Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cereb Cortex ; 34(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38937077

RESUMEN

Even partly consolidated memories can be forgotten given sufficient time, but the brain activity associated with durability of episodic memory at different time scales remains unclear. Here, we aimed to identify brain activity associated with retrieval of partly consolidated episodic memories that continued to be remembered in the future. Forty-nine younger (20 to 38 years; 25 females) and 43 older adults (60 to 80 years, 25 females) were scanned with functional magnetic resonance imaging during associative memory retrieval 12 h post-encoding. Twelve hours is sufficient to allow short-term synaptic consolidation as well as early post-encoding replay to initiate memory consolidation. Successful memory trials were classified into durable and transient source memories based on responses from a memory test ~6 d post-encoding. Results demonstrated that successful retrieval of future durable vs. transient memories was supported by increased activity in a medial prefrontal and ventral parietal area. Individual differences in activation as well as the subjective vividness of memories during encoding were positively related to individual differences in memory performance after 6 d. The results point to a unique and novel aspect of brain activity supporting long-term memory, in that activity during retrieval of memories even after 12 h of consolidation contains information about potential for long-term durability.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Consolidación de la Memoria , Memoria Episódica , Recuerdo Mental , Humanos , Femenino , Masculino , Adulto , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Adulto Joven , Recuerdo Mental/fisiología , Anciano , Consolidación de la Memoria/fisiología , Anciano de 80 o más Años , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Factores de Tiempo
2.
Cereb Cortex ; 33(8): 4844-4858, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36190442

RESUMEN

Systems consolidation of new experiences into lasting episodic memories involves hippocampal-neocortical interactions. Evidence of this process is already observed during early post-encoding rest periods, both as increased hippocampal coupling with task-relevant perceptual regions and reactivation of stimulus-specific patterns following intensive encoding tasks. We investigate the spatial and temporal characteristics of these hippocampally anchored post-encoding neocortical modulations. Eighty-nine adults participated in an experiment consisting of interleaved memory task- and resting-state periods. We observed increased post-encoding functional connectivity between hippocampus and individually localized neocortical regions responsive to stimuli encountered during memory encoding. Post-encoding modulations were manifested as a nearly system-wide upregulation in hippocampal coupling with all major functional networks. The configuration of these extensive modulations resembled hippocampal-neocortical interaction patterns estimated from active encoding operations, suggesting hippocampal post-encoding involvement exceeds perceptual aspects. Reinstatement of encoding patterns was not observed in resting-state scans collected 12 h later, nor when using other candidate seed regions. The similarity in hippocampal functional coupling between online memory encoding and offline post-encoding rest suggests reactivation in humans involves a spectrum of cognitive processes engaged during the experience of an event. There were no age effects, suggesting that upregulation of hippocampal-neocortical connectivity represents a general phenomenon seen across the adult lifespan.


Asunto(s)
Consolidación de la Memoria , Memoria Episódica , Neocórtex , Adulto , Humanos , Neocórtex/fisiología , Regulación hacia Arriba , Imagen por Resonancia Magnética , Hipocampo/diagnóstico por imagen , Hipocampo/fisiología
3.
Neuroimage ; 279: 120309, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37544416

RESUMEN

Memory encoding and retrieval are critical sub-processes of episodic memory. While the hippocampus is involved in both, less is known about its connectivity with the neocortex during memory processing in humans. This is partially due to variations in demands in common memory tasks, which inevitably recruit cognitive processes other than episodic memory. Conjunctive analysis of data from different tasks with the same core elements of encoding and retrieval can reduce the intrusion of patterns related to subsidiary perceptual and cognitive processing. Leveraging data from two large-scale functional resonance imaging studies with different episodic memory tasks (514 and 237 participants), we identified hippocampal-cortical networks active during memory tasks. Whole-brain functional connectivity maps were similar during resting state, encoding, and retrieval. Anterior and posterior hippocampus had distinct connectivity profiles, which were also stable across resting state and memory tasks. When contrasting encoding and retrieval connectivity, conjunctive encoding-related connectivity was sparse. During retrieval hippocampal connectivity was increased with areas known to be active during recollection, including medial prefrontal, inferior parietal, and parahippocampal cortices. This indicates that the stable functional connectivity of the hippocampus along its longitudinal axis is superposed by increased functional connectivity with the recollection network during retrieval, while auxiliary encoding connectivity likely reflects contextual factors.


Asunto(s)
Memoria Episódica , Neocórtex , Humanos , Recuerdo Mental , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Hipocampo/diagnóstico por imagen
4.
Cereb Cortex ; 32(11): 2358-2372, 2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-34581398

RESUMEN

Encoding of durable episodic memories requires cross-talk between the hippocampus and multiple brain regions. Changes in these hippocampal interactions could contribute to age-related declines in the ability to form memories that can be retrieved after extended time intervals. Here we tested whether hippocampal-neocortical- and subcortical functional connectivity (FC) observed during encoding of durable episodic memories differed between younger and older adults. About 48 younger (20-38 years; 25 females) and 43 older (60-80 years; 25 females) adults were scanned with fMRI while performing an associative memory encoding task. Source memory was tested ~20 min and ~6 days postencoding. Associations recalled after 20 min but later forgotten were classified as transient, whereas memories retained after long delays were classified as durable. Results demonstrated that older adults showed a reduced ability to form durable memories and reduced hippocampal-caudate FC during encoding of durable memories. There was also a positive relationship between hippocampal-caudate FC and higher memory performance among the older adults. No reliable age group differences in durable memory-encoding activity or hippocampal-neocortical connectivity were observed. These results support the classic theory of striatal alterations as one cause of cognitive decline in aging and highlight that age-related changes in episodic memory extend beyond hippocampal-neocortical connections.


Asunto(s)
Memoria Episódica , Anciano , Mapeo Encefálico , Femenino , Hipocampo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Recuerdo Mental
5.
Cereb Cortex ; 33(1): 68-82, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-35193146

RESUMEN

There is a limited understanding of age differences in functional connectivity during memory encoding. In the present study, a sample of cognitively healthy adult participants (n = 488, 18-81 years), a subsample of whom had longitudinal cognitive and brain structural data spanning on average 8 years back, underwent functional magnetic resonance imaging while performing an associative memory encoding task. We investigated (1) age-related differences in whole-brain connectivity during memory encoding; (2) whether encoding connectivity patterns overlapped with the activity signatures of specific cognitive processes, and (3) whether connectivity associated with memory encoding related to longitudinal brain structural and cognitive changes. Age was associated with lower intranetwork connectivity among cortical networks and higher internetwork connectivity between networks supporting higher level cognitive functions and unimodal and attentional areas during encoding. Task-connectivity between mediotemporal and posterior parietal regions-which overlapped with areas involved in mental imagery-was related to better memory performance only in older age. The connectivity patterns supporting memory performance in older age reflected preservation of thickness of the medial temporal cortex. The results are more in accordance with a maintenance rather than a compensation account.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Adulto , Humanos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Mapeo Encefálico/métodos , Cognición , Lóbulo Temporal , Vías Nerviosas/diagnóstico por imagen
6.
Cereb Cortex ; 29(9): 3879-3890, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30357317

RESUMEN

The human cerebral cortex is highly regionalized, and this feature emerges from morphometric gradients in the cerebral vesicles during embryonic development. We tested if this principle of regionalization could be traced from the embryonic development to the human life span. Data-driven fuzzy clustering was used to identify regions of coordinated longitudinal development of cortical surface area (SA) and thickness (CT) (n = 301, 4-12 years). The principal divide for the developmental SA clusters extended from the inferior-posterior to the superior-anterior cortex, corresponding to the major embryonic morphometric anterior-posterior (AP) gradient. Embryonic factors showing a clear AP gradient were identified, and we found significant differences in gene expression of these factors between the anterior and posterior clusters. Further, each identified developmental SA and CT clusters showed distinguishable life span trajectories in a larger longitudinal dataset (4-88 years, 1633 observations), and the SA and CT clusters showed differential relationships to cognitive functions. This means that regions that developed together in childhood also changed together throughout life, demonstrating continuity in regionalization of cortical changes. The AP divide in SA development also characterized genetic patterning obtained in an adult twin sample. In conclusion, the development of cortical regionalization is a continuous process from the embryonic stage throughout life.


Asunto(s)
Envejecimiento/fisiología , Corteza Cerebral/crecimiento & desarrollo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Niño , Preescolar , Análisis por Conglomerados , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA