RESUMEN
Large-scale next-generation sequencing (NGS) studies revealed extensive genetic heterogeneity, driving a highly variable clinical course of chronic lymphocytic leukaemia (CLL). The evolution of subclonal populations contributes to diverse therapy responses and disease refractoriness. Besides, the dynamics and impact of subpopulations before therapy initiation are not well understood. We examined changes in genomic defects in serial samples of 100 untreated CLL patients, spanning from indolent to aggressive disease. A comprehensive NGS panel LYNX, which provides targeted mutational analysis and genome-wide chromosomal defect assessment, was employed. We observed dynamic changes in the composition and/or proportion of genomic aberrations in most patients (62%). Clonal evolution of gene variants prevailed over the chromosomal alterations. Unsupervised clustering based on aberration dynamics revealed four groups of patients with different clinical behaviour. An adverse cluster was associated with fast progression and early therapy need, characterized by the expansion of TP53 defects, ATM mutations, and 18p- alongside dynamic SF3B1 mutations. Our results show that clonal evolution is active even without therapy pressure and that repeated genetic testing can be clinically relevant during long-term patient monitoring. Moreover, integrative NGS testing contributes to the consolidated evaluation of results and accurate assessment of individual patient prognosis.
Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Pronóstico , Mutación , Genómica , Secuenciación de Nucleótidos de Alto RendimientoRESUMEN
BACKGROUND: Telomeres are protective structures at chromosome ends which shorten gradually with increasing age. In chronic lymphocytic leukemia (CLL), short telomeres have been associated with unfavorable disease outcome, but the link between clonal evolution and telomere shortening remains unresolved. METHODS: We investigated relative telomere length (RTL) in a well-characterized cohort of 198 CLL patients by qPCR and focused in detail on a subgroup 26 patients who underwent clonal evolution of TP53 mutations (evolTP53). In the evolTP53 subgroup we explored factors influencing clonal evolution and corresponding changes in telomere length through measurements of telomerase expression, lymphocyte doubling time, and BCR signaling activity. RESULTS: At baseline, RTL of the evolTP53 patients was scattered across the entire RTL spectrum observed in our CLL cohort. RTL changed in the follow-up samples of 16/26 (62%) evolTP53 cases, inclining to reach intermediate RTL values, i.e., longer telomeres shortened compared to baseline while shorter ones prolonged. For the first time we show that TP53 clonal shifts are linked to RTL change, including unexpected RTL prolongation. We further investigated parameters associated with RTL changes. Unstable telomeres were significantly more frequent among younger patients (P = 0.032). Shorter telomeres were associated with decreased activity of the B-cell receptor signaling components p-ERK1/2, p-ZAP-70/SYK, and p-NFκB (P = 0.04, P = 0.01, and P = 0.02, respectively). CONCLUSIONS: Our study revealed that changes of telomere length reflect evolution in leukemic subclone proportion, and are associated with specific clinico-biological features of the explored cohort.
Asunto(s)
Evolución Clonal/genética , Leucemia Linfocítica Crónica de Células B/genética , Telómero/ultraestructura , Proteína p53 Supresora de Tumor/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Proteínas Proto-Oncogénicas c-bcr/metabolismo , Transducción de Señal , Telomerasa/genéticaRESUMEN
INTRODUCTION: BCR-ABL1-like acute lymphoblastic leukemia (ALL) is a high-risk disease with a complex genomic background. Though extensively studied, data on the frequency and mutual associations of present mutations are still incomplete in adult patients. This retrospective study aims to map the genomic landscape of B-other ALL in a cohort of adult patients with a focus on the BCR-ABL1-like ALL subtype. METHODS: We analyzed bone marrow and peripheral blood samples of adult B-other ALL patients treated consecutively at three major Czech teaching hospitals. Samples were analyzed by cytogenetic methods, gene expression profiling, multiplex ligation-dependent probe amplification (MLPA), and next-generation sequencing (NGS). RESULTS: Fifty-eight B-other ALL patients (not BCR-ABL1, KMT2A-rearranged, ETV6-RUNX1, TCF3-PBX1, or iAMP21) were included in the study. Median follow-up was 23.8 months. Samples from 33 patients were available for a gene expression analysis, 48.9% identified as BCR-ABL1-like ALL. Of the BCR-ABL1-like ALL cases, 18.8% harbored IGH-CRLF2 and 12.5% P2RY8-CRLF2 fusion gene. We observed a higher MRD failure rate in BCR-ABL1-like than in non-BCR-ABL1-like ALL patients after the induction treatment (50.0 vs. 13.3%, p=.05). There was a trend to worse progression-free and overall survival in the BCR-ABL1-like group, though not statistically significant. Deletions in IKZF1 gene were found in 31.3% of BCR-ABL1-like cases. Patients with concurrent IKZF1 and CDKN2A/B, PAX5 or PAR1 region deletions (IKZF1plus profile) had significantly worse progression-free survival than those with sole IKZF1 deletion or IKZF1 wild-type (p=.02). NGS analysis was performed in 54 patients and identified 99 short variants in TP53, JAK2, NRAS, PAX5, CREBBP, NF1, FLT3, ATM, KRAS, RUNX1, and other genes. Seventy-five of these gene variants have not yet been described in B-cell precursor ALL to date. CONCLUSION: This study widens existing knowledge of the BCR-ABL1-like and B-other ALL genomic landscape in the adult population, supports previous findings, and identifies a number of novel gene variants.
Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Adulto , Estudios de Cohortes , Perfilación de la Expresión Génica , Genómica , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Estudios RetrospectivosRESUMEN
Next-generation sequencing has revealed novel recurrent mutations in chronic lymphocytic leukemia, particularly in patients with aggressive disease. Here, we explored targeted re-sequencing as a novel strategy to assess the mutation status of genes with prognostic potential. To this end, we utilized HaloPlex targeted enrichment technology and designed a panel including nine genes: ATM, BIRC3, MYD88, NOTCH1, SF3B1 and TP53, which have been linked to the prognosis of chronic lymphocytic leukemia, and KLHL6, POT1 and XPO1, which are less characterized but were found to be recurrently mutated in various sequencing studies. A total of 188 chronic lymphocytic leukemia patients with poor prognostic features (unmutated IGHV, n=137; IGHV3-21 subset #2, n=51) were sequenced on the HiSeq 2000 and data were analyzed using well-established bioinformatics tools. Using a conservative cutoff of 10% for the mutant allele, we found that 114/180 (63%) patients carried at least one mutation, with mutations in ATM, BIRC3, NOTCH1, SF3B1 and TP53 accounting for 149/177 (84%) of all mutations. We selected 155 mutations for Sanger validation (variant allele frequency, 10-99%) and 93% (144/155) of mutations were confirmed; notably, all 11 discordant variants had a variant allele frequency between 11-27%, hence at the detection limit of conventional Sanger sequencing. Technical precision was assessed by repeating the entire HaloPlex procedure for 63 patients; concordance was found for 77/82 (94%) mutations. In summary, this study demonstrates that targeted next-generation sequencing is an accurate and reproducible technique potentially suitable for routine screening, eventually as a stand-alone test without the need for confirmation by Sanger sequencing.
Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Leucemia Linfocítica Crónica de Células B/diagnóstico , Mutación , Proteínas de Neoplasias/genética , Alelos , Expresión Génica , Frecuencia de los Genes , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/metabolismo , Leucemia Linfocítica Crónica de Células B/patología , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Proteínas de Neoplasias/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Pronóstico , Factores de Empalme de ARN , Receptor Notch1/genética , Receptor Notch1/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/genética , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
MicroRNA (miRNA) expression is deregulated in many tumors including chronic lymphocytic leukemia (CLL). Although the particular mechanism(s) responsible for their aberrant expression is not well characterized, the presence of mutations and single-nucleotide polymorphisms (SNPs) in miRNA genes, possibly affecting their secondary structure and expression, has been described. In CLL; however, the impact and frequency of such variations have yet to be elucidated. Using a custom resequencing microarray, we screened sequence variations in 109 cancer-related pre-miRNAs in 98 CLL patients. Additionally, the primary regions of miR-29b-2/29c and miR-16-1 were analyzed by Sanger sequencing in another cohort of 213 and 193 CLL patients, respectively. Altogether, we describe six novel miR-sequence variations and the presence of SNPs (n = 27), most of which changed the miR-secondary structure. Moreover, some of the identified SNPs have a significantly different frequency in CLL when compared with a control population. Additionally, we identified a novel variation in miR-16-1 that had not been described previously in CLL patients. We show that this variation affects the expression of mature miR-16-1. We also show that the expression of another miRNA with pathogenetic relevance for CLL, namely miR-29b-2, is influenced by the presence of a polymorphic insertion, which is more frequent in CLL than in a control population. Altogether, these data suggest that sequence variations may occur during CLL development and/or progression.
Asunto(s)
Variación Genética , Leucemia Linfocítica Crónica de Células B/genética , MicroARNs/genética , Adulto , Anciano , Alelos , Aberraciones Cromosómicas , Femenino , Regulación Leucémica de la Expresión Génica , Frecuencia de los Genes , Mutación de Línea Germinal , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Masculino , MicroARNs/química , Persona de Mediana Edad , Mutación , Conformación de Ácido Nucleico , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADNRESUMEN
Early identification of resistant cancer cells is currently a major challenge, as their expansion leads to refractoriness. To capture the dynamics of these cells, we made a comprehensive analysis of disease progression and treatment response in a chronic lymphocytic leukemia (CLL) patient using a combination of single-cell and bulk genomic methods. At diagnosis, the patient presented with unfavorable genetic markers, including notch receptor 1 (NOTCH1) mutation and loss(11q). The initial and subsequent treatment lines did not lead to a durable response and the patient developed refractory disease. Refractory CLL cells featured substantial dysregulation in B-cell phenotypic markers such as human leukocyte antigen (HLA) genes, immunoglobulin (IG) genes, CD19 molecule (CD19), membrane spanning 4-domains A1 (MS4A1; previously known as CD20), CD79a molecule (CD79A) and paired box 5 (PAX5), indicating B-cell de-differentiation and disease transformation. We described the clonal evolution and characterized in detail two cell populations that emerged during the refractory disease phase, differing in the presence of high genomic complexity. In addition, we successfully tracked the cells with high genomic complexity back to the time before treatment, where they formed a rare subpopulation. We have confirmed that single-cell RNA sequencing enables the characterization of refractory cells and the monitoring of their development over time.
Asunto(s)
Leucemia Linfocítica Crónica de Células B , Análisis de la Célula Individual , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Análisis de la Célula Individual/métodos , Resistencia a Antineoplásicos/genética , Análisis de Secuencia de ARN , MasculinoRESUMEN
ATM abnormalities are frequent in chronic lymphocytic leukemia and represent an important prognostic factor. Sole 11q deletion does not result in ATM inactivation by contrast to biallelic defects involving mutations. Therefore, the analysis of ATM mutations and their functional impact is crucial. In this study, we analyzed ATM mutations in predominantly high-risk patients using: i) resequencing microarray and direct sequencing; ii) Western blot for total ATM level; iii) functional test based on p21 gene induction after parallel treatment of leukemic cells with fludarabine and doxorubicin. ATM dysfunction leads to impaired p21 induction after doxorubicin exposure. We detected ATM mutation in 16% (22 of 140) of patients, and all mutated samples manifested demonstrable ATM defect (impaired p21 upregulation after doxorubicin and/or null protein level). Loss of ATM function in mutated samples was also evidenced through defective p53 pathway activation after ionizing radiation exposure. ATM mutation frequency was 34% in patients with 11q deletion, 4% in the TP53-defected group, and 8% in wild-type patients. Our functional test, convenient for routine use, showed high sensitivity (80%) and specificity (97%) for ATM mutations prediction. Only cells with ATM mutation, but not those with sole 11q deletion, were resistant to doxorubicin. As far as fludarabine is concerned, this difference was not observed. Interestingly, patients from both these groups experienced nearly identical time to first treatment. In conclusion, ATM mutations either alone or in combination with 11q deletion uniformly led to demonstrable ATM dysfunction in patients with chronic lymphocytic leukemia and mutation presence can be predicted by the functional test using doxorubicin.
Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Mutación/genética , Adulto , Anciano , Anciano de 80 o más Años , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/fisiología , Supervivencia Celular/fisiología , Deleción Cromosómica , Cromosomas Humanos Par 11/genética , Estudios de Cohortes , Femenino , Humanos , Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/patología , Masculino , Persona de Mediana Edad , Estudios RetrospectivosAsunto(s)
Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/genética , Receptor Notch1/genética , Proteína p53 Supresora de Tumor/genética , Alelos , Evolución Clonal/genética , Análisis Mutacional de ADN/métodos , Genotipo , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Análisis de la Célula Individual/métodosRESUMEN
Near-haploid acute lymphoblastic leukemia is rare subgroup of the disease, which is very important due to very poor prognosis and resistance to treatment including novel monoclonal antibodies and CAR-T therapy.
Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Leucemia Linfocítica Crónica de Células B/clasificación , Mutación , Acortamiento del Telómero , Estudios de Cohortes , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/mortalidad , Análisis de Secuencia de ADN , Análisis de Supervivencia , Telómero/ultraestructuraRESUMEN
Molecular profiling of tumor samples has acquired importance in cancer research, but currently also plays an important role in the clinical management of cancer patients. Rapid identification of genomic aberrations improves diagnosis, prognosis and effective therapy selection. This can be attributed mainly to the development of next-generation sequencing (NGS) methods, especially targeted DNA panels. Such panels enable a relatively inexpensive and rapid analysis of various aberrations with clinical impact specific to particular diagnoses. In this review, we discuss the experimental approaches and bioinformatic strategies available for the development of an NGS panel for a reliable analysis of selected biomarkers. Compliance with defined analytical steps is crucial to ensure accurate and reproducible results. In addition, a careful validation procedure has to be performed before the application of NGS targeted assays in routine clinical practice. With more focus on bioinformatics, we emphasize the need for thorough pipeline validation and management in relation to the particular experimental setting as an integral part of the NGS method establishment. A robust and reproducible bioinformatic analysis running on powerful machines is essential for proper detection of genomic variants in clinical settings since distinguishing between experimental noise and real biological variants is fundamental. This review summarizes state-of-the-art bioinformatic solutions for careful detection of the SNV/Indels and CNVs for targeted sequencing resulting in translation of sequencing data into clinically relevant information. Finally, we share our experience with the development of a custom targeted NGS panel for an integrated analysis of biomarkers in lymphoproliferative disorders.
RESUMEN
B-cell neoplasms represent a clinically heterogeneous group of hematologic malignancies with considerably diverse genomic architecture recently endorsed by next-generation sequencing (NGS) studies. Because multiple genetic defects have a potential or confirmed clinical impact, a tendency toward more comprehensive testing of diagnostic, prognostic, and predictive markers is desired. This study introduces the design, validation, and implementation of an integrative, custom-designed, capture-based NGS panel titled LYmphoid NeXt-generation sequencing (LYNX) for the analysis of standard and novel molecular markers in the most common lymphoid neoplasms (chronic lymphocytic leukemia, acute lymphoblastic leukemia, diffuse large B-cell lymphoma, follicular lymphoma, and mantle cell lymphoma). A single LYNX test provides the following: i) accurate detection of mutations in all coding exons and splice sites of 70 lymphoma-related genes with a sensitivity of 5% variant allele frequency, ii) reliable identification of large genome-wide (≥6 Mb) and recurrent chromosomal aberrations (≥300 kb) in at least 20% of the clonal cell fraction, iii) the assessment of immunoglobulin and T-cell receptor gene rearrangements, and iv) lymphoma-specific translocation detection. Dedicated bioinformatic pipelines were designed to detect all markers mentioned above. The LYNX panel represents a comprehensive, up-to-date tool suitable for routine testing of lymphoid neoplasms with research and clinical applicability. It allows a wide adoption of capture-based targeted NGS in clinical practice and personalized management of patients with lymphoproliferative diseases.
Asunto(s)
Biomarcadores de Tumor , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Leucemia Linfoide/diagnóstico , Leucemia Linfoide/genética , Linfoma/diagnóstico , Linfoma/genética , Aberraciones Cromosómicas , Biología Computacional/métodos , Variaciones en el Número de Copia de ADN , Variación Genética , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Mutación INDEL , Técnicas de Diagnóstico Molecular , Pronóstico , Translocación GenéticaAsunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/deficiencia , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/metabolismo , Estrés Oxidativo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Epistasis Genética , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Terapia Molecular Dirigida , Estrés Oxidativo/efectos de los fármacosRESUMEN
Recurrent mutations in splicing factor 3B subunit 1 (SF3B1) have been identified in several malignancies and are associated with an increased expression of 3' cryptic transcripts as a result of alternative branchpoint recognition. A large fraction of cryptic transcripts associated with SF3B1 mutations is expected to be sensitive for RNA degradation via nonsense-mediated mRNA decay (NMD). Several studies indicated alterations in various signaling pathways in SF3B1-mutated cells, including an impaired DNA damage response (DDR) in chronic lymphocytic leukemia (CLL). In this study, we investigated isogenic cell lines and treatment naïve primary CLL samples without any TP53 and/or ATM defect, and found no significant effects of SF3B1 mutations on the ATM/p53 response, phosphorylation of H2AX and sensitivity to fludarabine. Cryptic transcripts associated with SF3B1 mutation status were observed at relatively low levels compared to the canonical transcripts and were validated as target for mRNA degradation via NMD. Expression of cryptic transcripts increased after NMD inhibition. In conclusion, our results confirm involvement of NMD in the biological effects of SF3B1 mutations. Further studies may elucidate whether SF3B1-mutant patients could benefit from NMD modulatory agents.
RESUMEN
Abnormalities in ATM and TP53 genes represent important predictive factors in chronic lymphocytic leukemia (CLL); however, the efficacy of CD20 targeting immunotherapy is only poorly defined in the affected patients. Therefore, we tested the in vitro response to ofatumumab (OFA) and rituximab (RTX) in 75 CLL samples with clearly defined p53 or ATM inactivation. Using standard conditions allowing complement-dependent cytotoxicity, i.e., 10 µg/mL of antibodies and 20% active human serum, we observed clear differences among the tested genetic categories: ATM-mutated samples (n = 17) represented the most sensitive, wild-type samples (n = 31) intermediate, and TP53-mutated samples (n = 27) the most resistant group (ATM-mut vs. TP53-mut: P = 0.0005 for OFA and P = 0.01 for RTX). The response correlated with distinct levels of CD20 and critical complement inhibitors CD55 and CD59; CD20 level median was the highest in ATM-mutated and the lowest in TP53-mutated samples (difference between the groups P < 0.01), while the total level of complement inhibitors (CD55 plus CD59) was distributed in the opposite manner (P < 0.01). Negligible response to both OFA and RTX was noted in all cultures (n = 10) tested in the absence of active serum, which strongly indicated that complement-dependent cytotoxicity was a principal cell death mechanism. Our study shows that (1) common genetic defects in CLL cells significantly impact a primary response to anti-CD20 monoclonal antibodies and (2) ATM-mutated patients with currently poor prognosis may potentially benefit from immunotherapy targeting CD20.
Asunto(s)
Anticuerpos Monoclonales de Origen Murino/farmacología , Anticuerpos Monoclonales/farmacología , Antígenos CD20/inmunología , Antígenos de Neoplasias/inmunología , Proteínas de la Ataxia Telangiectasia Mutada/genética , Genes p53 , Leucemia Linfocítica Crónica de Células B/patología , Proteínas de Neoplasias/genética , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales Humanizados , Antígenos CD20/efectos de los fármacos , Antígenos de Neoplasias/efectos de los fármacos , Proteínas de la Ataxia Telangiectasia Mutada/deficiencia , Proteínas de la Ataxia Telangiectasia Mutada/fisiología , Antígenos CD55/inmunología , Antígenos CD59/inmunología , Proteínas del Sistema Complemento/inmunología , Medios de Cultivo , Reparación del ADN/genética , Resistencia a Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Rituximab , Suero , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/fisiologíaRESUMEN
The prognostic role of ATM defects is well documented in chronic lymphocytic leukemia. However, the predictive value of ATM inactivation is much less understood, even in response to common drugs like fludarabine. It has been demonstrated that CLL cells having inactive ATM exhibit defective phosphorylation of its downstream targets after fludarabine treatment. We performed alternative analysis focusing on fludarabine-induced p53 accumulation and induction of p53-downstream genes after artificial ATM inhibition and, in parallel, using cells with endogenous ATM inactivation. We show that after 24h fludarabine exposure: (i) 5 out of 8 ATM-deficient samples (63%) normally accumulated p53 protein, and (ii) all analyzed ATM-deficient samples (n = 7) manifested clear induction of p21, PUMA, BAX, and GADD45 genes. In all experiments, doxorubicin was used as a confined ATM inductor and confirmed effective ATM inactivation. In conclusion, CLL cells lacking functional ATM appear to have normal response to fludarabine regarding the p53 pathway activation.