiological processes via luminescent probes that target specific cellular microenvironments is quite challenging due to the uneven distribution of probes. Herein, we designed a new dynamic excimer (DYNEX) imaging method that involves the sensitive detection of nanosecond-scale dynamic molecular contacts of a fluorescent acridone derivative and reveals the cell microenvironment polarity. Using our method, we specifically tracked cell lipid droplets in fibroblast colon carcinoma cells. These organelles play a central role in metabolic pathways, acting as energy reservoirs in regulatory processes. DYNEX imaging provides the inner polarity of cell lipid droplets, which can be related to lipid contents and metabolic dysfunctions. This new methodology will inspire development of novel multidimensional fluorescent sensors that are able to provide target-specific and orthogonal information at the nanosecond scale.


Asunto(s)
Colorantes Fluorescentes , Gotas Lipídicas , Microscopía Fluorescente , Imagen Óptica
18.
J Chem Phys ; 132(6): 064901, 2010 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-20151752

RESUMEN

In the present work, we have studied from a theoretical perspective the geometry and electronic properties of the series of related compounds 2,5-bis(phenylethynyl)-1,3,4-thiadiazole, 2,5-bis(phenylethynyl)-1,3,4-oxadiazole, and 2,5-bis(phenylethynyl)-1,2,4-triazole as candidates for electron-conducting polymers and compounds with desirable (opto)electronic properties. The effect of the ethynyl group (-C[Triple Bond]C-) on the structure and electronic properties was also studied. The influence of planarity on electrical conductivity has been studied by a natural-bond-orbital analysis. The (opto)electronic properties and conducting capability were investigated through the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap, excitation energy, bond length alternation, LUMO energy, electron affinities, and intramolecular reorganization energy. Finally, the evolution of some properties such as optical bandgap and electron affinity with the increase of the number of repeat units in the oligomer chain has been checked.

19.
RSC Adv ; 10(69): 42014-42020, 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-35516727

RESUMEN

In this paper, we explore the synthesis, characterization, and photophysical properties of a novel indigo derivative, N-octyl-7,7'-diazaindigo, being the first time that diazaindigos have been studied as photophysically-active chemical entities. Reduction of the neutral "keto-form" to the so-called "leuco-form" changes the global spectroscopic and photophysical behaviors. Both species have been investigated by different photophysical studies, such as analysis of absorption and emission spectra, fluorescence quantum yields (Φ F) and lifetimes. Finally, to appraise in depth the deactivation of the excited state of the keto form, femtosecond transient absorption (TA) experiments and Density Functional Theory (DFT) and Time Dependent (TD)-DFT calculations were performed. In an organic aprotic solvent (N,N-dimethylformamide), TA experiments showed a fast deactivation channel (τ 1 = 2.9 ps), which was ascribed to solvent reorganization, and a longer decay component (τ 2 = 86 ps) associated with an internal conversion (IC) process to the ground-state, in opposition to the excited state proton transfer (ESPT) mechanism that takes place in the indigo molecules but in protic solvents. A comparative study was also carried out on the parent molecule, 7,7'-diazaindigo, corroborating the previous conclusions obtained for the alkyl derivative. In agreement with experimental observations, DFT and TD-DFT calculations revealed that the deactivation of the S1 state of the keto form takes place through an internal conversion process.

20.
ACS Appl Mater Interfaces ; 12(47): 53328-53341, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33170629

RESUMEN

Substituted 2,1,3-benzothiadiazole (BTD) is a widely used electron acceptor unit for functional organic semiconductors. Difluorination or annulation on the 5,6-position of the benzene ring is among the most adapted chemical modifications to tune the electronic properties, though each sees its own limitations in regulating the frontier orbital levels. Herein, a hitherto unreported 5,6-annulated BTD acceptor, denoted as ssBTD, is designed and synthesized by incorporating an electron-withdrawing 2-(1,3-dithiol-2-ylidene)malononitrile moiety via aromatic nucleophilic substitution of the 5,6-difluoroBTD (ffBTD) precursor. Unlike the other reported BTD annulation strategies, this modification leads to the simultaneous decrease in both frontier orbital energies, a welcoming feature for photovoltaic applications. Incorporation of ssBTD into conjugated polymers results in materials boasting broad light absorption, dramatic solvatochromic and thermochromic responses (>100 nm shift and a band gap difference of ∼0.28 eV), and improved crystallinity in the solid state. Such physical properties are in accordance with the combined electron-withdrawing effect and significantly increased polarity associated with the ssBTD unit, as revealed by detailed theoretical studies. Furthermore, the thiolated ssBTD imbues the polymer with ambipolar charge transport property, in contrast to the ffBTD-based polymer, which transports holes only. While the low mobilities (10-4 to 10-5 cm2 V-1 s-1) could be further optimized, detailed studies validate that the thioannulated BTD is a versatile electron-accepting unit for the design of functional stimuli-responsive optoelectronic materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA