Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Pathol ; 261(3): 335-348, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37650293

RESUMEN

FGF15 and its human orthologue, FGF19, are members of the endocrine FGF family and are secreted by ileal enterocytes in response to bile acids. FGF15/19 mainly targets the liver, but recent studies indicate that it also regulates skeletal muscle mass and adipose tissue plasticity. The aim of this study was to determine the role(s) of the enterokine FGF15/19 during the development of cardiac hypertrophy. Studies in a cohort of humans suffering from heart failure showed increased circulating levels of FGF19 compared with control individuals. We found that mice lacking FGF15 did not develop cardiac hypertrophy in response to three different pathophysiological stimuli (high-fat diet, isoproterenol, or cold exposure). The heart weight/tibia length ratio and the cardiomyocyte area (as measures of cardiac hypertrophy development) under hypertrophy-inducing conditions were lower in Fgf15-null mice than in wild-type mice, whereas the levels of the cardiac damage marker atrial natriuretic factor (Nppa) were up-regulated. Echocardiographic measurements showed similar results. Moreover, the genes involved in fatty acid metabolism were down-regulated in Fgf15-null mice. Conversely, experimental increases in FGF15 induced cardiac hypertrophy in vivo, without changes in Nppa and up-regulation of metabolic genes. Finally, in vitro studies using cardiomyocytes showed that FGF19 had a direct effect on these cells promoting hypertrophy. We have identified herein an inter-organ signaling pathway that runs from the gut to the heart, acts through the enterokine FGF15/19, and is involved in cardiac hypertrophy development and regulation of fatty acid metabolism in the myocardium. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.

2.
Int J Mol Sci ; 21(24)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322406

RESUMEN

In the heart, inhibition of the insulin cascade following lipid overload is strongly associated with contractile dysfunction. The translocation of fatty acid transporter CD36 (SR-B2) from intracellular stores to the cell surface is a hallmark event in the lipid-overloaded heart, feeding forward to intracellular lipid accumulation. Yet, the molecular mechanisms by which intracellularly arrived lipids induce insulin resistance is ill-understood. Bioactive lipid metabolites (diacyl-glycerols, ceramides) are contributing factors but fail to correlate with the degree of cardiac insulin resistance in diabetic humans. This leaves room for other lipid-induced mechanisms involved in lipid-induced insulin resistance, including protein palmitoylation. Protein palmitoylation encompasses the reversible covalent attachment of palmitate moieties to cysteine residues and is governed by protein acyl-transferases and thioesterases. The function of palmitoylation is to provide proteins with proper spatiotemporal localization, thereby securing the correct unwinding of signaling pathways. In this review, we provide examples of palmitoylations of individual signaling proteins to discuss the emerging role of protein palmitoylation as a modulator of the insulin signaling cascade. Second, we speculate how protein hyper-palmitoylations (including that of CD36), as they occur during lipid oversupply, may lead to insulin resistance. Finally, we conclude that the protein palmitoylation machinery may offer novel targets to fight lipid-induced cardiomyopathy.


Asunto(s)
Metabolismo de los Lípidos/fisiología , Palmitatos/metabolismo , Animales , Humanos , Resistencia a la Insulina/fisiología , Lipoilación/fisiología , Miocardio/metabolismo , Transducción de Señal/fisiología
3.
Front Endocrinol (Lausanne) ; 15: 1325230, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38818508

RESUMEN

Introduction: Polycystic ovary syndrome (PCOS) is often associated with metabolic-associated fatty liver disease (MAFLD). MAFLD has been associated with altered hepatic function, systemic dysmetabolism, and abnormal circulating levels of signaling molecules called organokines. Here, we assessed the effects of two randomized treatments on a set of organokines in adolescent girls with PCOS and without obesity, and report the associations with circulating biomarkers of liver damage, which were assessed longitudinally in the aforementioned studies as safety markers. Materials and methods: Liver enzymes [aspartate aminotransferase (AST), alanine aminotransferase (ALT), and gamma-glutamyl transferase (GGT)] were assessed as safety markers in previous randomized pilot studies comparing the effects of an oral contraceptive (OC) with those of a low-dose combination of spironolactone-pioglitazone-metformin (spiomet) for 1 year. As a post hoc endpoint, the organokines fibroblast growth factor-21 (FGF21), diazepam-binding protein-1 (DBI), and meteorin-like protein (METRNL) were assessed by ELISA after 6 months of OC (N = 26) or spiomet (N = 28). Auxological, endocrine-metabolic, body composition (using DXA), and abdominal fat partitioning (using MRI) were also evaluated. Healthy, age-matched adolescent girls (N = 17) served as controls. Results: Circulating ALT and GGT levels increased during OC treatment and returned to baseline concentrations in the post-treatment phase; in contrast, spiomet treatment elicited no detectable changes in ALT and GGT concentrations. In relation to organokines after 6 months of treatment, (1) FGF21 levels were significantly higher in PCOS adolescents than in control girls; (2) DBI levels were lower in OC-treated girls than in controls and spiomet-treated girls; and (3) no differences were observed in METRNL concentrations between PCOS girls and controls. Serum ALT and GGT levels were directly correlated with circulating METRNL levels only in OC-treated girls (R = 0.449, P = 0.036 and R = 0.552, P = 0.004, respectively). Conclusion: The on-treatment increase in ALT and GGT levels occurring only in OC-treated girls is associated with circulating METRNL levels, suggesting enhanced METRNL synthesis as a reaction to the hepatic changes elicited by OC treatment. Clinical Trial Registration: https://doi.org, identifiers 10.1186/ISRCTN29234515, 10.1186/ISRCTN11062950.


Asunto(s)
Alanina Transaminasa , Factores de Crecimiento de Fibroblastos , Hígado , Metformina , Síndrome del Ovario Poliquístico , Humanos , Femenino , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/sangre , Adolescente , Metformina/uso terapéutico , Factores de Crecimiento de Fibroblastos/sangre , Factores de Crecimiento de Fibroblastos/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Alanina Transaminasa/sangre , Alanina Transaminasa/metabolismo , Pioglitazona/uso terapéutico , Biomarcadores/sangre , Espironolactona/uso terapéutico , Aspartato Aminotransferasas/sangre , Aspartato Aminotransferasas/metabolismo , gamma-Glutamiltransferasa/sangre , gamma-Glutamiltransferasa/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Anticonceptivos Orales/efectos adversos , Anticonceptivos Orales/uso terapéutico , Anticonceptivos Orales/administración & dosificación , Hipoglucemiantes/uso terapéutico
4.
Front Endocrinol (Lausanne) ; 14: 1136245, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36936161

RESUMEN

Introduction: Meteorin-like (METRNL) is a hormonal factor released by several tissues, including thermogenically active brown and beige adipose tissues. It exerts multiple beneficial effects on metabolic and cardiovascular systems in experimental models. However, the potential role of METRNL as brown adipokine in humans has not been investigated previously, particularly in relation to the metabolic adaptations taking place in early life, when brown adipose tissue (BAT) is particularly abundant. Methods and materials: METRNL levels, as well as body composition (DXA) and circulating endocrine-metabolic variables, were assessed longitudinally in a cohort of infants at birth, and at ages 4 and 12 months. BAT activity was measured by infrared thermography at age 12 months. METRNL levels were also determined cross-sectionally in adults; METRNL gene expression (qRT-PCR) was assessed in BAT and liver samples from neonates, and in adipose tissue and liver samples form adults. Simpson-Golabi-Behmel Syndrome (SGBS) adipose cells were thermogenically activated using cAMP, and METRNL gene expression and METRNL protein released were analysed. Results: Serum METRNL levels were high at birth and declined across the first year of life albeit remaining higher than in adulthood. At age 4 and 12 months, METRNL levels correlated positively with circulating C-X-C motif chemokine ligand 14 (CXCL14), a chemokine released by thermogenically active BAT, but not with parameters of adiposity or metabolic status. METRNL levels also correlated positively with infrared thermography-estimated posterior-cervical BAT activity in girls aged 12 months. Gene expression analysis indicated high levels of METRNL mRNA in neonatal BAT. Thermogenic stimulus of brown/beige adipocytes led to a significant increase of METRNL gene expression and METRN protein release to the cell culture medium. Conclusion: Circulating METRNL levels are high in the first year of life and correlate with indices of BAT activity and with levels of an established brown adipokine such as CXCL14. These data, in addition with the high expression of METRNL in neonatal BAT and in thermogenically-stimulated brown/beige adipocytes, suggest that METRNL is actively secreted by BAT and may be a circulating biomarker of BAT activity in early life.


Asunto(s)
Adipocitos Marrones , Tejido Adiposo Pardo , Adulto , Femenino , Recién Nacido , Lactante , Humanos , Tejido Adiposo Pardo/metabolismo , Adipocitos Marrones/metabolismo , Obesidad/metabolismo , Tejido Adiposo Beige/metabolismo , Quimiocinas CXC/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA