Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Nano Lett ; 23(21): 9825-9831, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37883324

RESUMEN

Optical metasurfaces present remarkable opportunities for manipulating wave propagation in unconventional ways, surpassing the capabilities of traditional optical devices. In this work, we introduce and demonstrate a multifunctional dynamic tuning of dielectric metasurfaces containing liquid crystals (LCs) through an effective three-dimensional (3D) control of the molecular orientation. We theoretically and experimentally study the spectral tuning of the electric and magnetic resonances of dielectric metasurfaces, which was enabled by rotating an external magnetic field in 3D. Our approach allows for the independent control of the electric and magnetic resonances of a metasurface, enabling multifunctional operation. The magnetic field tuning approach eliminates the need for the pre-alignment of LCs and is not limited by a finite set of directions in which the LC molecules can be oriented. Our results open new pathways for realizing dynamically reconfigurable metadevices and observing novel physical effects without the usual limitations imposed by the boundary conditions of LC cells and the external voltage.

2.
Nano Lett ; 23(17): 8091-8098, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37610974

RESUMEN

Complex polarization states of photon pairs are indispensable in various quantum technologies. Conventional methods for preparing desired two-photon polarization states are realized through bulky nonlinear crystals, which can restrict the versatility and tunability of the generated quantum states due to the fixed crystal nonlinear susceptibility. Here we present a solution using a nonlinear metasurface incorporating multiplexed silica metagratings on a lithium niobate film of 300 nm thickness. We fabricate two orthogonal metagratings on a single substrate with an identical resonant wavelength, thereby enabling the spectral indistinguishability of the emitted photons, and we demonstrate in experiments that the two-photon polarization states can be shaped by the metagrating orientation. Leveraging this essential property, we formulate a theoretical approach for generating arbitrary polarization-entangled qutrit states by combining three metagratings on a single metasurface, allowing the encoding of the desired quantum states or information. Our findings enable miniaturized optically controlled quantum devices by using ultrathin metasurfaces as polarization-entangled photon sources.

3.
Opt Express ; 30(4): 4793-4805, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35209453

RESUMEN

Lead iodide (PbI2) is a van der Waals layered semiconductor with a direct bandgap in its bulk form and a hexagonal layered crystalline structure. The recently developed PbI2 nanosheets have shown great promise for high-performance optoelectronic devices, including nanolasers and photodetectors. However, despite being widely used as a precursor for perovskite materials, the optical properties of PbI2 nanomaterials remain largely unexplored. Here, we determine the nonlinear optical properties of PbI2 nanosheets by utilising nonlinear microscopy as a non-invasive optical technique. We demonstrate the nonlinearity enhancement dependent on excitonic resonances, crystalline orientation, thickness, and influence of the substrate. Our results allow for estimating the second- and third-order nonlinear susceptibilities of the nanosheets, opening new opportunities for the use of PbI2 nanosheets as nonlinear and quantum light sources.

4.
Nano Lett ; 19(6): 3905-3911, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31136193

RESUMEN

Second-harmonic generation (SHG) in resonant dielectric Mie-scattering nanoparticles has been hailed as a powerful platform for nonlinear light sources. While bulk-SHG is suppressed in elemental semiconductors, for example, silicon and germanium due to their centrosymmetry, the group of zincblende III-V compound semiconductors, especially (100)-grown AlGaAs and GaAs, have recently been presented as promising alternatives. However, major obstacles to push the technology toward practical applications are the limited control over directionality of the SH emission and especially zero forward/backward radiation, resulting from the peculiar nature of the second-order nonlinear susceptibility of this otherwise highly promising group of semiconductors. Furthermore, the generated SH signal for (100)-GaAs nanoparticles depends strongly on the polarization of the pump. In this work, we provide both theoretically and experimentally a solution to these problems by presenting the first SHG nanoantennas made from (111)-GaAs embedded in a low index material. These nanoantennas show superior forward directionality compared to their (100)-counterparts. Most importantly, based on the special symmetry of the crystalline structure, it is possible to manipulate the SHG radiation pattern of the nanoantennas by changing the pump polarization without affecting the linear properties and the total nonlinear conversion efficiency, hence paving the way for efficient and flexible nonlinear beam-shaping devices.

5.
Nano Lett ; 19(2): 1015-1022, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30605616

RESUMEN

Mie-resonant high-index dielectric nanoparticles and metasurfaces have been suggested as a viable platform for enhancing both electric and magnetic dipole transitions of fluorescent emitters. While the enhancement of the electric dipole transitions by such dielectric nanoparticles has been demonstrated experimentally, the case of magnetic-dipole transitions remains largely unexplored. Here, we study the enhancement of spontaneous emission of Eu3+ ions, featuring both electric and magnetic-dominated dipole transitions, by dielectric metasurfaces composed of Mie-resonant silicon nanocylinders. By coating the metasurfaces with a layer of an Eu3+ doped polymer, we observe an enhancement of the Eu3+ emission associated with the electric (at 610 nm) and magnetic-dominated (at 590 nm) dipole transitions. The enhancement factor depends systematically on the spectral proximity of the atomic transitions to the Mie resonances as well as their multipolar order, both controlled by the nanocylinder size. Importantly, the branching ratio of emission via the electric or magnetic transition channel can be modified by carefully designing the metasurface, where the magnetic dipole transition is enhanced more than the electric transition for cylinders with radii of about 130 nm. We confirm our observations by numerical simulations based on the reciprocity principle. Our results open new opportunities for bright nanoscale light sources based on magnetic transitions.

6.
Opt Express ; 27(23): 33391-33398, 2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-31878409

RESUMEN

Second-order nonlinear metasurfaces have proven their ability to efficiently convert the frequency of incident signals over subwavelength thickness. However, the availability of second-order nonlinear materials for such metasurfaces has so far been limited to III-V semiconductors, which have low transparency in the visible and impose constraints on the excitation geometries due to the lack of diagonal second-order susceptibility components. Here we propose a new design concept for second-order nonlinear metasurfaces on a monolithic substrate, which is not limited by the availability of thin crystalline films and can be applied to any non-centrosymmetric material. We exemplify this concept in a monolithic Lithium Niobate metasurface with cylinder-shaped corrugations for enhanced field confinement. By optimizing the geometrical parameters, we show enhanced second harmonic generation from a near-infrared pump beam with conversion efficiency above 10-5 using 1 GW/cm2 pump intensity. Our approach enables new opportunities for practical designs of generic metasurfaces for nonlinear and quantum light sources.

7.
Nano Lett ; 18(6): 3461-3465, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29709198

RESUMEN

Mie-resonant dielectric metasurfaces offer comprehensive opportunities for the manipulation of light fields with high efficiency. Additionally, various strategies for the dynamic tuning of the optical response of such metasurfaces were demonstrated, making them important candidates for reconfigurable optical devices. However, dynamic control of the light-emission properties of active Mie-resonant dielectric metasurfaces by an external control parameter has not been demonstrated so far. Here, we experimentally demonstrate the dynamic tuning of spontaneous emission from a Mie-resonant dielectric metasurface that is situated on a fluorescent substrate and embedded into a liquid crystal cell. By switching the liquid crystal from the nematic state to the isotropic state via control of the cell temperature, we induce a shift of the spectral position of the metasurface resonances. This results in a change of the local photonic density of states, which, in turn, governs the enhancement of spontaneous emission from the substrate. Specifically, we observe spectral tuning of both the electric and magnetic dipole resonances, resulting in a 2-fold increase of the emission intensity at λ ≈ 900 nm. Our results demonstrate a viable strategy to realize flat tunable light sources based on dielectric metasurfaces.

8.
Nano Lett ; 18(11): 6750-6755, 2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-30277790

RESUMEN

We demonstrate the shaping of the second-harmonic (SH) radiation pattern from a single AlGaAs nanodisk antenna using coplanar holographic gratings. The SH radiation emitted from the antenna toward the-otherwise forbidden-normal direction can be effectively redirected by suitably shifting the phase of the grating pattern in the azimuthal direction. The use of such gratings allows increasing the SH power collection efficiency by 2 orders of magnitude with respect to an isolated antenna and demonstrates the possibility of intensity-tailoring for an arbitrary collection angle. Such reconstruction of the nonlinear emission from nanoscale antennas represents the first step toward the application of all-dielectric nanostructures for nonlinear holography.

9.
Nano Lett ; 17(6): 3914-3918, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28511012

RESUMEN

Nonlinear effects at the nanoscale are usually associated with the enhancement of electric fields in plasmonic structures. Recently emerged new platform for nanophotonics based on high-index dielectric nanoparticles utilizes optically induced magnetic response via multipolar Mie resonances and provides novel opportunities for nanoscale nonlinear optics. Here, we observe strong second-harmonic generation from AlGaAs nanoantennas driven by both electric and magnetic resonances. We distinguish experimentally the contribution of electric and magnetic nonlinear response by analyzing the structure of polarization states of vector beams in the second-harmonic radiation. We control continuously the transition between electric and magnetic nonlinearities by tuning polarization of the optical pump. Our results provide a direct observation of nonlinear optical magnetism through selective excitation of multipolar nonlinear modes in nanoantennas.

10.
Opt Lett ; 42(10): 1990-1993, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28504731

RESUMEN

We describe analytically and numerically the geometric phase arising from nonlinear frequency conversion and show that such a phase can be made non-reciprocal by momentum-dependent photonic transition. Such non-reciprocity is immune to the shortcomings imposed by dynamic reciprocity in Kerr and Kerr-like devices. We propose a simple and practical implementation, requiring only a single waveguide and one pump, while the geometric phase is controllable by the pump and promises robustness against fabrication errors.

11.
Nano Lett ; 16(8): 4857-61, 2016 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-27403664

RESUMEN

Strong Mie-type magnetic dipole resonances in all-dielectric nanostructures provide novel opportunities for enhancing nonlinear effects at the nanoscale due to the intense electric and magnetic fields trapped within the individual nanoparticles. Here we study third-harmonic generation from quadrumers of silicon nanodisks supporting high-quality collective modes associated with the magnetic Fano resonance. We observe nontrivial wavelength and angular dependencies of the generated harmonic signal featuring a multifold enhancement of the nonlinear response in oligomeric systems.

12.
Nano Lett ; 16(11): 7191-7197, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27797212

RESUMEN

The quest for nanoscale light sources with designer radiation patterns and polarization has motivated the development of nanoantennas that interact strongly with the incoming light and are able to transform its frequency, radiation, and polarization patterns. Here, we demonstrate dielectric AlGaAs nanoantennas for efficient second harmonic generation, enabling the control of both directionality and polarization of nonlinear emission. This is enabled by specialized III-V semiconductor nanofabrication of high-quality AlGaAs nanostructures embedded in optically transparent low-index material, thus allowing for simultaneous forward and backward nonlinear emission. We show that the nanodisk AlGaAs antennas can emit second harmonic in preferential direction with a backward-to-forward ratio of up to five and can also generate complex vector polarization beams, including beams with radial polarization.

13.
Opt Lett ; 41(22): 5278-5281, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27842112

RESUMEN

We propose and demonstrate a novel type of optical integrated structure consisting of three adiabatically coupled waveguides arranged in an N-shaped geometry. Unlike conventional adiabatic three-waveguide couplers mimicking the stimulated Raman adiabatic passage process which utilize solely the counter-intuitive coupling and, thus, operate only in one direction, our structure achieves complete bidirectional light transfer between two waveguides through the counter-intuitive and intuitive coupling in either direction over a wide wavelength range. Moreover, the light transfer through the intuitive coupling is more efficient and robust than through the counter-intuitive coupling.

14.
Nano Lett ; 15(5): 3324-8, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25844658

RESUMEN

Here we suggest and realize an ultracompact plasmonic spectral-band demultiplexer for telecommunication wavelengths integrated onto an optical waveguide that couples two wavelength-encoded optical signals in the O- and the C-band in opposite directions of a silicon waveguide. In this way, we demonstrate a plasmonic key element for on-chip optical data processing that can also be used as a functional link between on- and off-chip optical signals.

15.
Nano Lett ; 15(10): 6985-90, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26393983

RESUMEN

We demonstrate experimentally ultrafast all-optical switching in subwavelength nonlinear dielectric nanostructures exhibiting localized magnetic Mie resonances. We employ amorphous silicon nanodisks to achieve strong self-modulation of femtosecond pulses with a depth of 60% at picojoule-per-disk pump energies. In the pump-probe measurements, we reveal that switching in the nanodisks can be governed by pulse-limited 65 fs-long two-photon absorption being enhanced by a factor of 80 with respect to the unstructured silicon film. We also show that undesirable free-carrier effects can be suppressed by a proper spectral positioning of the magnetic resonance, making such a structure the fastest all-optical switch operating at the nanoscale.


Asunto(s)
Magnetismo , Nanoestructuras , Fotones
16.
Nano Lett ; 15(8): 5369-74, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26192100

RESUMEN

We experimentally demonstrate a functional silicon metadevice at telecom wavelengths that can efficiently control the wavefront of optical beams by imprinting a spatially varying transmittance phase independent of the polarization of the incident beam. Near-unity transmittance efficiency and close to 0-2π phase coverage are enabled by utilizing the localized electric and magnetic Mie-type resonances of low-loss silicon nanoparticles tailored to behave as electromagnetically dual-symmetric scatterers. We apply this concept to realize a metadevice that converts a Gaussian beam into a vortex beam. The required spatial distribution of transmittance phases is achieved by a variation of the lattice spacing as a single geometric control parameter.


Asunto(s)
Luz , Nanopartículas/química , Silicio/química , Electricidad , Fenómenos Magnéticos , Dispositivos Ópticos , Dispersión de Radiación
17.
Opt Lett ; 40(8): 1659-62, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25872041

RESUMEN

We demonstrate the enhancement of magnetic dipole spontaneous emission from Eu3+ ions by an engineered plasmonic nanostructure that controls the electromagnetic environment of the emitter. Using an optical microscope setup, an enhancement in the intensity of the Eu3+ magnetic dipole emission was observed for emitters located in close vicinity to a gold nanohole array designed to support plasmonic resonances overlapping with the emission spectrum of the ions.

18.
Nano Lett ; 14(11): 6488-92, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25322350

RESUMEN

We observe enhanced third-harmonic generation from silicon nanodisks exhibiting both electric and magnetic dipolar resonances. Experimental characterization of the nonlinear optical response through third-harmonic microscopy and spectroscopy reveals that the third-harmonic generation is significantly enhanced in the vicinity of the magnetic dipole resonances. The field localization at the magnetic resonance results in two orders of magnitude enhancement of the harmonic intensity with respect to unstructured bulk silicon with the conversion efficiency limited only by the two-photon absorption in the substrate.

19.
Small ; 10(10): 1985-90, 2014 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-24616191

RESUMEN

It is well-known that oligomers made of metallic nanoparticles are able to support sharp Fano resonances originating from the interference of two plasmonic resonant modes with different spectral width. While such plasmonic oligomers suffer from high dissipative losses, a new route for achieving Fano resonances in nanoparticle oligomers has opened up after the recent experimental observations of electric and magnetic resonances in low-loss dielectric nanoparticles. Here, light scattering by all-dielectric oligomers composed of silicon nanoparticles is studied experimentally for the first time. Pronounced Fano resonances are observed for a variety of lithographically-fabricated heptamer nanostructures consisting of a central particle of varying size, encircled by six nanoparticles of constant size. Based on a full collective mode analysis, the origin of the observed Fano resonances is revealed as a result of interference of the optically-induced magnetic dipole mode of the central particle with the collective mode of the nanoparticle structure. This allows for effective tuning of the Fano resonance to a desired spectral position by a controlled size variation of the central particle. Such optically-induced magnetic Fano resonances in all-dielectric oligomers offer new opportunities for sensing and nonlinear applications.

20.
Opt Express ; 22(9): 11079-89, 2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24921806

RESUMEN

Experiments performed with different vortex pump beams show for the first time the algebra of the vortex topological charge cascade, that evolves in the process of nonlinear wave mixing of optical vortex beams in Kerr media due to competition of four-wave mixing with self-and cross-phase modulation. This leads to the coherent generation of complex singular beams within a spectral bandwidth larger than 200nm. Our experimental results are in good agreement with frequency-domain numerical calculations that describe the newly generated spectral satellites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA