Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 289(3): 1505-18, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24293366

RESUMEN

Matrilin-1 is the prototypical member of the matrilin protein family and is highly expressed in cartilage. However, gene targeting of matrilin-1 in mouse did not lead to pronounced phenotypes. Here we used the zebrafish as an alternative model to study matrilin function in vivo. Matrilin-1 displays a multiphasic expression during zebrafish development. In an early phase, with peak expression at about 15 h post-fertilization, matrilin-1 is present throughout the zebrafish embryo with exception of the notochord. Later, when the skeleton develops, matrilin-1 is expressed mainly in cartilage. Morpholino knockdown of matrilin-1 results both in overall growth defects and in disturbances in the formation of the craniofacial cartilage, most prominently loss of collagen II deposition. In fish with mild phenotypes, certain cartilage extracellular matrix components were present, but the tissue did not show features characteristic for cartilage. The cells showed endoplasmic reticulum aberrations but no activation of XBP-1, a marker for endoplasmic reticulum stress. In severe phenotypes nearly all chondrocytes died. During the early expression phase the matrilin-1 knockdown had no effects on cell morphology, but increased cell death was observed. In addition, the broad deposition of collagen II was largely abolished. Interestingly, the early phenotype could be rescued by the co-injection of mRNA coding for the von Willebrand factor C domain of collagen IIα1a, indicating that the functional loss of this domain occurs as a consequence of matrilin-1 deficiency. The results show that matrilin-1 is indispensible for zebrafish cartilage formation and plays a role in the early collagen II-dependent developmental events.


Asunto(s)
Cartílago/embriología , Colágeno Tipo II/metabolismo , Embrión no Mamífero/embriología , Desarrollo Embrionario/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Matrilinas/metabolismo , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Cartílago/citología , Colágeno Tipo II/genética , Embrión no Mamífero/citología , Desarrollo Embrionario/efectos de los fármacos , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Proteínas Matrilinas/genética , Ratones , Morfolinos/farmacología , Pez Cebra/genética , Proteínas de Pez Cebra
2.
J Immunol ; 189(4): 1559-66, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22802420

RESUMEN

Factor associated with neutral sphingomyelinase activity (FAN) is an adaptor protein that specifically binds to the p55 receptor for TNF (TNF-RI). Our previous investigations demonstrated that FAN plays a role in TNF-induced actin reorganization by connecting the plasma membrane with actin cytoskeleton, suggesting that FAN may impact on cellular motility in response to TNF and in the context of immune inflammatory conditions. In this study, we used the translucent zebrafish larvae for in vivo analysis of leukocyte migration after morpholino knockdown of FAN. FAN-deficient zebrafish leukocytes were impaired in their migration toward tail fin wounds, leading to a reduced number of cells reaching the wound. Furthermore, FAN-deficient leukocytes show an impaired response to bacterial infections, suggesting that FAN is generally required for the directed chemotactic response of immune cells independent of the nature of the stimulus. Cell-tracking analysis up to 3 h after injury revealed that the reduced number of leukocytes is not due to a reduction in random motility or speed of movement. Leukocytes from FAN-deficient embryos protrude pseudopodia in all directions instead of having one clear leading edge. Our results suggest that FAN-deficient leukocytes exhibit an impaired navigational capacity, leading to a disrupted chemotactic response.


Asunto(s)
Infecciones Bacterianas/inmunología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Leucocitos/inmunología , Esfingomielina Fosfodiesterasa/metabolismo , Cicatrización de Heridas/fisiología , Secuencia de Aminoácidos , Animales , Infecciones Bacterianas/metabolismo , Quimiotaxis de Leucocito , Hibridación in Situ , Péptidos y Proteínas de Señalización Intracelular/inmunología , Larva , Leucocitos/citología , Microscopía Confocal , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Esfingomielina Fosfodiesterasa/inmunología , Pez Cebra
3.
J Gen Physiol ; 137(3): 255-70, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21357732

RESUMEN

The zebrafish is a potentially important and cost-effective model for studies of development, motility, regeneration, and inherited human diseases. The object of our work was to show whether myofibrils isolated from zebrafish striated muscle represent a valid subcellular contractile model. These organelles, which determine contractile function in muscle, were used in a fast kinetic mechanical technique based on an atomic force probe and video microscopy. Mechanical variables measured included rate constants of force development (k(ACT)) after Ca(2+) activation and of force decay (τ(REL)(-1)) during relaxation upon Ca(2+) removal, isometric force at maximal (F(max)) or partial Ca(2+) activations, and force response to an external stretch applied to the relaxed myofibril (F(pass)). Myotomal myofibrils from larvae developed greater active and passive forces, and contracted and relaxed faster than skeletal myofibrils from adult zebrafish, indicating developmental changes in the contractile organelles of the myotomal muscles. Compared with murine cardiac myofibrils, measurements of adult zebrafish ventricular myofibrils show that k(ACT), F(max), Ca(2+) sensitivity of the force, and F(pass) were comparable and τ(REL)(-1) was smaller. These results suggest that cardiac myofibrils from zebrafish, like those from mice, are suitable contractile models to study cardiac function at the sarcomeric level. The results prove the practicability and usefulness of mechanical and kinetic investigations on myofibrils isolated from larval and adult zebrafish muscles. This novel approach for investigating myotomal and myocardial function in zebrafish at the subcellular level, combined with the powerful genetic manipulations that are possible in the zebrafish, will allow the investigation of the functional primary consequences of human disease-related mutations in sarcomeric proteins in the zebrafish model.


Asunto(s)
Contracción Muscular , Músculo Esquelético/fisiología , Miocardio , Miofibrillas/fisiología , Pez Cebra/fisiología , Animales , Fenómenos Biomecánicos , Acoplamiento Excitación-Contracción , Contracción Isométrica , Cinética , Larva/fisiología , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Microscopía por Video , Fuerza Muscular , Músculo Esquelético/embriología , Músculo Esquelético/ultraestructura , Contracción Miocárdica , Miocardio/ultraestructura , Miofibrillas/ultraestructura , Reproducibilidad de los Resultados , Sarcómeros/fisiología , Pez Cebra/embriología
4.
Matrix Biol ; 30(7-8): 369-78, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21839171

RESUMEN

UCMA (alternatively named GRP) is a novel member of the family of γ-carboxyglutamate (Gla) containing proteins that is mainly expressed in cartilage. We have used the zebrafish as a model organism to study UCMA function. Due to the whole genome duplication two Ucma genes are present in zebrafish, ucmaa and ucmab, located on chromosomes 25 and 4, respectively. UCMA gene structure, alternative splicing and protein sequence are highly conserved between mammals and zebrafish and Ucmaa and Ucmab are expressed in zebrafish skeletal tissues. Ucmaa is first detected in the notochord at 18 hpf and expression continues during notochord development. In addition, it is widely present in the developing craniofacial cartilage. In contrast, the weakly expressed Ucmab can be first detected at specific sites in the craniofacial cartilage at 96 hpf, but not in notochord. Knockdown of ucmaa leads to severe growth retardation and perturbance of skeletal development. The cartilage of the morphants has a decreased aggrecan and collagen II content. Similar malformations were observed when glutamate γ-carboxylation was inhibited by warfarin treatment, indicating that glutamate γ-carboxylation is crucial for Ucma function and pointing to a role of UCMA in the pathogenesis of "warfarin embryopathies" and other human skeletal diseases.


Asunto(s)
Ácido 1-Carboxiglutámico/metabolismo , Cartílago/crecimiento & desarrollo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/crecimiento & desarrollo , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Cartílago/citología , Cartílago/embriología , Cartílago/metabolismo , Clonación Molecular , Colágeno Tipo II/metabolismo , Biología Computacional , Embrión no Mamífero/citología , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Proteínas de la Matriz Extracelular , Técnica del Anticuerpo Fluorescente , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Péptidos y Proteínas de Señalización Intracelular , Larva , Ratones , Datos de Secuencia Molecular , Notocorda/citología , Notocorda/efectos de los fármacos , Notocorda/embriología , Notocorda/metabolismo , Fenotipo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas/genética , Proteínas/metabolismo , Alineación de Secuencia , Homología de Secuencia , Coloración y Etiquetado , Factores de Tiempo , Warfarina/farmacología , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA