Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Environ Res ; 197: 111087, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33798514

RESUMEN

Soil erosion can present a major threat to agriculture due to loss of soil, nutrients, and organic carbon. Therefore, soil erosion modelling is one of the steps used to plan suitable soil protection measures and detect erosion hotspots. A bibliometric analysis of this topic can reveal research patterns and soil erosion modelling characteristics that can help identify steps needed to enhance the research conducted in this field. Therefore, a detailed bibliometric analysis, including investigation of collaboration networks and citation patterns, should be conducted. The updated version of the Global Applications of Soil Erosion Modelling Tracker (GASEMT) database contains information about citation characteristics and publication type. Here, we investigated the impact of the number of authors, the publication type and the selected journal on the number of citations. Generalized boosted regression tree (BRT) modelling was used to evaluate the most relevant variables related to soil erosion modelling. Additionally, bibliometric networks were analysed and visualized. This study revealed that the selection of the soil erosion model has the largest impact on the number of publication citations, followed by the modelling scale and the publication's CiteScore. Some of the other GASEMT database attributes such as model calibration and validation have negligible influence on the number of citations according to the BRT model. Although it is true that studies that conduct calibration, on average, received around 30% more citations, than studies where calibration was not performed. Moreover, the bibliographic coupling and citation networks show a clear continental pattern, although the co-authorship network does not show the same characteristics. Therefore, soil erosion modellers should conduct even more comprehensive review of past studies and focus not just on the research conducted in the same country or continent. Moreover, when evaluating soil erosion models, an additional focus should be given to field measurements, model calibration, performance assessment and uncertainty of modelling results. The results of this study indicate that these GASEMT database attributes had smaller impact on the number of citations, according to the BRT model, than anticipated, which could suggest that these attributes should be given additional attention by the soil erosion modelling community. This study provides a kind of bibliographic benchmark for soil erosion modelling research papers as modellers can estimate the influence of their paper.


Asunto(s)
Bibliometría , Erosión del Suelo , Agricultura , Publicaciones , Suelo
2.
Sci Total Environ ; 792: 148403, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34465038

RESUMEN

Soil or sediment redistribution prediction along hillslopes and within small watersheds is considered to be a great challenge for the application of watershed erosion models in predicting the impact of soil and water conservation measures as well as for the redistribution of pollution such as radioactive fallout. In this study, long-term soil loss and deposition were estimated for two nested semi-arid watersheds within the Walnut Gulch Experimental Watershed in Southeastern Arizona using the process-based Geo-spatial interface of WEPP (GeoWEPP). While soil parameters were previously parametrized and validated through watershed outlet runoff and sediment yields, the channel parameters were adjusted and validated based on reference values of soil redistribution generated from fallout radionuclide 137Cs samples within the watersheds. Two methods were applied for the soil redistribution analysis by comparing observed and simulated soil loss/deposition rates (a) at single pixels and reference values at the specific location of each 137Cs sample site; and (b) for average values of a 5 m radius around each 137Cs sample site to compensate for measurement and model uncertainties. Surprisingly, soil redistribution predictions improved as topographic data resolution increased from 5 m to 3 m and were best at 1 m without changing key model parameters that were originally derived at the watershed scale.


Asunto(s)
Ceniza Radiactiva , Suelo , Arizona , Monitoreo del Ambiente
3.
Sci Total Environ ; 787: 147609, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34000549

RESUMEN

Soil erosion affects agricultural landscapes worldwide, threatening food security and ecosystem viability. In arable environments, soil loss is primarily caused by short, intense rainstorms, typically characterized by high spatiotemporal variability. The complexity of erosive events challenges modeling efforts and explicit inclusion of extreme events in long-term risk assessment is missing. This study is intended to bridge this gap by quantifying the discrete and cumulative impacts of rainstorms on plot-scale soil erosion and providing storm-scale erosion risk analyses for a cropland region in northern Israel. Central to our analyses is the coupling of (1) a stochastic rainfall generator able to reproduce extremes down to 5-minute temporal resolutions; (2) a processes-based event-scale cropland erosion model (Dynamic WEPP, DWEPP); and, (3) a state-of-the-art frequency analysis method that explicitly accounts for rainstorms occurrence and properties. To our knowledge, this is the first study in which DWEPP runoff and soil loss are calibrated at the plot-scale on cropland (NSE is 0.82 and 0.79 for event runoff and sediment, respectively). We generated 300-year stochastic simulations of event runoff and sediment yield based on synthetic precipitation time series. Based on this data, the mean annual soil erosion in the study site is 0.1 kg m-2 [1.1 t ha-1]. Results of the risk analysis indicate that individual extreme rainstorms (>50 return period), characterized by high rainfall intensities (30-minute maximal intensity > ~60 mm h-1) and high rainfall depth (>~200 mm), can trigger soil losses even one order of magnitude higher than the annual mean. The erosion efficiency of these rainstorms is mainly controlled by the short-duration (≤30 min) maximal intensities. The results demonstrate the importance of incorporating the impact of extreme events into soil conservation and management tools. We expect our methodology to be valuable for investigating future changes in soil erosion with changing climate.

4.
Sci Total Environ ; 780: 146494, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33773346

RESUMEN

To gain a better understanding of the global application of soil erosion prediction models, we comprehensively reviewed relevant peer-reviewed research literature on soil-erosion modelling published between 1994 and 2017. We aimed to identify (i) the processes and models most frequently addressed in the literature, (ii) the regions within which models are primarily applied, (iii) the regions which remain unaddressed and why, and (iv) how frequently studies are conducted to validate/evaluate model outcomes relative to measured data. To perform this task, we combined the collective knowledge of 67 soil-erosion scientists from 25 countries. The resulting database, named 'Global Applications of Soil Erosion Modelling Tracker (GASEMT)', includes 3030 individual modelling records from 126 countries, encompassing all continents (except Antarctica). Out of the 8471 articles identified as potentially relevant, we reviewed 1697 appropriate articles and systematically evaluated and transferred 42 relevant attributes into the database. This GASEMT database provides comprehensive insights into the state-of-the-art of soil- erosion models and model applications worldwide. This database intends to support the upcoming country-based United Nations global soil-erosion assessment in addition to helping to inform soil erosion research priorities by building a foundation for future targeted, in-depth analyses. GASEMT is an open-source database available to the entire user-community to develop research, rectify errors, and make future expansions.

5.
Sci Rep ; 7(1): 8130, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28811512

RESUMEN

The impacts of climate change on soil erosion may bring serious economic, social and environmental problems. However, few studies have investigated these impacts on continental scales. Here we assessed the influence of climate change on rainfall erosivity across Brazil. We used observed rainfall data and downscaled climate model output based on Hadley Center Global Environment Model version 2 (HadGEM2-ES) and Model for Interdisciplinary Research On Climate version 5 (MIROC5), forced by Representative Concentration Pathway 4.5 and 8.5, to estimate and map rainfall erosivity and its projected changes across Brazil. We estimated mean values of 10,437 mm ha-1 h-1 year-1 for observed data (1980-2013) and 10,089 MJ mm ha-1 h-1 year-1 and 10,585 MJ mm ha-1 h-1 year-1 for HadGEM2-ES and MIROC5, respectively (1961-2005). Our analysis suggests that the most affected regions, with projected rainfall erosivity increases ranging up to 109% in the period 2007-2040, are northeastern and southern Brazil. Future decreases of as much as -71% in the 2071-2099 period were estimated for the southeastern, central and northwestern parts of the country. Our results provide an overview of rainfall erosivity in Brazil that may be useful for planning soil and water conservation, and for promoting water and food security.

6.
Sci Rep ; 7(1): 4175, 2017 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-28646132

RESUMEN

The exposure of the Earth's surface to the energetic input of rainfall is one of the key factors controlling water erosion. While water erosion is identified as the most serious cause of soil degradation globally, global patterns of rainfall erosivity remain poorly quantified and estimates have large uncertainties. This hampers the implementation of effective soil degradation mitigation and restoration strategies. Quantifying rainfall erosivity is challenging as it requires high temporal resolution(<30 min) and high fidelity rainfall recordings. We present the results of an extensive global data collection effort whereby we estimated rainfall erosivity for 3,625 stations covering 63 countries. This first ever Global Rainfall Erosivity Database was used to develop a global erosivity map at 30 arc-seconds(~1 km) based on a Gaussian Process Regression(GPR). Globally, the mean rainfall erosivity was estimated to be 2,190 MJ mm ha-1 h-1 yr-1, with the highest values in South America and the Caribbean countries, Central east Africa and South east Asia. The lowest values are mainly found in Canada, the Russian Federation, Northern Europe, Northern Africa and the Middle East. The tropical climate zone has the highest mean rainfall erosivity followed by the temperate whereas the lowest mean was estimated in the cold climate zone.

7.
J Environ Radioact ; 100(8): 637-43, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19559510

RESUMEN

Analysis of soil redistribution and sediment sources in semiarid and arid watersheds provides information for implementing management practices to improve rangeland conditions and reduce sediment loads to streams. The purpose of this research was to develop sediment budgets and identify potential sediment sources using (137)Cs and other soil properties in a series of small semiarid subwatersheds on the USDA ARS Walnut Gulch Experimental Watershed near Tombstone, Arizona, USA. Soils were sampled in a grid pattern on two small subwatersheds and along transects associated with soils and geomorphology on six larger subwatersheds. Soil samples were analyzed for (137)Cs and selected physical and chemical properties (i.e., bulk density, rocks, particle size, soil organic carbon). Suspended sediment samples collected at measuring flume sites on the Walnut Gulch Experimental Watershed were also analyzed for these properties. Soil redistribution measured using (137)Cs inventories for a small shrub-dominated subwatershed and a small grass-dominated subwatershed found eroding areas in these subwatersheds were losing -5.6 and -3.2tha(-1)yr(-1), respectively; however, a sediment budget for each of these subwatersheds, including depositional areas, found net soil loss to be -4.3tha(-1)yr(-1) from the shrub-dominated subwatershed and -0.1tha(-1)yr(-1) from the grass-dominated subwatershed. Generally, the suspended sediment collected at the flumes of the six other subwatersheds was enriched in silt and clay. Using a mixing model to determine sediment source indicated that shrub-dominated subwatersheds were contributing most of the suspended sediment that was measured at the outlet flume of the Walnut Gulch Experimental Watershed. The two methodologies (sediment budgets and sediment source analyses) indicate that shrub-dominated systems provide more suspended sediment to the stream systems. The sediment budget studies also suggest that sediment yields measured at the outlet of a watershed may be a poor indicator of actual soil redistribution rates within these semiarid watersheds. Management of these semiarid rangelands must consider techniques that will protect grass-dominated areas from shrub invasion to improve rangeland conditions.


Asunto(s)
Radioisótopos de Cesio/análisis , Sedimentos Geológicos/química , Ceniza Radiactiva/análisis , Contaminantes Radiactivos del Suelo/análisis , Arizona , Monitoreo del Ambiente , Geografía , Sedimentos Geológicos/clasificación , Cinética , Abastecimiento de Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA