RESUMEN
To improve the understanding of chemo-refractory high-grade serous ovarian cancers (HGSOCs), we characterized the proteogenomic landscape of 242 (refractory and sensitive) HGSOCs, representing one discovery and two validation cohorts across two biospecimen types (formalin-fixed paraffin-embedded and frozen). We identified a 64-protein signature that predicts with high specificity a subset of HGSOCs refractory to initial platinum-based therapy and is validated in two independent patient cohorts. We detected significant association between lack of Ch17 loss of heterozygosity (LOH) and chemo-refractoriness. Based on pathway protein expression, we identified 5 clusters of HGSOC, which validated across two independent patient cohorts and patient-derived xenograft (PDX) models. These clusters may represent different mechanisms of refractoriness and implicate putative therapeutic vulnerabilities.
Asunto(s)
Cistadenocarcinoma Seroso , Neoplasias Ováricas , Proteogenómica , Femenino , Humanos , Cistadenocarcinoma Seroso/tratamiento farmacológico , Cistadenocarcinoma Seroso/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genéticaRESUMEN
Breast cancer invasion and metastasis result from a complex interplay between tumor cells and the tumor microenvironment (TME). Key oncogenic changes in the TME include aberrant synthesis, processing, and signaling of hyaluronan (HA). Hyaluronan-mediated motility receptor (RHAMM, CD168; HMMR) is an HA receptor enabling tumor cells to sense and respond to this aberrant TME during breast cancer progression. Previous studies have associated RHAMM expression with breast tumor progression; however, cause and effect mechanisms are incompletely established. Focused gene expression analysis of an internal breast cancer patient cohort confirmed that increased RHAMM expression correlates with aggressive clinicopathological features. To probe mechanisms, we developed a novel 27-gene RHAMM-related signature (RRS) by intersecting differentially expressed genes in lymph node (LN)-positive patient cases with the transcriptome of a RHAMM-dependent model of cell transformation, which we validated in an independent cohort. We demonstrate that the RRS predicts for poor survival and is enriched for cell cycle and TME-interaction pathways. Further analyses using CRISPR/Cas9-generated RHAMM-/- breast cancer cells provided direct evidence that RHAMM promotes invasion in vitro and in vivo. Immunohistochemistry studies highlighted heterogeneous RHAMM protein expression, and spatial transcriptomics associated the RRS with RHAMM-high microanatomic foci. We conclude that RHAMM upregulation leads to the formation of 'invasive niches', which are enriched in RRS-related pathways that drive invasion and could be targeted to limit invasive progression and improve patient outcomes. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Ácido Hialurónico/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Receptores de Hialuranos/metabolismo , Microambiente TumoralRESUMEN
The extracellular matrix (ECM) is biochemically and biomechanically important for the structure and function of the mammary gland, which undergoes vast structural changes throughout pubertal and reproductive development. Although hyaluronan (HA) is a ubiquitous glycosaminoglycan (GAG) of the mammary gland ECM, extensive characterization of HA deposition in the mammary gland is lacking. Understanding physiologic HA metabolism is critical as this tightly controlled system is often hijacked in cancer. In the current studies, we characterize HA regulation throughout mammary gland development to better understand subsequent dysregulation of HA in mammary tumors. Using immunofluorescence (IF) imaging, we demonstrate that organized HA-rich septa exist in the mammary gland stroma throughout puberty, pregnancy, and involution. Furthermore, we find heterogeneous HA deposition within two murine models of breast cancer. Using cell specific isolation techniques, we characterize expression of genes associated with HA binding, synthesis, and degradation within EpCAM + epithelial cells, CD90.2 + fibroblasts, and F4/80 + macrophages isolated from mammary glands and tumors. Most notably, we identify elevated levels of the hyaluronidases Hyal1 and Hyal2 in tumor-association macrophages (TAMs), suggesting a role for TAM-mediated turnover of HA in the tumor microenvironment (TME). Gene expression is supported functionally by in vitro experiments in which macrophages treated with tumor-cell conditioned media exhibit increased hyaluronidase activity. These findings link TAMs to the direct degradation of HA within the TME of mammary tumors, which has negative implications for patient survival.
Asunto(s)
Glándulas Mamarias Humanas , Neoplasias Mamarias Animales , Embarazo , Femenino , Ratones , Humanos , Animales , Ácido Hialurónico/química , Ácido Hialurónico/metabolismo , Glándulas Mamarias Humanas/metabolismo , Matriz Extracelular/metabolismo , Macrófagos/metabolismo , Neoplasias Mamarias Animales/metabolismo , Microambiente TumoralRESUMEN
BACKGROUND: RHAMM is a multifunctional protein that is upregulated in breast tumors, and the presence of strongly RHAMM+ve cancer cell subsets associates with elevated risk of peripheral metastasis. Experimentally, RHAMM impacts cell cycle progression and cell migration. However, the RHAMM functions that contribute to breast cancer metastasis are poorly understood. METHODS: We interrogated the metastatic functions of RHAMM using a loss-of-function approach by crossing the MMTV-PyMT mouse model of breast cancer susceptibility with Rhamm-/- mice. In vitro analyses of known RHAMM functions were performed using primary tumor cell cultures and MMTV-PyMT cell lines. Somatic mutations were identified using a mouse genotyping array. RNA-seq was performed to identify transcriptome changes resulting from Rhamm-loss, and SiRNA and CRISPR/Cas9 gene editing was used to establish cause and effect of survival mechanisms in vitro. RESULTS: Rhamm-loss does not alter initiation or growth of MMTV-PyMT-induced primary tumors but unexpectedly increases lung metastasis. Increased metastatic propensity with Rhamm-loss is not associated with obvious alterations in proliferation, epithelial plasticity, migration, invasion or genomic stability. SNV analyses identify positive selection of Rhamm-/- primary tumor clones that are enriched in lung metastases. Rhamm-/- tumor clones are characterized by an increased ability to survive with ROS-mediated DNA damage, which associates with blunted expression of interferon pathway and target genes, particularly those implicated in DNA damage-resistance. Mechanistic analyses show that ablating RHAMM expression in breast tumor cells by siRNA knockdown or CRISPR-Cas9 gene editing blunts interferon signaling activation by STING agonists and reduces STING agonist-induced apoptosis. The metastasis-specific effect of RHAMM expression-loss is linked to microenvironmental factors unique to tumor-bearing lung tissue, notably high ROS and TGFB levels. These factors promote STING-induced apoptosis of RHAMM+ve tumor cells to a significantly greater extent than RHAMM-ve comparators. As predicted by these results, colony size of Wildtype lung metastases is inversely related to RHAMM expression. CONCLUSION: RHAMM expression-loss blunts STING-IFN signaling, which offers growth advantages under specific microenvironmental conditions of lung tissue. These results provide mechanistic insight into factors controlling clonal survival/expansion of metastatic colonies and has translational potential for RHAMM expression as a marker of sensitivity to interferon therapy.
Asunto(s)
Neoplasias Pulmonares , Neoplasias Mamarias Animales , Animales , Especies Reactivas de Oxígeno , Neoplasias Mamarias Animales/genética , Neoplasias Pulmonares/patología , ARN Interferente Pequeño , Daño del ADNRESUMEN
Skeletal muscle derives from dorsal mesoderm formed during vertebrate gastrulation. Fibroblast growth factor (Fgf) signalling cooperates with Tbx transcription factors to promote dorsal mesoderm formation, but their role in myogenesis has been unclear. Using zebrafish, we show that dorsally derived Fgf signals act through Tbx16 and Tbxta to induce slow and fast trunk muscle precursors at distinct dorsoventral positions. Tbx16 binds to and directly activates the myf5 and myod genes, which are required for commitment to myogenesis. Tbx16 activity depends on Fgf signalling from the organiser. In contrast, Tbxta is not required for myf5 expression, but binds a specific site upstream of myod that is not bound by Tbx16 and drives (dependent on Fgf signals) myod expression in adaxial slow precursors, thereby initiating trunk myogenesis. After gastrulation, when similar muscle cell populations in the post-anal tail are generated from tailbud, declining Fgf signalling is less effective at initiating adaxial myogenesis, which is instead initiated by Hedgehog signalling from the notochord. Our findings suggest a hypothesis for ancestral vertebrate trunk myogenic patterning and how it was co-opted during tail evolution to generate similar muscle by new mechanisms.This article has an associated 'The people behind the papers' interview.
Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Desarrollo de Músculos , Proteína MioD/metabolismo , Proteínas de Dominio T Box/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/genética , Animales , Tipificación del Cuerpo/genética , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Desarrollo de Músculos/genética , Proteína MioD/genética , Transducción de Señal , Proteínas de Dominio T Box/genética , Transcripción Genética , Regulación hacia Arriba/genética , Pez Cebra/embriología , Proteínas de Pez Cebra/genéticaRESUMEN
Stromal stiffening accompanies malignancy, compromises treatment and promotes tumour aggression. Clarifying the molecular nature and the factors that regulate stromal stiffening in tumours should identify biomarkers to stratify patients for therapy and interventions to improve outcome. We profiled lysyl hydroxylase-mediated and lysyl oxidase-mediated collagen crosslinks and quantified the greatest abundance of total and complex collagen crosslinks in aggressive human breast cancer subtypes with the stiffest stroma. These tissues harbour the highest number of tumour-associated macrophages, whose therapeutic ablation in experimental models reduced metastasis, and decreased collagen crosslinks and stromal stiffening. Epithelial-targeted expression of the crosslinking enzyme, lysyl oxidase, had no impact on collagen crosslinking in PyMT mammary tumours, whereas stromal cell targeting did. Stromal cells in microdissected human tumours expressed the highest level of collagen crosslinking enzymes. Immunohistochemical analysis of biopsies from a cohort of patients with breast cancer revealed that stromal expression of lysyl hydroxylase 2, an enzyme that induces hydroxylysine aldehyde-derived collagen crosslinks and stromal stiffening, correlated significantly with disease specific mortality. The findings link tissue inflammation, stromal cell-mediated collagen crosslinking and stiffening to tumour aggression and identify lysyl hydroxylase 2 as a stromal biomarker.
Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Colágeno/metabolismo , Células del Estroma/metabolismo , Macrófagos Asociados a Tumores/metabolismo , Adulto , Biopsia , Neoplasias de la Mama/inmunología , Línea Celular Tumoral , Femenino , Humanos , Persona de Mediana Edad , Proteína-Lisina 6-Oxidasa/metabolismo , Células del Estroma/patologíaRESUMEN
RAP1B is a RAS-superfamily small GTP-binding protein involved in numerous cell processes. Pathogenic gain-of-function variants in this gene have been associated with RAP1B-related syndromic thrombocytopenia, an ultrarare disorder characterized by hematologic abnormalities, neurodevelopmental delays, growth delay, and congenital birth defects including cardiovascular, genitourinary, neurologic, and skeletal systems. We report a 23-year-old male with a novel, de novo RAP1B gain-of-function variant identified on genome sequencing. This is the third reported case which expands the molecular and phenotypic spectrum of RAP1B-related syndromic thrombocytopenia.
Asunto(s)
Trombocitopenia , Adulto , Humanos , Masculino , Trombocitopenia/genética , Adulto Joven , Proteínas de Unión al GTP rap/genética , Proteínas de Unión al GTP rap/metabolismoRESUMEN
Tumor-associated macrophages contribute to tumor progression and therapeutic resistance in breast cancer. Within the tumor microenvironment, tumor-derived factors activate pathways that modulate macrophage function. Using in vitro and in vivo models, we find that tumor-derived factors induce activation of the Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) pathway in macrophages. We also demonstrate that loss of STAT3 in myeloid cells leads to enhanced mammary tumorigenesis. Further studies show that macrophages contribute to resistance of mammary tumors to the JAK/STAT inhibitor ruxolitinib in vivo and that ruxolitinib-treated macrophages produce soluble factors that promote resistance of tumor cells to JAK inhibition in vitro. Finally, we demonstrate that STAT3 deletion and JAK/STAT inhibition in macrophages increases expression of the protumorigenic factor cyclooxygenase-2 (COX-2), and that COX-2 inhibition enhances responsiveness of tumors to ruxolitinib. These findings define a mechanism through which macrophages promote therapeutic resistance and highlight the importance of understanding the impact of targeted therapies on the tumor microenvironment.
Asunto(s)
Carcinogénesis , Inhibidores de las Cinasas Janus/farmacología , Macrófagos/metabolismo , Factor de Transcripción STAT3/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Humanos , Macrófagos/enzimología , Ratones , Nitrilos , Pirazoles/farmacología , Pirimidinas , Microambiente TumoralRESUMEN
The oncogene RAS is one of the most widely studied proteins in cancer biology, and mutant active RAS is a driver in many types of solid tumors and hematological malignancies. Yet the biological effects of different RAS mutations and the tissue-specific clinical implications are complex and nuanced. Here, we identified an internal tandem duplication (ITD) in the switch II domain of NRAS from a patient with extremely aggressive colorectal carcinoma. Results of whole-exome DNA sequencing of primary and metastatic tumors indicated that this mutation was present in all analyzed metastases and excluded the presence of any other clear oncogenic driver mutations. Biochemical analysis revealed increased interaction of the RAS ITD with Raf proto-oncogene Ser/Thr kinase (RAF), leading to increased phosphorylation of downstream MAPK/ERK kinase (MEK)/extracellular signal-regulated kinase (ERK). The ITD prevented interaction with neurofibromin 1 (NF1)-GTPase-activating protein (GAP), providing a mechanism for sustained activity of the RAS ITD protein. We present the first crystal structures of NRAS and KRAS ITD at 1.65-1.75 Å resolution, respectively, providing insight into the physical interactions of this class of RAS variants with its regulatory and effector proteins. Our in-depth bedside-to-bench analysis uncovers the molecular mechanism underlying a case of highly aggressive colorectal cancer and illustrates the importance of robust biochemical and biophysical approaches in the implementation of individualized medicine.
Asunto(s)
Neoplasias Colorrectales , GTP Fosfohidrolasas , Sistema de Señalización de MAP Quinasas , Proteínas de la Membrana , Mutación , Proteínas Proto-Oncogénicas p21(ras) , Neoplasias Colorrectales/enzimología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Cristalografía por Rayos X , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Células HEK293 , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Dominios Proteicos , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas p21(ras)/química , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Secuenciación del Exoma , Quinasas raf/genética , Quinasas raf/metabolismoRESUMEN
The functional complexity of higher organisms is not easily accounted for by the size of their genomes. Rather, complexity appears to be generated by transcriptional, translational, and post-translational mechanisms and tissue organization that produces a context-dependent response of cells to specific stimuli. One property of gene products that likely increases the ability of cells to respond to stimuli with complexity is the multifunctionality of expressed proteins. Receptor for hyaluronan-mediated motility (RHAMM) is an example of a multifunctional protein that controls differential responses of cells in response-to-injury contexts. Here, we trace its evolution into a sensor-transducer of tissue injury signals in higher organisms through the detection of hyaluronan (HA) that accumulates in injured microenvironments. Our goal is to highlight the domain and isoform structures that generate RHAMM's function complexity and model approaches for targeting its key functions to control cancer progression.
Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Receptores de Hialuranos/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Animales , Progresión de la Enfermedad , Humanos , Microambiente Tumoral/fisiologíaRESUMEN
During August 7-16, 2020, a motorcycle rally was held in western South Dakota that attracted approximately 460,000 persons from across the United States to numerous indoor and outdoor events over a 10-day period. During August-September 2020, the Minnesota Department of Health (MDH) investigated a coronavirus disease 2019 (COVID-19) outbreak associated with the rally in Minnesota residents. Fifty-one primary event-associated cases were identified, and 35 secondary or tertiary cases occurred among household, social, and workplace contacts, for a total of 86 cases; four patients were hospitalized, and one died. Approximately one third (34%) of 87 counties in Minnesota had at least one primary, secondary, or tertiary case associated with this rally. Genomic sequencing supported the associations with the motorcycle rally. These findings support current recommendations for mask use, physical distancing, reducing the number of attendees at gatherings, isolation for patients with COVID-19, and quarantine for close contacts to slow the spread of SARS-CoV-2 (1). Furthermore, although these findings did not capture the impact of the motorcycle rally on residents of other states, they demonstrate the rationale for consistent mitigation measures across states.
Asunto(s)
Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Brotes de Enfermedades , Motocicletas , Neumonía Viral/epidemiología , Neumonía Viral/transmisión , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Betacoronavirus/genética , Betacoronavirus/aislamiento & purificación , COVID-19 , Prueba de COVID-19 , Niño , Preescolar , Técnicas de Laboratorio Clínico , Trazado de Contacto , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/prevención & control , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Minnesota/epidemiología , Pandemias/prevención & control , Neumonía Viral/prevención & control , Cuarentena , SARS-CoV-2 , South Dakota , Secuenciación Completa del Genoma , Adulto JovenRESUMEN
Mucosal melanomas are rare, and less is known about the biomarkers of this subtype in comparison to cutaneous or uveal melanomas. Preferentially expressed antigen in melanoma (PRAME) has been studied as a tool for prognostication of uveal melanomas, and immunotherapy against PRAME-expressing tumor cells has already shown promise. Our goal was to retrospectively analyze 29 cases of mucosal melanomas at our institution to determine if any molecular and histopathologic prognosticators could be identified, as well as to study PRAME expression and its association with prognosis. We found that the majority of mucosal melanomas expressed PRAME and a high PRAME expression score predicted a poor prognosis. There was no association between prognosis and the histomorphologic features analyzed, such as presence of spindle cell or epithelioid predominance. BRAF mutations were absent in 16 of 16 cases tested. Pathogenic NRAS mutations were detected in 3 of 11 cases tested and were associated with shorter overall survival compared to those without NRAS alterations, but the presence of NRAS mutations did not correlate with PRAME expression. In conclusion, an increase in PRAME expression and the presence of a pathogenic NRAS were both associated with a worse prognosis in mucosal melanomas.
Asunto(s)
Antígenos de Neoplasias/metabolismo , Biomarcadores de Tumor/análisis , Melanoma/patología , Membrana Mucosa/patología , Adulto , Anciano , Anciano de 80 o más Años , Femenino , GTP Fosfohidrolasas/genética , Humanos , Inmunohistoquímica , Masculino , Melanoma/genética , Melanoma/metabolismo , Proteínas de la Membrana/genética , Persona de Mediana Edad , Membrana Mucosa/metabolismo , Mutación , Estudios RetrospectivosRESUMEN
Epidermodysplasia verruciformis (EV) is a rare skin disease characterized by the development of multiple flat warts with the potential for malignant transformation. Patients are susceptible to human papillomavirus (HPV) infection that develops in a background of either a genetic or acquired immunodeficiency predisposing patients to infection with specific HPV types that are ubiquitous but generally non-pathogenic in healthy individuals. There is no standard clinical methodology for determining the causative HPV from patients with suspected EV. Here, we report the diagnostic workup of two EV cases and describe the use of L1 gene Sanger sequencing as a specific method to accurately identify the causative HPV genotype and confirm the diagnosis of EV.
Asunto(s)
Proteínas de la Cápside , Epidermodisplasia Verruciforme , Proteínas Oncogénicas Virales , Papillomaviridae , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Epidermodisplasia Verruciforme/diagnóstico , Epidermodisplasia Verruciforme/genética , Epidermodisplasia Verruciforme/metabolismo , Epidermodisplasia Verruciforme/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo , Papillomaviridae/genética , Papillomaviridae/metabolismoRESUMEN
Refinements in early detection, surgical and radiation therapy, and hormone receptor-targeted treatments have improved the survival rates for breast cancer patients. However, the ability to reliably identify which non-invasive lesions and localized tumors have the ability to progress and/or metastasize remains a major unmet need in the field. The current diagnostic and therapeutic strategies focus on intrinsic alterations within carcinoma cells that are closely associated with proliferation. However, substantial accumulating evidence has indicated that permissive changes in the stromal tissues surrounding the carcinoma play an integral role in breast cancer tumor initiation and progression. Numerous studies have suggested that the stromal environment surrounding ductal carcinoma in situ (DCIS) lesions actively contributes to enhancing tumor cell invasion and immune escape. This review will describe the current state of knowledge regarding the mechanisms through which the microenvironment interacts with DCIS lesions focusing on recent studies that describe the contributions of myoepithelial cells, fibroblasts and immune cells to invasion and subsequent progression. These mechanisms will be considered in the context of developing biomarkers for identifying lesions that will progress to invasive carcinoma and/or developing approaches for therapeutic intervention.
Asunto(s)
Neoplasias de la Mama/patología , Carcinoma Intraductal no Infiltrante/patología , Microambiente Tumoral/fisiología , Animales , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Carcinoma Intraductal no Infiltrante/metabolismo , Progresión de la Enfermedad , Femenino , Humanos , Invasividad Neoplásica/patologíaRESUMEN
During embryonic development, the paraxial mesoderm becomes segmented into somites, within which proliferative muscle progenitors and muscle fibers establish the skeletal musculature. Here, we demonstrate that a gene network previously implicated in somite boundary formation, involving the transcriptional regulators Tbx6, Mesp-b and Ripply1, also confers spatial and temporal regulation to skeletal myogenesis in zebrafish. We show that Tbx6 directly regulates mesp-b and ripply1 expression in vivo, and that the interactions within the regulatory network are largely conserved among vertebrates. Mesp-b is necessary and sufficient for the specification of a subpopulation of muscle progenitors, the central proportion of the Pax3(+)/Pax7(+) dermomyotome. Conditional ubiquitous expression indicates that Mesp-b acts by inhibiting myogenic differentiation and by inducing the dermomyotome marker meox1. By contrast, Ripply1 induces a negative-feedback loop by promoting Tbx6 protein degradation. Persistent Tbx6 expression in Ripply1 knockdown embryos correlates with a deficit in dermomyotome and myotome marker gene expression, suggesting that Ripply1 promotes myogenesis by terminating Tbx6-dependent inhibition of myogenic maturation. Together, our data suggest that Mesp-b is an intrinsic upstream regulator of skeletal muscle progenitors and that, in zebrafish, the genes regulating somite boundary formation also regulate the development of the dermomyotome in the anterior somite compartment.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Desarrollo de Músculos/fisiología , Músculo Esquelético/embriología , Proteínas Nucleares/metabolismo , Proteínas de Dominio T Box/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Anticuerpos Monoclonales , Secuencia de Bases , Inmunoprecipitación de Cromatina , Regulación del Desarrollo de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiología , Inmunohistoquímica , Hibridación in Situ , Datos de Secuencia Molecular , Morfolinos/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Somitos/embriología , Proteínas de Dominio T Box/inmunología , Proteínas de Pez Cebra/inmunologíaRESUMEN
Intra-tumoral genomic heterogeneity is a well-established biologic property of human malignancies with emerging roles in cancer progression and therapy resistance. However, its impact on the clinical utility of genomic testing in patient management remains unclear. Furthermore, best practices to account for heterogeneity in the provision of highly accurate, clinically valid molecular testing have yet to be firmly established. Genomic biomarkers for the management of colorectal carcinoma are both well-established (ie, KRAS, NRAS) and emerging (BRAF, PIK3CA, and others) in respect to therapy selection and clinical trial eligibility. Critically, standard colorectal carcinoma management requires the exclusion of KRAS and NRAS mutations; thus optimal procedures to control for potential intra-tumoral heterogeneity are clinically important. Here, we assessed heterogeneity among three intra-tumoral sites within 99 colorectal carcinomas cases on a CLIA-validated oncology next generation sequencing assay and examined whether a pooling strategy overcame any discordant results. Overall, 11% of cases demonstrated discordant mutation results between sites; 2% of cases were discrepant for mutations within RAS genes while the remainder was discrepant in PIK3CA. Half of the discrepant cases were associated with borderline tumor cellularity assessment. Further, a sample pooling strategy across all three sites successfully detected the relevant mutation in all but one case. Our results indicate that intra-tumoral genomic heterogeneity of clinically relevant genes within colorectal carcinoma is a relatively infrequent occurrence and that a simple strategy to pool DNA from several tumor sites with adequate cellularity minimizes the risk of false negative results even further to ensure optimal patient management.
Asunto(s)
Neoplasias Colorrectales/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación , Adulto , Anciano , Anciano de 80 o más Años , Fosfatidilinositol 3-Quinasa Clase I/genética , Neoplasias Colorrectales/patología , Femenino , GTP Fosfohidrolasas/genética , Humanos , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas p21(ras)/genéticaRESUMEN
The neonatal intestine is a very complex and dynamic organ that must rapidly adapt and remodel in response to a barrage of environmental stimuli during the first few postnatal weeks. Recent studies demonstrate that the zinc finger transcriptional repressor Blimp1/Prdm1 plays an essential role governing postnatal reprogramming of intestinal enterocytes during this period. Functional loss results in global changes in gene expression patterns, particularly in genes associated with metabolic function. Here we engineered a knock-in allele expressing an eGFP-tagged fusion protein under control of the endogenous regulatory elements and performed genome wide ChIP-seq analysis to identify direct Blimp1 targets and further elucidate the function of Blimp1 in intestinal development. Comparison with published human and mouse datasets revealed a highly conserved core set of genes including interferon-inducible promoters. Here we show that the interferon-inducible transcriptional activator Irf1 is constitutively expressed throughout fetal and postnatal intestinal epithelium development. ChIP-seq demonstrates closely overlapping Blimp1 and Irf1 peaks at key components of the MHC class I pathway in fetal enterocytes. The onset of MHC class I expression coincides with down-regulated Blimp1 expression during the suckling to weaning transition. Collectively, these experiments strongly suggest that in addition to regulating the enterocyte metabolic switch, Blimp1 functions as a gatekeeper in opposition to Irf1 to prevent premature activation of the MHC class I pathway in villus epithelium to maintain tolerance in the neonatal intestine.
Asunto(s)
Antígenos de Histocompatibilidad Clase I/inmunología , Factor 1 Regulador del Interferón/metabolismo , Mucosa Intestinal/metabolismo , Placenta/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular/genética , Línea Celular Tumoral , Enterocitos/citología , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Sustitución del Gen , Proteínas Fluorescentes Verdes/genética , Humanos , Factor 1 Regulador del Interferón/genética , Mucosa Intestinal/crecimiento & desarrollo , Ratones , Placenta/citología , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Embarazo , Regiones Promotoras Genéticas/genética , Elementos Reguladores de la Transcripción/genética , Factores de Transcripción/genéticaRESUMEN
Over the past decade, subset analyses of retrospective and prospective clinical studies have determined that KRAS-mutated metastatic colorectal cancers do not respond effectively to inhibition of epidermal growth factor receptor (EGFR) with the EGFR-targeting monoclonal antibodies cetuximab or panitumumab. Within the past few years, the scope of tested variants in the KRAS oncogene has expanded significantly, and testing of all RAS family genes has become more widely available in clinical laboratories. Expert consensus guidelines have recommended not using EGFR inhibitors in patients with KRAS-mutated tumors. However, with increasing identification of low-prevalence variants, it is conceivable that some RAS mutations do not provide equivalent resistance to EGFR inhibition compared with the most prevalent mutations at codons 12, 13, and 61. This report describes a case of a patient with metastatic colon cancer harboring the p.A59T variant of KRAS, with objective radiographic response (36% decrease per RECIST 1.1) and carcinoembryonic antigen biomarker response to panitumumab therapy given with FOLFIRI chemotherapy. We propose that A59T represents one potential exception to the guidelines that KRAS mutant tumors fail to respond to therapy with EGFR inhibitors, altering the paradigm of using this generalized approach.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Genes ras , Mutación Missense , Anticuerpos Monoclonales/administración & dosificación , Neoplasias Colorrectales/diagnóstico , Análisis Mutacional de ADN , Receptores ErbB/antagonistas & inhibidores , Femenino , Pruebas Genéticas , Humanos , Biopsia Guiada por Imagen , Persona de Mediana Edad , Imagen Multimodal , Metástasis de la Neoplasia , Panitumumab , Resultado del TratamientoRESUMEN
It is a truth (almost) universally acknowledged that conserved non-coding genomic sequences function in the cis regulation of neighbouring genes. But is this a misconception? The literature is strewn with examples of conserved non-coding sequences being able to drive reporter expression, but the extent to which such sequences are actually used endogenously in vivo is only now being rigorously explored using unbiased genome-scale approaches. Here, we review the emerging picture, examining the extent to which conserved non-coding sequences equivalently regulate gene expression in different species, or at different developmental stages, and how genomics approaches are revealing the relationship between sequence conservation and functional use of cis-regulatory elements.