Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(10): 2696-2714.e25, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33891876

RESUMEN

Components of the proteostasis network malfunction in aging, and reduced protein quality control in neurons has been proposed to promote neurodegeneration. Here, we investigate the role of chaperone-mediated autophagy (CMA), a selective autophagy shown to degrade neurodegeneration-related proteins, in neuronal proteostasis. Using mouse models with systemic and neuronal-specific CMA blockage, we demonstrate that loss of neuronal CMA leads to altered neuronal function, selective changes in the neuronal metastable proteome, and proteotoxicity, all reminiscent of brain aging. Imposing CMA loss on a mouse model of Alzheimer's disease (AD) has synergistic negative effects on the proteome at risk of aggregation, thus increasing neuronal disease vulnerability and accelerating disease progression. Conversely, chemical enhancement of CMA ameliorates pathology in two different AD experimental mouse models. We conclude that functional CMA is essential for neuronal proteostasis through the maintenance of a subset of the proteome with a higher risk of misfolding than the general proteome.


Asunto(s)
Envejecimiento/metabolismo , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Autofagia Mediada por Chaperones/fisiología , Neuronas/metabolismo , Proteostasis , Envejecimiento/patología , Enfermedad de Alzheimer/patología , Animales , Encéfalo/patología , Quinasa de la Caseína I/genética , Autofagia Mediada por Chaperones/genética , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Neuronas/patología , Proteoma
2.
J Exp Bot ; 75(16): 5130-5145, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38808567

RESUMEN

Hydrogen sulfide regulates essential plant processes, including adaptation responses to stress situations, and the best characterized mechanism of action of sulfide consists of the post-translational modification of persulfidation. In this study, we reveal the first persulfidation proteome described in rice including 3443 different persulfidated proteins that participate in a broad range of biological processes and metabolic pathways. In addition, comparative proteomics revealed specific proteins involved in sulfide signaling during drought responses. Several proteins are involved in the maintenance of cellular redox homeostasis, the tricarboxylic acid cycle and energy-related pathways, and ion transmembrane transport and cellular water homeostasis, with the aquaporin family showing the highest differential levels of persulfidation. We revealed that water transport activity is regulated by sulfide which correlates with an increasing level of persulfidation of aquaporins. Our findings emphasize the impact of persulfidation on total ATP levels, fatty acid composition, levels of reactive oxygen species, antioxidant enzymatic activities, and relative water content. Interestingly, the role of persulfidation in aquaporin transport activity as an adaptation response in rice differs from current knowledge of Arabidopsis, which highlights the distinct role of sulfide in improving rice tolerance to drought.


Asunto(s)
Sequías , Oryza , Proteínas de Plantas , Transducción de Señal , Sulfuros , Oryza/metabolismo , Oryza/fisiología , Oryza/genética , Sulfuros/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Acuaporinas/metabolismo , Acuaporinas/genética , Proteoma/metabolismo
3.
Cir Esp ; 2023 May 29.
Artículo en Español | MEDLINE | ID: mdl-38620103

RESUMEN

In the more than 2 years since its emergence, the SARS-CoV-2 pandemic has prompted important changes in healthcare systems and their organization. The aim of this study is to determine the implications in specialized thoracic surgery training as well as the repercussions on thoracic surgery residents. With this objective, the Spanish Society of Thoracic Surgery has conducted a survey among all its trainees and those who had finished their residency during the last 3 years. It consisted of 24 multiple-answer closed questions about the impact of the pandemic on their services, their training, and their personal experience. The response rate was 42% (52 out of a target population of 120). The effect of the pandemic on thoracic surgery services was high or extreme according to 78.8% of the participants. Academic activities were completely cancelled in 42.3% of the cases, and 57.7% of the respondents were required to treat hospitalized COVID patients (25% part-time, and 32.7% full-time). More than 80% of the survey participants believed that changes during the pandemic negatively affected their training, and 36.5% would prefer to extend their training period. In sum, we observe how the pandemic has had deep negative effects on specialized training in thoracic surgery in Spain.

4.
Plant J ; 108(1): 197-218, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34309112

RESUMEN

Plant defense against melon necrotic spot virus (MNSV) is triggered by the viral auxiliary replicase p29 that is targeted to mitochondrial membranes causing morphological alterations, oxidative burst and necrosis. Here we show that MNSV coat protein (CP) was also targeted to mitochondria and mitochondrial-derived replication complexes [viral replication factories or complex (VRC)], in close association with p29, in addition to chloroplasts. CP import resulted in the cleavage of the R/arm domain previously implicated in genome binding during encapsidation and RNA silencing suppression (RSS). We also show that CP organelle import inhibition enhanced RSS activity, CP accumulation and VRC biogenesis but resulted in inhibition of systemic spreading, indicating that MNSV whole-plant infection requires CP organelle import. We hypothesize that to alleviate the p29 impact on host physiology, MNSV could moderate its replication and p29 accumulation by regulating CP RSS activity through organelle targeting and, consequently, eluding early-triggered antiviral response. Cellular and molecular events also suggested that S/P domains, which correspond to processed CP in chloroplast stroma or mitochondrion matrix, could mitigate host response inhibiting p29-induced necrosis. S/P deletion mainly resulted in a precarious balance between defense and counter-defense responses, generating either cytopathic alterations and MNSV cell-to-cell movement restriction or some degree of local movement. In addition, local necrosis and defense responses were dampened when RSS activity but not S/P organelle targeting was affected. Based on a robust biochemical and cellular analysis, we established that the mitochondrial and chloroplast dual targeting of MNSV CP profoundly impacts the viral infection cycle.


Asunto(s)
Proteínas de la Cápside/metabolismo , Cucurbitaceae/virología , Enfermedades de las Plantas/virología , Tombusviridae/fisiología , Proteínas de la Cápside/genética , Núcleo Celular/metabolismo , Cloroplastos/metabolismo , Cucurbitaceae/genética , Cucurbitaceae/fisiología , Genes Reporteros , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Mutación , Estrés Oxidativo , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Hojas de la Planta/virología , Transporte de Proteínas , Interferencia de ARN , Nicotiana/genética , Nicotiana/fisiología , Tombusviridae/genética , Tombusviridae/patogenicidad , Tropismo Viral , Replicación Viral
5.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36292994

RESUMEN

In the diatom Phaeodactylum tricornutum, iron limitation promotes a decrease in the content of photosystem II, as determined by measurements of oxygen-evolving activity, thermoluminescence, chlorophyll fluorescence analyses and protein quantification methods. Thermoluminescence experiments also indicate that iron limitation induces subtle changes in the energetics of the recombination reaction between reduced QB and the S2/S3 states of the water-splitting machinery. However, electron transfer from QA to QB, involving non-heme iron, seems not to be significantly inhibited. Moreover, iron deficiency promotes a severe decrease in the content of the extrinsic PsbV/cytochrome c550 subunit of photosystem II, which appears in eukaryotic algae from the red photosynthetic lineage (including diatoms) but is absent in green algae and plants. The decline in the content of cytochrome c550 under iron-limiting conditions is accompanied by a decrease in the binding of this protein to photosystem II, and also of the extrinsic PsbO subunit. We propose that the lack of cytochrome c550, induced by iron deficiency, specifically affects the binding of other extrinsic subunits of photosystem II, as previously described in cyanobacterial PsbV mutants.


Asunto(s)
Diatomeas , Deficiencias de Hierro , Humanos , Complejo de Proteína del Fotosistema II/metabolismo , Diatomeas/metabolismo , Citocromos c/metabolismo , Clorofila/metabolismo , Oxígeno/metabolismo , Hierro/metabolismo , Agua/metabolismo
6.
Plant Cell Physiol ; 62(7): 1082-1093, 2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33772595

RESUMEN

In cyanobacteria and most green algae of the eukaryotic green lineage, the copper-protein plastocyanin (Pc) alternatively replaces the heme-protein cytochrome c6 (Cc6) as the soluble electron carrier from cytochrome f (Cf) to photosystem I (PSI). The functional and structural equivalence of 'green' Pc and Cc6 has been well established, representing an example of convergent evolution of two unrelated proteins. However, plants only produce Pc, despite having evolved from green algae. On the other hand, Cc6 is the only soluble donor available in most species of the red lineage of photosynthetic organisms, which includes, among others, red algae and diatoms. Interestingly, Pc genes have been identified in oceanic diatoms, probably acquired by horizontal gene transfer from green algae. However, the mechanisms that regulate the expression of a functional Pc in diatoms are still unclear. In the green eukaryotic lineage, the transfer of electrons from Cf to PSI has been characterized in depth. The conclusion is that in the green lineage, this process involves strong electrostatic interactions between partners, which ensure a high affinity and an efficient electron transfer (ET) at the cost of limiting the turnover of the process. In the red lineage, recent kinetic and structural modeling data suggest a different strategy, based on weaker electrostatic interactions between partners, with lower affinity and less efficient ET, but favoring instead the protein exchange and the turnover of the process. Finally, in diatoms the interaction of the acquired green-type Pc with both Cf and PSI may not yet be optimized.


Asunto(s)
Chlorophyta/metabolismo , Cianobacterias/metabolismo , Citocromos f/metabolismo , Transporte de Electrón , Evolución Molecular , Complejo de Proteína del Fotosistema I/metabolismo , Citocromos f/química , Cinética , Simulación del Acoplamiento Molecular , Complejo de Proteína del Fotosistema I/química , Estructura Terciaria de Proteína
7.
Physiol Plant ; 171(2): 277-290, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33247466

RESUMEN

We have investigated if the heterologous expression of a functional green alga plastocyanin in the diatom Phaeodactylum tricornutum can improve photosynthetic activity and cell growth. Previous in vitro assays showed that a single-mutant of the plastocyanin from the green algae Chlamydomonas reinhardtii is effective in reducing P. tricornutum photosystem I. In this study, in vivo assays with P. tricornutum strains expressing this plastocyanin indicate that even the relatively low intracellular concentrations of holo-plastocyanin detected (≈4 µM) are enough to promote an increased growth (up to 60%) under iron-deficient conditions as compared with the WT strain, measured as higher cell densities, content in pigments and active photosystem I, global photosynthetic rates per cell, and even cell volume. In addition, the presence of plastocyanin as an additional photosynthetic electron carrier seems to decrease the over-reduction of the plastoquinone pool. Consequently, it promotes an improvement in the maximum quantum yield of both photosystem II and I, together with a decrease in the acceptor side photoinhibition of photosystem II-also associated to a reduced oxidative stress-a decrease in the peroxidation of membrane lipids in the choroplast, and a lower degree of limitation on the donor side of photosystem I. Thus the heterologous plastocyanin appears to act as a functional electron carrier, alternative to the native cytochrome c6 , under iron-limiting conditions.


Asunto(s)
Diatomeas , Plastocianina , Diatomeas/genética , Diatomeas/metabolismo , Transporte de Electrón , Hierro/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema I/metabolismo , Plastocianina/metabolismo
8.
Mol Plant Microbe Interact ; 33(8): 1040-1045, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32314946

RESUMEN

Cyanobacteria are phototrophic microorganisms able to establish nitrogen-fixing symbiotic associations with representatives of all four of the major phylogenetic divisions of terrestrial plants. Despite increasing knowledge on the beneficial effects of cyanobacteria in rice fields, the information about the interaction between these microorganisms and rice at the molecular and structural levels is still limited. We have used the model nitrogen-fixing cyanobacterium Nostoc punctiforme to promote a long-term stable endophytic association with rice. Inoculation with this strain of hydroponic cultures of rice produces a fast adherence of the cyanobacterium to rice roots. At longer times, cyanobacterial growth in the proximity of the roots increased until reaching a plateau. This latter phase coincides with the intracellular colonization of the root epidermis and exodermis. Structural analysis of the roots revealed that the cyanobacterium use an apoplastic route to colonize the plant cells. Moreover, plant roots inoculated with N. punctiforme show both the presence of heterocysts and nitrogenase activity, resulting in the promotion of plant growth under nitrogen deficiency, thus providing benefits for the plant.


Asunto(s)
Nostoc/fisiología , Oryza/microbiología , Simbiosis , Endófitos/fisiología , Fijación del Nitrógeno , Filogenia
9.
Physiol Plant ; 166(1): 199-210, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30499233

RESUMEN

Cytochrome c550 is an extrinsic component in the luminal side of photosystem II (PSII) in cyanobacteria, as well as in eukaryotic algae from the red photosynthetic lineage including, among others, diatoms. We have established that cytochrome c550 from the diatom Phaeodactylum tricornutum can be obtained as a complete protein from the membrane fraction of the alga, although a C-terminal truncated form is purified from the soluble fractions of this diatom as well as from other eukaryotic algae. Eukaryotic cytochromes c550 show distinctive electrostatic features as compared with cyanobacterial cytochrome c550 . In addition, co-immunoseparation and mass spectrometry experiments, as well as immunoelectron microscopy analyses, indicate that although cytochrome c550 from P. tricornutum is mainly located in the thylakoid domain of the chloroplast - where it interacts with PSII - , it can also be found in the chloroplast pyrenoid, related with proteins linked to the CO2 concentrating mechanism and assimilation. These results thus suggest new alternative functions of this heme protein in eukaryotes.


Asunto(s)
Grupo Citocromo c/metabolismo , Diatomeas/metabolismo , Cloroplastos/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo
10.
Cereb Cortex ; 28(1): 307-322, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29121220

RESUMEN

The vast majority of neurons within the striatum are GABAergic medium spiny neurons (MSNs), which receive glutamatergic input from the cortex and thalamus, and form two major efferent pathways: the direct pathway, expressing dopamine D1 receptor (D1R-MSNs), and the indirect pathway, expressing dopamine D2 receptor (D2R-MSNs). While molecular mechanisms of MSN degeneration have been identified in animal models of striatal damage, the molecular factors that dictate a selective vulnerability of D1R-MSNs or D2R-MSNs remain unknown. Here, we combined genetic, chemogenetic, and pharmacological strategies with behavioral and neurochemical analyses, and show that the pool of cannabinoid CB1 receptor (CB1R) located on corticostriatal terminals efficiently safeguards D1R-MSNs, but not D2R-MSNs, from different insults. This cell-specific response relies on the regulation of glutamatergic signaling, and is independent from the CB1R-dependent control of astroglial activity in the striatum. These findings define cortical CB1R as a pivotal synaptic player in dictating a differential vulnerability of D1R-MSNs versus D2R-MSNs, and increase our understanding of the role of coordinated cannabinergic-glutamatergic signaling in establishing corticostriatal circuits and its dysregulation in neurodegenerative diseases.


Asunto(s)
Corteza Cerebral/metabolismo , Cuerpo Estriado/metabolismo , Neuronas/metabolismo , Receptor Cannabinoide CB1/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Animales , Astrocitos/citología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Cuerpo Estriado/citología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Vectores Genéticos , Ácido Glutámico/metabolismo , Humanos , Proteína Huntingtina/administración & dosificación , Proteína Huntingtina/genética , Proteína Huntingtina/toxicidad , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Masculino , Ratones Transgénicos , Vías Nerviosas/citología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/patología , Receptor Cannabinoide CB1/genética , Transmisión Sináptica/fisiología
11.
Plant Cell Physiol ; 58(2): 256-265, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28007969

RESUMEN

All known cyanobacteria contain Cyt c6, a small soluble electron carrier protein whose main function is to transfer electrons from the Cyt b6f complex to PSI, although it is also involved in respiration. We have previously described a second isoform of this protein, the Cyt c6-like, whose function remains unknown. Here we describe a third isoform of Cyt c6 (here called Cytc6-3), which is only found in heterocyst-forming filamentous cyanobacteria. Cyt c6-3 is expressed in vegetative cells but is specifically repressed in heterocysts cells under diazotrophic growth conditions. Although there is a close structural similarity between Cyt c6-3 and Cyt c6 related to the general protein folding, Cyt c6-3 presents differential electrostatic surface features as compared with Cyt c6, its expression is not copper dependent and has a low reactivity towards PSI. According to the different expression pattern, functional reactivity and structural properties, Cyt c6-3 has to play an as yet to be defined regulatory role related to heterocyst differentiation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cianobacterias/metabolismo , Isoformas de Proteínas/metabolismo , Transporte de Electrón/fisiología , Fotosíntesis/fisiología , Plastocianina/metabolismo
12.
J Gen Virol ; 98(6): 1161-1162, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28635587

RESUMEN

The Ophioviridae is a family of filamentous plant viruses, with single-stranded negative, and possibly ambisense, RNA genomes of 11.3-12.5 kb divided into 3-4 segments, each encapsidated separately. Virions are naked filamentous nucleocapsids, forming kinked circles of at least two different contour lengths. The sole genus, Ophiovirus, includes seven species. Four ophioviruses are soil-transmitted and their natural hosts include trees, shrubs, vegetables and bulbous or corm-forming ornamentals, both monocots and dicots. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Ophioviridae, which is available at http://www.ictv.global/report/ophioviridae.


Asunto(s)
Enfermedades de las Plantas/virología , Virus de Plantas/clasificación , Virus de Plantas/genética , Plantas/virología , Virus ARN/clasificación , Virus ARN/genética , Virus de Plantas/aislamiento & purificación , Virus ARN/aislamiento & purificación , Estructuras Virales
13.
Photosynth Res ; 133(1-3): 273-287, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28032235

RESUMEN

The photosynthetic cytochrome c 550 from the marine diatom Phaeodactylum tricornutum has been purified and characterized. Cytochrome c 550 is mostly obtained from the soluble cell extract in relatively large amounts. In addition, the protein appeared to be truncated in the last hydrophobic residues of the C-terminus, both in the soluble cytochrome c 550 and in the protein extracted from the membrane fraction, as deduced by mass spectrometry analysis and the comparison with the gene sequence. Interestingly, it has been described that the C-terminus of cytochrome c 550 forms a hydrophobic finger involved in the interaction with photosystem II in cyanobacteria. Cytochrome c 550 was almost absent in solubilized photosystem II complex samples, in contrast with the PsbO and Psb31 extrinsic subunits, thus suggesting a lower affinity of cytochrome c 550 for the photosystem II complex. Under iron-limiting conditions the amount of cytochrome c 550 decreases up to about 45% as compared to iron-replete cells, pointing to an iron-regulated synthesis. Oxidized cytochrome c 550 has been characterized using continuous wave EPR and pulse techniques, including HYSCORE, and the obtained results have been interpreted in terms of the electrostatic charge distribution in the surroundings of the heme centre.


Asunto(s)
Grupo Citocromo c/metabolismo , Diatomeas/metabolismo , Fotosíntesis , Secuencia de Aminoácidos , Grupo Citocromo c/química , Grupo Citocromo c/aislamiento & purificación , Espectroscopía de Resonancia por Spin del Electrón , Modelos Moleculares , Peso Molecular , Complejo de Proteína del Fotosistema II/metabolismo , Electricidad Estática
14.
Biochim Biophys Acta ; 1847(12): 1549-59, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26407632

RESUMEN

In the Phaeodactylum tricornutum alga, as in most diatoms, cytochrome c6 is the only electron donor to photosystem I, and thus they lack plastocyanin as an alternative electron carrier. We have investigated, by using laser-flash absorption spectroscopy, the electron transfer to Phaeodactylum photosystem I from plastocyanins from cyanobacteria, green algae and plants, as compared with its own cytochrome c6. Diatom photosystem I is able to effectively react with eukaryotic acidic plastocyanins, although with less efficiency than with Phaeodactylum cytochrome c6. This efficiency, however, increases in some green alga plastocyanin mutants mimicking the electrostatics of the interaction site on the diatom cytochrome. In addition, the structure of the transient electron transfer complex between cytochrome c6 and photosystem I from Phaeodactylum has been analyzed by computational docking and compared to that of green lineage and mixed systems. Taking together, the results explain why the Phaeodactylum system shows a lower efficiency than the green systems, both in the formation of the properly arranged [cytochrome c6-photosystem I] complex and in the electron transfer itself.


Asunto(s)
Citocromos c6/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Plastocianina/metabolismo , Estramenopilos/metabolismo , Citocromos c6/química , Cinética , Simulación del Acoplamiento Molecular , Fotosíntesis , Complejo de Proteína del Fotosistema I/química , Plastocianina/química , Unión Proteica , Estramenopilos/fisiología
15.
Mol Cell Proteomics ; 13(6): 1439-56, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24643968

RESUMEN

Since the first description of apoptosis four decades ago, great efforts have been made to elucidate, both in vivo and in vitro, the molecular mechanisms involved in its regulation. Although the role of cytochrome c during apoptosis is well established, relatively little is known about its participation in signaling pathways in vivo due to its essential role during respiration. To obtain a better understanding of the role of cytochrome c in the onset of apoptosis, we used a proteomic approach based on affinity chromatography with cytochrome c as bait in this study. In this approach, novel cytochrome c interaction partners were identified whose in vivo interaction and cellular localization were facilitated through bimolecular fluorescence complementation. Modeling of the complex interface between cytochrome c and its counterparts indicated the involvement of the surface surrounding the heme crevice of cytochrome c, in agreement with the vast majority of known redox adducts of cytochrome c. However, in contrast to the high turnover rate of the mitochondrial cytochrome c redox adducts, those occurring under apoptosis led to the formation of stable nucleo-cytoplasmic ensembles, as inferred mainly from surface plasmon resonance and nuclear magnetic resonance measurements, which permitted us to corroborate the formation of such complexes in vitro. The results obtained suggest that human cytochrome c interacts with pro-survival, anti-apoptotic proteins following its release into the cytoplasm. Thus, cytochrome c may interfere with cell survival pathways and unlock apoptosis in order to prevent the spatial and temporal coexistence of antagonist signals.


Asunto(s)
Apoptosis/genética , Citocromos c/biosíntesis , Citocromos c/química , Proteómica , Caspasa 3/metabolismo , Supervivencia Celular/genética , Cristalografía por Rayos X , Citocromos c/metabolismo , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Transducción de Señal/genética
16.
Plant J ; 77(6): 863-79, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24438546

RESUMEN

Viral movement proteins exploit host endomembranes and the cytoskeleton to move within the cell via routes that, in some cases, are dependent on the secretory pathway. For example, melon necrotic spot virus p7B, a type II transmembrane protein, leaves the endoplasmic reticulum (ER) through the COPII-dependent Golgi pathway to reach the plasmodesmata. Here we investigated the sequence requirements and putative mechanisms governing p7B transport through the early secretory pathway. Deletion of either the cytoplasmic N-terminal region (CR) or the luminal C-terminal region (LR) led to ER retention, suggesting that they are both essential for ER export. Through alanine-scanning mutagenesis, we identified residues in the CR and LR that are critical for both ER export and for viral cell-to-cell movement. Within the CR, alanine substitution of aspartic and proline residues in the DSSP ß-turn motif (D7 AP10 A) led to movement of discrete structures along the cortical ER in an actin-dependent manner. In contrast, alanine substitution of a lysine residue in the LR (K49 A) resulted in a homogenous ER distribution of the movement protein and inhibition of ER-Golgi traffic. Moreover, the ability of p7B to recruit Sar1 to the ER membrane is lost in the D7 AP10 A mutant, but enhanced in the K49 A mutant. In addition, fluorescence recovery after photobleaching revealed that K49 A but not D7 AP10 A dramatically diminished protein lateral mobility. From these data, we propose a model whereby the LR directs actin-dependent mobility toward the cortical ER, where the cytoplasmic DSSP ß-turn favors assembly of COPII vesicles for export of p7B from the ER.


Asunto(s)
Cucumis melo/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Virus de Plantas/fisiología , Secuencia de Aminoácidos , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Cucumis melo/citología , Cucumis melo/genética , Citoplasma/metabolismo , Genes Reporteros , Aparato de Golgi/metabolismo , Proteínas de la Membrana/química , Modelos Biológicos , Datos de Secuencia Molecular , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Movimiento Viral en Plantas/genética , Plasmodesmos/metabolismo , Estructura Terciaria de Proteína , Transporte de Proteínas , Vías Secretoras , Alineación de Secuencia , Eliminación de Secuencia , Proteínas Virales/química , Proteínas Virales/metabolismo
17.
Biochim Biophys Acta ; 1837(2): 296-305, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24321506

RESUMEN

Ferredoxin-NADP(+) reductase (FNR) is the structural prototype of a family of FAD-containing reductases that catalyze electron transfer between low potential proteins and NAD(P)(+)/H, and that display a two-domain arrangement with an open cavity at their interface. The inner part of this cavity accommodates the reacting atoms during catalysis. Loops at its edge are highly conserved among plastidic FNRs, suggesting that they might contribute to both flavin stabilization and competent disposition of substrates. Here we pay attention to two of these loops in Anabaena FNR. The first is a sheet-loop-sheet motif, loop102-114, that allocates the FAD adenosine. It was thought to determine the extended FAD conformation, and, indirectly, to modulate isoalloxazine electronic properties, partners binding, catalytic efficiency and even coenzyme specificity. The second, loop261-269, contains key residues for the allocation of partners and coenzyme, including two glutamates, Glu267 and Glu268, proposed as candidates to facilitate the key displacement of the C-terminal tyrosine (Tyr303) from its stacking against the isoalloxazine ring during the catalytic cycle. Our data indicate that the main function of loop102-114 is to provide the inter-domain cavity with flexibility to accommodate protein partners and to guide the coenzyme to the catalytic site, while the extended conformation of FAD must be induced by other protein determinants. Glu267 and Glu268 appear to assist the conformational changes that occur in the loop261-269 during productive coenzyme binding, but their contribution to Tyr303 displacement is minor than expected. Additionally, loop261-269 appears a determinant to ensure reversibility in photosynthetic FNRs.


Asunto(s)
Anabaena/enzimología , Ferredoxina-NADP Reductasa/química , Ferredoxina-NADP Reductasa/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Biocatálisis , Coenzimas/metabolismo , Cristalografía por Rayos X , Transporte de Electrón , Ferredoxinas/metabolismo , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Espectrofotometría Ultravioleta , Relación Estructura-Actividad , Especificidad por Sustrato
18.
Biochim Biophys Acta ; 1837(2): 251-63, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24200908

RESUMEN

Ferredoxin-nicotinamide-adenine dinucleotide phosphate (NADP(+)) reductase (FNR) catalyses the production of reduced nicotinamide-adenine dinucleotide phosphate (NADPH) in photosynthetic organisms, where its flavin adenine dinucleotide (FAD) cofactor takes two electrons from two reduced ferredoxin (Fd) molecules in two sequential steps, and transfers them to NADP(+) in a single hydride transfer (HT) step. Despite the good knowledge of this catalytic machinery, additional roles can still be envisaged for already reported key residues, and new features are added to residues not previously identified as having a particular role in the mechanism. Here, we analyse for the first time the role of Ser59 in Anabaena FNR, a residue suggested by recent theoretical simulations as putatively involved in competent binding of the coenzyme in the active site by cooperating with Ser80. We show that Ser59 indirectly modulates the geometry of the active site, the interaction with substrates and the electronic properties of the isoalloxazine ring, and in consequence the electron transfer (ET) and HT processes. Additionally, we revise the role of Tyr79 and Ser80, previously investigated in homologous enzymes from plants. Our results probe that the active site of FNR is tuned by a H-bond network that involves the side-chains of these residues and that results to critical optimal substrate binding, exchange of electrons and, particularly, competent disposition of the C4n (hydride acceptor/donor) of the nicotinamide moiety of the coenzyme during the reversible HT event.


Asunto(s)
Anabaena/enzimología , Biocatálisis , Dominio Catalítico , Ferredoxina-NADP Reductasa/metabolismo , Secuencia de Aminoácidos , Aminoácidos , Ferredoxina-NADP Reductasa/química , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oxidación-Reducción , Análisis Espectral , Temperatura
19.
Brain ; 137(Pt 12): 3300-18, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25270989

RESUMEN

Autophagy, the major lysosomal pathway for the turnover of intracellular organelles is markedly impaired in neurons in Alzheimer's disease and Alzheimer mouse models. We have previously reported that severe lysosomal and amyloid neuropathology and associated cognitive deficits in the TgCRND8 Alzheimer mouse model can be ameliorated by restoring lysosomal proteolytic capacity and autophagy flux via genetic deletion of the lysosomal protease inhibitor, cystatin B. Here we present evidence that macroautophagy is a significant pathway for lipid turnover, which is defective in TgCRND8 brain where lipids accumulate as membranous structures and lipid droplets within giant neuronal autolysosomes. Levels of multiple lipid species including several sphingolipids (ceramide, ganglioside GM3, GM2, GM1, GD3 and GD1a), cardiolipin, cholesterol and cholesteryl esters are elevated in autophagic vacuole fractions and lysosomes isolated from TgCRND8 brain. Lipids are localized in autophagosomes and autolysosomes by double immunofluorescence analyses in wild-type mice and colocalization is increased in TgCRND8 mice where abnormally abundant GM2 ganglioside-positive granules are detected in neuronal lysosomes. Cystatin B deletion in TgCRND8 significantly reduces the number of GM2-positive granules and lowers the levels of GM2 and GM3 in lysosomes, decreases lipofuscin-related autofluorescence, and eliminates giant lipid-containing autolysosomes while increasing numbers of normal-sized autolysosomes/lysosomes with reduced content of undigested components. These findings have identified macroautophagy as a previously unappreciated route for delivering membrane lipids to lysosomes for turnover, a function that has so far been considered to be mediated exclusively through the endocytic pathway, and revealed that autophagic-lysosomal dysfunction in TgCRND8 brain impedes lysosomal turnover of lipids as well as proteins. The amelioration of lipid accumulation in TgCRND8 by removing cystatin B inhibition on lysosomal proteases suggests that enhancing lysosomal proteolysis improves the overall environment of the lysosome and its clearance functions, which may be possibly relevant to a broader range of lysosomal disorders beyond Alzheimer's disease.


Asunto(s)
Autofagia/fisiología , Encéfalo/metabolismo , Metabolismo de los Lípidos/fisiología , Lisosomas/metabolismo , Enfermedad de Alzheimer/patología , Amiloide/metabolismo , Animales , Autofagia/genética , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Proteolisis
20.
Mol Cell Proteomics ; 12(12): 3666-76, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24019145

RESUMEN

Programmed cell death is an event displayed by many different organisms along the evolutionary scale. In plants, programmed cell death is necessary for development and the hypersensitive response to stress or pathogenic infection. A common feature in programmed cell death across organisms is the translocation of cytochrome c from mitochondria to the cytosol. To better understand the role of cytochrome c in the onset of programmed cell death in plants, a proteomic approach was developed based on affinity chromatography and using Arabidopsis thaliana cytochrome c as bait. Using this approach, ten putative new cytochrome c partners were identified. Of these putative partners and as indicated by bimolecular fluorescence complementation, nine of them bind the heme protein in plant protoplasts and human cells as a heterologous system. The in vitro interaction between cytochrome c and such soluble cytochrome c-targets was further corroborated using surface plasmon resonance. Taken together, the results obtained in the study indicate that Arabidopsis thaliana cytochrome c interacts with several distinct proteins involved in protein folding, translational regulation, cell death, oxidative stress, DNA damage, energetic metabolism, and mRNA metabolism. Interestingly, some of these novel Arabidopsis thaliana cytochrome c-targets are closely related to those for Homo sapiens cytochrome c (Martínez-Fábregas et al., unpublished). These results indicate that the evolutionarily well-conserved cytosolic cytochrome c, appearing in organisms from plants to mammals, interacts with a wide range of targets on programmed cell death. The data have been deposited to the ProteomeXchange with identifier PXD000280.


Asunto(s)
Apoptosis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citocromos c/metabolismo , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cromatografía de Afinidad , Citocromos c/genética , Citosol/química , Citosol/metabolismo , Metabolismo Energético , Evolución Molecular , Células HEK293 , Humanos , Espectrometría de Masas , Mitocondrias/química , Mitocondrias/metabolismo , Anotación de Secuencia Molecular , Estrés Oxidativo , Unión Proteica , Mapeo de Interacción de Proteínas , Transporte de Proteínas , Protoplastos/química , Protoplastos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA