Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Nature ; 499(7458): 316-9, 2013 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-23842493

RESUMEN

Following pioneering work, solution-processable organic-inorganic hybrid perovskites-such as CH3NH3PbX3 (X = Cl, Br, I)-have attracted attention as light-harvesting materials for mesoscopic solar cells. So far, the perovskite pigment has been deposited in a single step onto mesoporous metal oxide films using a mixture of PbX2 and CH3NH3X in a common solvent. However, the uncontrolled precipitation of the perovskite produces large morphological variations, resulting in a wide spread of photovoltaic performance in the resulting devices, which hampers the prospects for practical applications. Here we describe a sequential deposition method for the formation of the perovskite pigment within the porous metal oxide film. PbI2 is first introduced from solution into a nanoporous titanium dioxide film and subsequently transformed into the perovskite by exposing it to a solution of CH3NH3I. We find that the conversion occurs within the nanoporous host as soon as the two components come into contact, permitting much better control over the perovskite morphology than is possible with the previously employed route. Using this technique for the fabrication of solid-state mesoscopic solar cells greatly increases the reproducibility of their performance and allows us to achieve a power conversion efficiency of approximately 15 per cent (measured under standard AM1.5G test conditions on solar zenith angle, solar light intensity and cell temperature). This two-step method should provide new opportunities for the fabrication of solution-processed photovoltaic cells with unprecedented power conversion efficiencies and high stability equal to or even greater than those of today's best thin-film photovoltaic devices.

2.
Chemistry ; 23(68): 17209-17212, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29064135

RESUMEN

Methods for effective synthesis for the four possible isomeric 3,9-diphenylullazine carboxaldehydes and reactive halogen intermediates are described. Ullazine donor-acceptor (D-A) dyes were studied using UV/Vis, photoluminescence (PL) spectroscopy and cyclic voltammetry. X-ray single crystal diffraction analysis independently confirmed the structures of two key intermediates. A D-A dye based on ullazine with dihexylmalonate acceptor was tested as a dopant-free hole-transporting material (HTM) in a perovskite solar cell, exhibiting promising power conversion efficiency (PCE) reaching 13.07 %.

3.
Nature ; 538(7626): 463-464, 2016 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-27786213
4.
Nano Lett ; 14(3): 1190-5, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24524200

RESUMEN

We present a photoanode for dye-sensitized solar cell (DSC) based on ZnO nanoshell deposited by atomic layer deposition at 150 °C on a mesoporous insulating template. An ultrathin layer of ZnO between 3 and 6 nm, which exhibits quantum confinement effect, is found to be sufficient to transport the photogenerated electrons to the external contacts and exhibits near-unity collection efficiency. A 6 nm ZnO nanoshell on a 2.5 µm mesoporous nanoparticle Al2O3 template yields photovoltaic power conversion efficiency (PCE) of 4.2% in liquid DSC. Perovskite absorber (CH3NH3PbI3) based solid state solar cells made with similar ZnO nanostructures lead to a high PCE of 7%.

5.
Chemistry ; 20(7): 2016-21, 2014 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-24443172

RESUMEN

A series of subphthalocyanines (SubPcs) bearing a carboxylic acid group either at the peripheral or axial position have been designed and synthesized to investigate the influence of the COOH group positions on the dye-sensitized solar cell (DSSC) performance. The DSSC devices based on SubPcs with axially substituted carboxylic acid groups showed low photovoltaic performance, whereas peripherally substituted one exhibited higher power conversion efficiency owing to improved injection from LUMO of SubPcs to the TiO2 conduction band.

6.
Chemphyschem ; 15(6): 1033-6, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24590767

RESUMEN

A new phthalocyanine (Pc) bearing bulky peripheral substituents and a carboxylic anchoring group directly attached to the macrocycle has been prepared and used as a sensitizer in DSSCs, reaching 5.57% power conversion efficiency. In addition, an enhanced performance for the TT40 dye, previously reported by us, was achieved in optimized devices, obtaining a new record efficiency with Pc-sensitized cells.

7.
Inorg Chem ; 53(11): 5417-9, 2014 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-24823893

RESUMEN

Coordination of bidentate 5-pentafluorophenyldipyrrinate (pfpdp) or 5-(2-thienyl)dipyrrinate (2-tdp) to a Ru(II) center bearing 2,2':6',2″-terpyridine-4,4',4″-tricarboxylate (tctpy) and a NCS(-) ligand results in strongly light-absorbing complexes [Ru(tctpy)(L)(NCS)] (L = pfpdp or 2-tdp). Anchored to a mesoporous TiO2 electrode, these complexes afford a photoaction spectral response at wavelengths of up to 950 nm, one of the most red-shifted values reported to date for molecular dyes in the dye-sensitized solar cell (DSSC).

8.
Angew Chem Int Ed Engl ; 53(12): 3151-7, 2014 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-24554633

RESUMEN

Hybrid organic-inorganic lead halide perovskite APbX3 pigments, such as methylammonium lead iodide, have recently emerged as excellent light harvesters in solid-state mesoscopic solar cells. An important target for the further improvement of the performance of perovskite-based photovoltaics is to extend their optical-absorption onset further into the red to enhance solar-light harvesting. Herein, we show that this goal can be reached by using a mixture of formamidinium (HN=CHNH3 (+), FA) and methylammonium (CH3 NH3 (+), MA) cations in the A position of the APbI3 perovskite structure. This combination leads to an enhanced short-circuit current and thus superior devices to those based on only CH3 NH3 (+). This concept has not been applied previously in perovskite-based solar cells. It shows great potential as a versatile tool to tune the structural, electrical, and optoelectronic properties of the light-harvesting materials.

9.
Nat Commun ; 15(1): 5632, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965276

RESUMEN

The power conversion efficiency of perovskite solar cells continues to increase. However, defects in perovskite materials are detrimental to their carrier dynamics and structural stability, ultimately limiting the photovoltaic characteristics and stability of perovskite solar cells. Herein, we report that 6H polytype perovskite effectively engineers defects at the interface with cubic polytype FAPbI3, which facilitates radiative recombination and improves the stability of the polycrystalline film. We particularly show the detrimental effects of shallow-level defect that originates from the formation of the most dominant iodide vacancy (VI+) in FAPbI3. Furthermore, additional surface passivation on top of the hetero-polytypic perovskite film results in an ultra-long carrier lifetime exceeding 18 µs, affords power conversion efficiencies of 24.13% for perovskite solar cells, 21.92% (certified power conversion efficiency: 21.44%) for a module, and long-term stability. The hetero-polytypic perovskite configuration may be considered as close to the ideal polycrystalline structure in terms of charge carrier dynamics and stability.

10.
Chemistry ; 19(5): 1819-27, 2013 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-23255425

RESUMEN

A series of squaraine-based sensitizers with various π bridges and anchors were prepared and examined in dye-sensitized solar cells. The carboxylic anchor group was attached onto a squaraine dye through π bridges with and without an ethynyl spacer. DFT studies indicate that the LUMO is delocalized throughout the dyes, whilst the HOMO resides on the squaraine core. The dye that incorporates a 4,4-di-n-hexyl-cyclopentadithiophene group that is directly attached onto the π bridge, JD10, exhibits the highest power conversion efficiency in a DSC; this result is attributed, in part, to the deaggregative properties that are associated with the gem-di-n-hexyl substituents, which extend above and below the π-conjugated dye plane. Dye JD10 demonstrates a power-conversion efficiency of 7.3% for liquid-electrolyte dye-sensitized solar cells and 7.9% for cells that are co-sensitized by another metal-free dye, D35, which substantially exceed the performance of any previously tested squaraine sensitizer. A panchromatic incident-photon-to-current-conversion efficiency curve is realized for this dye with an excellent short-circuit current of 18.0 mA cm(-2). This current is higher than that seen for other squaraine dyes, partially owing to a high molar absorptivity of >5,000 M(-1) cm(-1) from 400 nm to the long-wavelength onset of 724 nm for dye JD10.

11.
Angew Chem Int Ed Engl ; 52(1): 376-80, 2013 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-22927088

RESUMEN

Positive to the core: ullazine has both strong electron-donating and weak accepting properties. This heterocycle was incorporated into sensitizers for dye-sensitized solar cells (DSCs). One of these sensitizers demonstrated strong light absorption across the UV/Vis region. The corresponding DSC device has a maximum IPCE of 95 % at 520 nm, with a power conversion efficiency of 8.4 %.

12.
J Am Chem Soc ; 134(47): 19438-53, 2012 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-23113640

RESUMEN

We report a combined experimental and computational investigation to understand the nature of the interactions between cobalt redox mediators and TiO(2) surfaces sensitized by ruthenium and organic dyes, and their impact on the performance of the corresponding dye-sensitized solar cells (DSSCs). We focus on different ruthenium dyes and fully organic dyes, to understand the dramatic loss of efficiency observed for the prototype Ru(II) N719 dye in conjunction with cobalt electrolytes. Both N719- and Z907-based DSSCs showed an increased lifetime in iodine-based electrolyte compared to the cobalt-based redox shuttle, while the organic D21L6 and D25L6 dyes, endowed with long alkoxy chains, show no significant change in the electron lifetime regardless of employed electrolyte and deliver a high photovoltaic efficiency of 6.5% with a cobalt electrolyte. Ab initio molecular dynamics simulations show the formation of a complex between the cobalt electrolyte and the surface-adsorbed ruthenium dye, which brings the [Co(bpy)(3)](3+) species into contact with the TiO(2) surface. This translates into a high probability of intercepting TiO(2)-injected electrons by the oxidized [Co(bpy)(3)](3+) species, lying close to the N719-sensitized TiO(2) surface. Investigation of the dye regeneration mechanism by the cobalt electrolyte in the Marcus theory framework led to substantially different reorganization energies for the high-spin (HS) and low-spin (LS) reaction pathways. Our calculated reorganization energies for the LS pathways are in excellent agreement with recent data for a series of cobalt complexes, lending support to the proposed regeneration pathway. Finally, we systematically investigate a series of Co(II)/Co(III) complexes to gauge the impact of ligand substitution and of metal coordination (tris-bidentate vs bis-tridentate) on the HS/LS energy difference and reorganization energies. Our results allow us to trace structure/property relations required for further development of cobalt electrolytes for DSSCs.

13.
Chemistry ; 18(20): 6343-8, 2012 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-22473900

RESUMEN

Zinc(II) phthalocyanine dyes that contain triarylamine-terminated bisthiophene and hexylbisthiophene groups have been synthesized by a convergent approach by using carboxytriiodo-ZnPc as a precursor. Further transformation of the iodo groups by a Pd-catalyzed reaction allowed easy preparation of further extended π-conjugated carboxy-ZnPcs. These dyes have been used as sensitizers in dye-sensitized solar cells, which exhibit a panchromatic response and moderate overall efficiencies.

14.
Inorg Chem ; 51(4): 2263-71, 2012 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-22280407

RESUMEN

We report new bis-cyclometalated cationic iridium(III) complexes [(C(^)N)(2)Ir(CN-tert-Bu)(2)](CF(3)SO(3)) that have tert-butyl isocyanides as neutral auxiliary ligands and 2-phenylpyridine or 2-(4'-fluorophenyl)-R-pyridines (where R is 4-methoxy, 4-tert-butyl, or5-trifluoromethyl) as C(^)N ligands. The complexes are white or pale yellow solids that show irreversible reduction and oxidation processes and have a large electrochemical gap of 3.58-3.83 V. They emit blue or blue-green phosphorescence in liquid/solid solutions from a cyclometalating-ligand-centered excited state. Their emission spectra show vibronic structure with the highest-energy luminescence peak at 440-459 nm. The corresponding quantum yields and observed excited-state lifetimes are up to 76% and 46 µs, respectively, and the calculated radiative lifetimes are in the range of 46-82 µs. In solution, the photophysical properties of the complexes are solvent-independent, and their emission color is tuned by variation of the substituents in the cyclometalating ligand. For most of the complexes, an emission color red shift occurs in going from solution to neat solids. However, the shift is minimal for the complexes with bulky tert-butyl or trifluoromethyl groups on the cyclometalating ligands that prevent aggregation. We report the first example of an iridium(III) isocyanide complex that emits blue phosphorescence not only in solution but also as a neat solid.

15.
Phys Chem Chem Phys ; 14(30): 10631-9, 2012 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-22744748

RESUMEN

We report a series of cobalt complexes with various polypyridyl ligands, where the oxidation potential is tuned from 0.17 to 0.34 V vs. ferrocene. The highest occupied molecular orbitals (HOMO) of the cobalt complexes were stabilized by adding electron acceptor groups on pyridyl or replacing pyridyl by pyrazole. These complexes are then used as one-electron redox mediators in dye sensitized solar cells (DSSCs) together with polymer based cathode resulting in an excellent performance. The performance of DSSCs using the molecularly engineered cobalt redox shuttle and poly(3,4-alkylthiophenes) based cathode is better than the triiodide/iodide redox shuttle with platinized cathode. The use of high surface area poly(3,4-propylenedioxythiophene) based nanoporous layers allows higher catalytic activity thus minimizing the electrode-electrolyte interface issues.

16.
J Am Chem Soc ; 133(45): 18042-5, 2011 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-21972850

RESUMEN

Chemical doping is an important strategy to alter the charge-transport properties of both molecular and polymeric organic semiconductors that find widespread application in organic electronic devices. We report on the use of a new class of Co(III) complexes as p-type dopants for triarylamine-based hole conductors such as spiro-MeOTAD and their application in solid-state dye-sensitized solar cells (ssDSCs). We show that the proposed compounds fulfill the requirements for this application and that the discussed strategy is promising for tuning the conductivity of spiro-MeOTAD in ssDSCs, without having to rely on the commonly employed photo-doping. By using a recently developed high molar extinction coefficient organic D-π-A sensitizer and p-doped spiro-MeOTAD as hole conductor, we achieved a record power conversion efficiency of 7.2%, measured under standard solar conditions (AM1.5G, 100 mW cm(-2)). We expect these promising new dopants to find widespread applications in organic electronics in general and photovoltaics in particular.


Asunto(s)
Colorantes/química , Suministros de Energía Eléctrica , Compuestos Organometálicos/química , Energía Solar , Conformación Molecular , Semiconductores
17.
Chemphyschem ; 12(3): 657-61, 2011 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-21344598

RESUMEN

Panchromatic response is essential to increase the light-harvesting efficiency in solar conversion systems. Herein we show increased light harvesting from using multiple energy relay dyes inside dye-sensitized solar cells. Additional photoresponse from 400-590 nm matching the optical window of the zinc phthalocyanine sensitizer was observed due to Förster resonance energy transfer (FRET) from the two energy relay dyes to the sensitizing dye. The complementary absorption spectra of the energy relay dyes and high excitation transfer efficiencies result in a 35% increase in photovoltaic performance.

18.
Inorg Chem ; 50(12): 5494-508, 2011 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-21591799

RESUMEN

The syntheses and the electrochemical spectroscopic properties of a suite of asymmetrical bistridentate cyclometalated Ru(II) complexes bearing terminal triphenylamine (TPA) substituents are reported. These complexes, which contain structural design elements common to both inorganic and organic dyes that exhibit superior power conversion efficiencies in the dye-sensitized solar cell (DSSC), are broadly formulated as [Ru(II)(L-2,5'-thiophene-TPA-R(1))(L-R(2))](+) [L = tridentate chelating ligand (e.g., 2,2':6',2''-terpyridine (tpy); deprotonated forms of 1,3-di(pyridin-2-yl)benzene (Hdpb) or 6-phenyl-2,2'-bipyridine (Hpbpy)); R(1) = -H, -Me, -OMe; R(2) = -H, -CO(2)Me, -CO(2)H]. The following structural attributes were systematically modified for the series: (i) electron-donating character of the terminal substituents (e.g., R(1) = -H, -Me, -OMe) placed para to the amine of the "L-2,5'-thiophene-TPA-R(1)" ligand framework; (ii) electron-withdrawing character of the tridentate chelate distal to the TPA-substituted ligand (e.g., R(2) = -H, -CO(2)Me, -CO(2)H); and (iii) position of the organometallic bond about the Ru(II) center. UV-vis spectra reveal intense and broad absorption bands arising from a collection of metal-to-ligand charge-transfer (MLCT) and TPA-based intraligand charge-transfer (ILCT) transitions that, in certain cases, extend beyond 800 nm. Electrochemical data indicate that the oxidative behavior of the TPA and metal chelate units can be independently modulated except in cases where the anionic phenyl ring is in direct conjugation with the TPA unit. In most cases, the anionic character of the cyclometalating ligands renders a metal-based oxidation event prior to the oxidation of the TPA unit. This situation can, however, be reversed with an appropriately positioned Ru-C bond and electron-rich R(1) group. This finding is important in that this arrangement confines the highest occupied molecular orbital (HOMO) to the TPA unit rather than the metal, which is optimal for sensitizing TiO(2); indeed, a remarkably high power conversion efficiency (η) in the DSSC (i.e., 8.02%) is measured for the TPA-substituted pbpy(-) chelate where R(1) = -OMe. These results provide a comprehensive strategy for improving the performance of bistridentate Ru sensitizers devoid of NCS(-) groups for the DSSC.

19.
Phys Chem Chem Phys ; 13(4): 1575-84, 2011 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21082092

RESUMEN

We report the application of spectroelectrochemical techniques to compare the hole percolation dynamics of molecular networks of two ruthenium bipyridyl complexes adsorbed onto mesoporous, nanocrystalline TiO(2) films. The percolation dynamics of the ruthenium complex cis-di(thiocyanato)(2,2'-bipyridyl-4,4'-dicarboxylic acid)-(2,2'-bipyridyl-4,4'-tridecyl) ruthenium(II), N621, is compared with those observed for an analogous dye with an additional tri-phenyl amine (TPA) donor moiety, cis-di(thiocyanato)(2,2'-bipyridyl-4,4'-dicarboxylic acid)-(2,2'-bipyridyl-4,4'-bis(vinyltriphenylamine)) ruthenium(II), HW456. The in situ oxidation of these ruthenium complexes adsorbed to the TiO(2) films is monitored by cyclic voltammetry and voltabsorptometry, whilst the dynamics of hole (cation) percolation between adsorbed ruthenium complexes is monitored by potentiometric spectroelectrochemistry and chronoabsorptometry. The hole diffusion coefficient, D(eff), is shown to be dependent on the dye loading on the nanocrystalline TiO(2) film, with a threshold observed at ∼60% monolayer surface coverage for both dyes. The hole diffusion coefficient of HW456 is estimated to be 2.6 × 10(-8) cm(2)/s, 20-fold higher than that obtained for the control N621, attributed to stronger electronic coupling between the TPA moieties of HW456 accelerating the hole percolation dynamics. The presence of mercuric ions, previously shown to bind to the thiocyanates of analogous ruthenium complexes, resulted in a quenching of the hole percolation for N621/TiO(2) films and an enhancement for HW456/TiO(2) films. These results strongly suggest that the hole percolation pathway is along the overlapped neighbouring -NCS groups for the N621 molecules, whereas in HW456 molecules cation percolation proceeds between intermolecular TPA ligands. These results are discussed in the context of their relevance to the process of dye regeneration in dye sensitised solar cells, and to the molecular wiring of wide bandgap inorganic materials for battery and sensing applications.


Asunto(s)
Nanoestructuras/química , Compuestos Organometálicos/química , Rutenio/química , Análisis Espectral , Titanio/química , 2,2'-Dipiridil/química , Aminas/química , Difusión , Electroquímica , Electrones , Modelos Moleculares , Conformación Molecular , Potenciometría
20.
Chemphyschem ; 11(13): 2814-9, 2010 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-20740548

RESUMEN

Nanoporous layers of poly(3,4-propylenedioxythiophene) (PProDOT) were fabricated by electrical-field-assisted growth using hydrophobic ionic liquids as the growing medium. A series of PProDoT layers was prepared with three different ionic liquids to control the microstructure and electrochemical properties of the resulting dye-sensitized solar cells, which were highly efficient and showed a power conversion efficiency of >9% under different sunlight intensities. The current-voltage characteristics of the counter electrodes varied depending on the ionic liquids used in the synthesis of PProDOT. The most hydrophobic ionic liquids exhibited high catalytic properties, thus resulting in high power conversion efficiency and allowing the fabrication of platinum-free, stable, flexible, and cost-effective dye-sensitized solar cells.


Asunto(s)
Colorantes/química , Suministros de Energía Eléctrica , Piridinas/química , Catálisis , Electrodos , Interacciones Hidrofóbicas e Hidrofílicas , Líquidos Iónicos/química , Estructura Molecular , Porosidad , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA