Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 312
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(1): e0125023, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38112479

RESUMEN

Valorization of microalgae into high-value products and drop-in chemicals can reduce our dependence on non-renewable fossil fuels in an environmentally sustainable way. Among the valuable products, medium-chain carboxylic acids (MCCAs) and alcohols are attractive building blocks as fuel precursors. However, the biosynthetic mechanisms of MCCAs and alcohols in anaerobic microalgae fermentation and the regulating role of pH on the microbial structure and metabolism interaction among different functional groups have never been documented. In this work, we systematically investigated the roles of pH (5, 7, and 10) on the production of MCCAs and alcohols in anaerobic microalgae fermentation. The gene-centric and genome-centric metagenomes were employed to uncover the dynamics and metabolic network of the key players in the microbial communities. The results indicated that the pH significantly changed the product spectrum. The maximum production rate of alcohol was obtained at pH 5, while pH 7 was more beneficial for MCCA production. Metagenomic analysis reveals that this differential performance under different pH is attributed to the transformation of microbial guild and metabolism regulated by pH. The composition of various functional groups for MCCA and alcohol production also varies at different pH levels. Finally, a metabolic network was proposed to reveal the microbial interactions at different pH levels and thus provide insights into bioconversion of microalgae to high-value biofuels.IMPORTANCECarboxylate platforms encompass a biosynthesis process involving a mixed and undefined culture, enabling the conversion of microalgae, rich in carbohydrates and protein, into valuable fuels and mitigating the risks associated with algae blooms. However, there is little known about the effects of pH on the metabolic pathways of chain elongation and alcohol production in anaerobic microalgae fermentation. Moreover, convoluted and interdependent microbial interactions encumber efforts to characterize how organics and electrons flow among microbiome members. In this work, we compared metabolic differences among three different pH levels (5, 7, and 10) in anaerobic microalgae fermentation. In addition, genome-centric metagenomic analysis was conducted to reveal the microbial interaction for medium-chain carboxylic acid and alcohol production.


Asunto(s)
Ácidos Carboxílicos , Microalgas , Fermentación , Ácidos Carboxílicos/metabolismo , Microalgas/metabolismo , Anaerobiosis , Etanol/metabolismo , Concentración de Iones de Hidrógeno
2.
Environ Sci Technol ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953238

RESUMEN

Sewage sludge, as a carbon-rich byproduct of wastewater treatment, holds significant untapped potential as a renewable resource. Upcycling this troublesome waste stream represents great promise in addressing global escalating energy demands through its wide practice of biochemical recovery concurrently. Here, we propose a biotechnological concept to gain value-added liquid bioproducts from sewage sludge in a self-sufficient manner by directly transforming sludge into medium-chain fatty acids (MCFAs). Our findings suggest that yeast, a cheap and readily available commercial powder, would involve ethanol-type fermentation in chain elongation to achieve abundant MCFA production from sewage sludge using electron donors (i.e., ethanol) and acceptors (i.e., short-chain fatty acids) produced in situ. The enhanced abundance and transcriptional activity of genes related to key enzymes, such as butyryl-CoA dehydrogenase and alcohol dehydrogenase, affirm the robust capacity for the self-sustained production of MCFAs. This is indicative of an effective metabolic network established between yeast and anaerobic microorganisms within this innovative sludge fermentation framework. Furthermore, life cycle assessment and techno-economic analysis evidence the sustainability and economic competitiveness of this biotechnological strategy. Overall, this work provides insights into sewage sludge upgrading independent of additional carbon input, which can be applied in existing anaerobic sludge fermentation infrastructure as well as to develop new applications in a diverse range of industries.

3.
Environ Sci Technol ; 58(24): 10632-10643, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38817146

RESUMEN

The feasibility of a synergistic endogenous partial denitrification-phosphorus removal coupled anammox (SEPD-PR/A) system was investigated in a modified anaerobic baffled reactor (mABR) for synchronous carbon, nitrogen, and phosphorus removal. The mABR comprising four identical compartments (i.e., C1-C4) was inoculated with precultured denitrifying glycogen-accumulating organisms (DGAOs), denitrifying polyphosphate-accumulating organisms, and anammox bacteria. After 136 days of operation, the chemical oxygen demand (COD), total nitrogen, and phosphorus removal efficiencies reached 88.6 ± 1.0, 97.2 ± 1.5, and 89.1 ± 4.2%, respectively. Network-based analysis revealed that the biofilmed community demonstrated stable nutrient removal performance under oligotrophic conditions in C4. The metagenome-assembled genomes (MAGs) such as MAG106, MAG127, MAG52, and MAG37 annotated as denitrifying phosphorus-accumulating organisms (DPAOs) and MAG146 as a DGAO were dominated in C1 and C2 and contributed to 89.2% of COD consumption. MAG54 and MAG16 annotated as Candidatus_Brocadia (total relative abundance of 16.5% in C3 and 4.3% in C4) were responsible for 74.4% of the total nitrogen removal through the anammox-mediated pathway. Functional gene analysis based on metagenomic sequencing confirmed that different compartments of the mABR were capable of performing distinct functions with specific advantageous microbial groups, facilitating targeted nutrient removal. Additionally, under oligotrophic conditions, the activity of the anammox bacteria-related genes of hzs was higher compared to that of hdh. Thus, an innovative method for the treatment of low-strength municipal and nitrate-containing wastewaters without aeration was presented, mediated by an anammox process with less land area and excellent quality effluent.


Asunto(s)
Reactores Biológicos , Carbono , Desnitrificación , Nitrógeno , Fósforo , Fósforo/metabolismo , Nitrógeno/metabolismo , Carbono/metabolismo , Bacterias/metabolismo
4.
Environ Sci Technol ; 58(10): 4662-4669, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38422482

RESUMEN

Since the mass production and extensive use of chloroquine (CLQ) would lead to its inevitable discharge, wastewater treatment plants (WWTPs) might play a key role in the management of CLQ. Despite the reported functional versatility of ammonia-oxidizing bacteria (AOB) that mediate the first step for biological nitrogen removal at WWTP (i.e., partial nitrification), their potential capability to degrade CLQ remains to be discovered. Therefore, with the enriched partial nitrification sludge, a series of dedicated batch tests were performed in this study to verify the performance and mechanisms of CLQ biodegradation under the ammonium conditions of mainstream wastewater. The results showed that AOB could degrade CLQ in the presence of ammonium oxidation activity, but the capability was limited by the amount of partial nitrification sludge (∼1.1 mg/L at a mixed liquor volatile suspended solids concentration of 200 mg/L). CLQ and its biodegradation products were found to have no significant effect on the ammonium oxidation activity of AOB while the latter would promote N2O production through the AOB denitrification pathway, especially at relatively low DO levels (≤0.5 mg-O2/L). This study provided valuable insights into a more comprehensive assessment of the fate of CLQ in the context of wastewater treatment.


Asunto(s)
Amoníaco , Compuestos de Amonio , Amoníaco/metabolismo , Aguas del Alcantarillado/microbiología , Bacterias/metabolismo , Reactores Biológicos/microbiología , Oxidación-Reducción , Óxido Nitroso/análisis , Nitrificación , Compuestos de Amonio/metabolismo
5.
J Environ Manage ; 351: 119973, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38160547

RESUMEN

Wastes recycling and reutilization technique could simultaneously fulfill waste control and energy recovery sustainably, which has attracted increasing attention. This work proposed a novel waste reuse technology utilizing ceramsite and amended Fe2O3-ceramsite made from waste activated sludge (WAS) as additives to promote the yield of methane from WAS anaerobic digestion (AD). Experimental results demonstrated that compared to the control (85.05 ± 0.2 mL CH4/g-VS), the cumulative methane yield was effectively enhanced by 14% and 40% when ceramsite and Fe2O3-ceramsite were added. Further investigation revealed that ceramsite, especially the Fe2O3-ceramsite, enriched the populations of key anaerobes involved in hydrolysis, acidification, and methanogenesis. Meanwhile, potential syntrophic metabolisms between syntrophic bacteria and methanogens were confirmed in the Fe2O3-ceramsite AD system. Mechanisms studies exhibited that ceramsite and Fe2O3-ceramsite reinforced intermediate processes for methane production. The favorable pore structure, enhanced Fe (III) reduction capacity and conductivity also contributed a lot to the AD process.


Asunto(s)
Bacterias Anaerobias , Mezclas Complejas , Aguas del Alcantarillado , Anaerobiosis , Aguas del Alcantarillado/química , Bacterias Anaerobias/metabolismo , Metano , Reactores Biológicos , Eliminación de Residuos Líquidos/métodos
6.
J Environ Manage ; 351: 119761, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38113785

RESUMEN

The practice of aquaculture is associated with the generation of a substantial quantity of effluent. Microalgae must effectively assimilate nitrogen and phosphorus from their surrounding environment for growth. This study modeled the algal biomass film, NO3-N concentration, and pH in the membrane bioreactor using the response surface methodology (RSM) and an artificial neural network (ANN). Furthermore, it was suggested that the optimal condition for each parameter be determined. The results of ANN modeling showed that ANN with a structure of 5-3 and employing the transfer functions tansig-logsig demonstrated the highest level of accuracy. This was evidenced by the obtained values of coefficient (R2) = 0.998, R = 0.999, mean squared error (MAE) = 0.0856, and mean square error (MSE) = 0.143. The ANN model, characterized by a 5-5 structure and employing the tansig-logsig transfer function, demonstrates superior accuracy when predicting the concentration of NO3-N and pH. This is evidenced by the high values of R2 (0.996), R (0.998), MAE (0.00162), and MSE (0.0262). The RSM was afterward employed to maximize the performance of algal film biomass, pH levels, and NO3-N concentrations. The optimal conditions for the algal biomass film were a concentration of 2.884 mg/L and a duration of 6.589 days. Similarly, the most favorable conditions for the NO3-N concentration and pH were 2.984 mg/L and 6.787 days, respectively. Therefore, this research uses non-dominated sorting genetic algorithm II (NSGA II) to find the optimal NO3-N concentration, algal biomass film, and pH for product or process quality. The region has the greatest alkaline pH and lowest NO3-N content.


Asunto(s)
Dióxido de Carbono , Redes Neurales de la Computación , Biomasa , Reactores Biológicos , Concentración de Iones de Hidrógeno
7.
J Environ Manage ; 362: 121348, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38824891

RESUMEN

Heterotrophic-sulfur autotrophic denitrification (HAD) has been proposed to be a prospective nitrogen removal process. In this work, the potential of fermentation liquid (FL) from waste-activated sludge (WAS) as the electron donor for denitrification in the HAD system was explored and compared with other conventional carbon sources. Results showed that when FL was used as a carbon source, over 99% of NO3--N was removed and its removal rate exceeded 14.00 mg N/g MLSS/h, which was significantly higher than that of methanol and propionic acid. The produced sulfate was below the limit value and the emission of N2O was low (1.38% of the NO3--N). Microbial community analysis showed that autotrophic denitrifiers were predominated in the HAD system, in which Thiobacillus (16.4%) was the dominant genus. The economic analysis showed the cost of the FL was 0.062 €/m3, which was 30% lower than that in the group dosed with methanol. Our results demonstrated the FL was a promising carbon source for the HAD system, which could reduce carbon emission and cost, and offer a creative approach for waste-activated sludge resource reuse.


Asunto(s)
Carbono , Desnitrificación , Fermentación , Nitrógeno , Aguas del Alcantarillado , Carbono/metabolismo , Nitrógeno/metabolismo , Eliminación de Residuos Líquidos/métodos
8.
J Environ Manage ; 359: 121085, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38728986

RESUMEN

Anaerobic digestion (AD) is a promising technique for waste management, which can achieve sludge stabilization and energy recovery. This study successfully prepared Fe3O4@ceramsite from WAS and applied it as an additive in sludge digestion, aiming to improve the conversion of organics to biomethane efficiency. Results showed that after adding the Fe3O4@ceramsite, the methane production was enhanced by 34.7% compared with the control group (88.0 ± 0.1 mL/g VS). Further mechanisms investigation revealed that Fe3O4@ceramsite enhanced digesta stability by strong buffering capacity, improved sludge conductivity, and promoted Fe (III) reduction. Moreover, Fe3O4@ceramsite has a larger surface area and better porous structure, which also facilitated AD performance. Microbial community analysis showed that some functional anaerobes related to AD such as Spirochaeta and Smithella were enriched with Fe3O4@ceramsite treatment. Potential syntrophic metabolisms between syntrophic bacteria (Syntrophomonas, associated with DIET) and methanogens were also detected in the Fe3O4@ceramsite treatment AD system.


Asunto(s)
Metano , Aguas del Alcantarillado , Anaerobiosis , Metano/metabolismo , Compuestos Férricos , Eliminación de Residuos Líquidos/métodos
9.
J Environ Manage ; 350: 119567, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38007927

RESUMEN

Dealing with the current defaults of environmental toxicity, heating, waste management, and economic crises, exploration of novel non-edible, toxic, and waste feedstock for renewable biodiesel synthesis is the need of the hour. The present study is concerned with Buxus papillosa with seeds oil concentration (45% w/w), a promising biodiesel feedstock encountering environmental defaults and waste management; in addition, this research performed simulation based-response surface methodology (RSM) for Buxus papillosa bio-diesel. Synthesis and application of novel Phyto-nanocatalyst bimetallic oxide with Buxus papillosa fruit capsule aqueous extract was advantageous during transesterification. Characterization of sodium/potassium oxide Phyto-nanocatalyst confirmed 23.5 nm nano-size and enhanced catalytic activity. Other characterizing tools are FTIR, DRS, XRD, Zeta potential, SEM, and EDX. Methyl ester formation was authenticated by FTIR, GC-MS, and NMR. A maximum 97% yield was obtained at optimized conditions i.e., methanol ratio to oil (8:1), catalyst amount (0.37 wt%), reaction duration (180 min), and temperature of 80 °C. The reusability of novel sodium/potassium oxide was checked for six reactions. Buxus papillosa fuel properties were within the international restrictions of fuel. The sulphur content of 0.00090% signified the environmental remedial nature of Buxus papillosa methyl esters and it is a highly recommendable species for biodiesel production at large scale due to a t huge number of seeds production and vast distribution.


Asunto(s)
Buxus , Administración de Residuos , Residuos Peligrosos , Biocombustibles/análisis , Ésteres , Catálisis , Sodio , Aceites de Plantas
10.
Environ Sci Technol ; 57(39): 14611-14621, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37733635

RESUMEN

Antibiotic resistance genes (ARGs) and microplastics (MPs) are recognized as emerging contaminants and threats to global human health. Despite both of them being significantly detected in their "hotspots", i.e., waste activated sludge (WAS), rare studies on how MPs affect ARGs and antibiotic-resistant bacteria (ARB) in anaerobic sludge digestion are available. Herein, the fate of ARGs and ARB after exposure to MPs of three dosages (10, 30, and 80 particles/g-TS), three polymer types (LDPE, PET, and PS), and three branching extents (LDPE, LLDPE, and HDPE) in anaerobic sludge digestion was investigated. Metagenomic results indicated that all variants of MPs resulted in an increase of the relative abundance of ARGs in the digester compared to the control. The abundance of ARGs demonstrated a dosage-dependent relationship within the range from 10 to 80 particles/g-TS, resulting in an increase from 4.5 to 27.9% compared to the control. Branching structure and polymer type influence ARG level in the sludge digester as well. Mechanism studies revealed that LDPE selectively enriched potential ARB and ARGs in the surface biofilm, possibly creating a favorable environment for ARB proliferation and ARG exchange. Furthermore, vertical transfer of ARGs was facilitated by LDPE through increasing bacterial cell proliferation accompanied by the enhancement of relevant functional genes. The elevated abundance of mobile genetic elements (MGEs) and ARGs-carrying plasmids also demonstrated that MGE-mediated horizontal transfer was promoted by LDPE at 80 particles/g-TS. This effect was compounded by increased oxidative stress, cell membrane permeability, and cell cohesion, collectively facilitating horizontal ARG transfer. Consequently, both vertical and horizontal transfer of ARGs could be concurrently promoted by LDPE an in anaerobic sludge digester.


Asunto(s)
Microplásticos , Aguas del Alcantarillado , Humanos , Aguas del Alcantarillado/microbiología , Plásticos , Genes Bacterianos , Anaerobiosis , Transferencia de Gen Horizontal , Prevalencia , Antagonistas de Receptores de Angiotensina , Polietileno , Antibacterianos/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina , Farmacorresistencia Microbiana/genética , Bacterias/genética , Digestión
11.
Environ Res ; 238(Pt 2): 117213, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37776937

RESUMEN

Sulfur-packed beds (SPBs) have been increasingly incorporated into constructed wetland systems to overcome limitations in achieving satisfactory nitrate removal efficiency. However, the underlying impact of hydraulic regimes on SPB performance remains understudied. This study investigated the performance of a pilot-scale SPB, encompassing sulfur autotrophic denitrification (SAD) and sulfur disproportionation (SDP) processes, under various horizontal flow (HF) and vertical flow (VF) regimes. The HF regime exhibited superior SAD efficiency, achieving 3.1-4.4 mg-N/L of nitrate removal compared to 0.9-2.8 mg-N/L under VF regimes. However, greater sulfide production of 3.8-5.6 mg/L was observed, in contrast to only 1.5-2.3 mg/L under VF regimes when SDP occurred. Employing current computational fluid dynamics simulations could predict general regimes but lacked precision in detailing sulfur layer dynamics. In contrast, determining the spatial distribution of SAD substrates and SDP products offered a viable solution, revealing stagnate, short-circuit, and back flows. Moreover, the feasibility of an aeration approach to reduce sulfide emissions below 0.5 mg/L in case of accidental SDP occurrence was confirmed. This study offers a method for assessing detailed hydraulic regimes within SPBs. Additionally, it provides guidance on optimizing the packing of sulfur-based materials when implementing SPBs in constructed wetland systems and presents a strategy for mitigating excessive sulfide emissions.


Asunto(s)
Desnitrificación , Nitratos , Azufre , Humedales , Sulfuros , Reactores Biológicos , Nitrógeno
12.
J Environ Manage ; 345: 118842, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37619388

RESUMEN

Metal-organic frameworks (MOFs) are attractive functional materials due to their high surface area, high porosity, and flexible compositions. However, the high precursor cost and complex synthetic processes hinder their large-scale applications. Herein, a novel green approach has been developed toward the synthesis of Cu-based MOF by a solvent-free mechano-synthesis method and utilizing consumed polyethylene terephthalate (PET)-derived benzenedicarboxylate (BDC) as the linker. The as-prepared CuBDC and aminated CuBDC (CuBDC-NH2) act as green catalysts for the reduction of deleterious 4-nitrophenol (4-NP) into the value-added 4-aminophenol (4-AP). Compared with CuBDC, CuBDC-NH2 shows increased adsorption capability and reduction efficiency. The mechanism and thermodynamic studies suggest that the adsorption of 4-NP on CuBDC-NH2 is an endothermic, spontaneous, favorable, and physical adsorption process. Furthermore, CuBDC-NH2 can expedite the reduction of 4-NP by participating in an adsorptive catalytic process. With the CuBDC-NH2 catalyst, the catalytic normalized kinetic rate of 4-NP was achieved 11.28 mol/min. mg, outperforming state-of-the-art catalysts, and a complete reduction occur in 5 min for a concentrated effluent (200-ppm 4-NP). The plastic waste-derived MOF-mediated catalytic valorization of organic pollutants demonstrated here opens an avenue for the green recycling/utilization of plastic waste, providing meaningful insights into the sustainable management of organic pollutants in wastewater.


Asunto(s)
Contaminantes Ambientales , Tereftalatos Polietilenos , Nitrofenoles
13.
J Environ Manage ; 345: 118524, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37423191

RESUMEN

Medium-chain fatty acids (MCFAs) have drawn great attention due to their high energy density and superior hydrophobicity. Waste activated sludge (WAS) has been documented as a renewable feedstock for MCFAs production via anaerobic fermentation. However, MCFAs production from WAS depends on exogenous addition of electron donor (ED, e.g., lactate) for chain elongation (CE) bioprocess, which results in increased economic cost and limited practical application. In this study, a novel biotechnology was proposed to produce MCFAs from WAS with in-situ self-formed lactate by inoculating Yoghurt starter powder containing with Lactobacillales cultures. The batch experimental results revealed that the lactate was in-situ generated from WAS and the maximum production of MCFAs increased from 1.17 to 3.99 g COD/L with the increased addition of Lactobacillales cultures from 6✕107 to 2.3✕108 CFU/mL WAS. In continuous long-term test over 97 days, average MCFA production reached up to 3.94 g COD/L with a caproate yield of 82.74% at sludge retention time (SRT) 12 days, and the average MCFA production increased to 5.87 g COD/L with 69.28% caproate and 25.18% caprylate at SRT 15 days. A comprehensive analysis of the metagenome and metatranscriptome demonstrated that the genus of Lactobacillus and Streptococcus were capable of producing lactate from WAS and upgrading to MCFAs. Moreover, another genus, i.e., Candidatus Promineofilum, was firstly revealed that it might be responsible for lactate and MCFAs production. Further investigation of related microbial pathways and enzyme expression suggested that D-lactate dehydrogenase and pyruvate ferredoxin oxidoreductase contributed to lactate and acetyl-CoA production, which were the crucial steps for MCFAs generation and were most actively expressed. This study provides a conceptual framework of MCFAs from WAS with endogenous ED, potentially enhancing the energy recovery from WAS treatment.


Asunto(s)
Caproatos , Aguas del Alcantarillado , Ácido Láctico , Ácidos Grasos , Fermentación , Biotransformación
14.
J Environ Manage ; 331: 117324, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36657201

RESUMEN

Vivianite crystallization has been regarded as a suitable option for recovering phosphorus (P) from P-containing wastewater. However, the presence of humic substances (HS) would inevitably affect the formation of vivianite crystals. Therefore, the influences of HS on vivianite crystallization and the changes in the harvested vivianite crystals were investigated in this study. The results suggested the inhibition effect of 70 mg/L HS on vivianite crystallization reached 12.24%, while it could be attenuated by increasing the pH and Fe/P ratio of the solution. Meanwhile, the addition of HS altered the size, purity, and morphology of recovered vivianite crystals due to the blockage of the growth sites on the crystal surface. Additionally, the formation of phosphate ester group, hydrogen bonding, and COOH-Fe2+ complexes are the potential mechanisms of HS interaction with vivianite crystals. The results obtained herein will help to elucidate the underlying mechanism of HS on vivianite crystallization from P-containing wastewater.


Asunto(s)
Fósforo , Aguas Residuales , Fósforo/química , Sustancias Húmicas , Cristalización , Eliminación de Residuos Líquidos , Fosfatos/química
15.
J Environ Manage ; 348: 119223, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37827085

RESUMEN

The recovery of phosphorus (P) through vivianite crystallization offers a promising approach for resource utilization in wastewater treatment plants. However, this process encounters challenges in terms of small product size and low purity. The study aimed to assess the feasibility of using quartz sand as a seed material to enhance P recovery and vivianite crystal characteristics from anaerobic fermentation supernatant. Various factors, including seed dosage, seed size, Fe/P ratio, and pH, were systematically tested in batch experiments to assess their influence. Results demonstrated that the effect of seed enhancement on vivianite crystallization was more pronounced under higher seed dosages, smaller seed sizes, and lower pH or Fe/P ratio. The addition of seeds increased P recovery by 4.43% in the actual anaerobic fermentation supernatant and also augmented the average particle size of the recovered product from 19.57 to 39.28 µm. Moreover, introducing quartz sand as a seed material effectively reduced co-precipitation, leading to a notable 12.5% increase in the purity of the recovered vivianite compared to the non-seeded process. The formation of an ion adsorption layer on the surface of quartz sand facilitated crystal attachment and growth, significantly accelerating the vivianite crystallization rate and enhancing P recovery. The economic analysis focused on chemical costs further affirmed the economic viability of using quartz sand as a seed material for P recovery through vivianite crystallization, which provides valuable insights for future research and engineering applications.


Asunto(s)
Fósforo , Cuarzo , Fermentación , Arena , Anaerobiosis , Cristalización , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Fosfatos/química , Compuestos Ferrosos/química
16.
J Environ Manage ; 344: 118440, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37343477

RESUMEN

Peroxymonosulfate (PMS)-mediated advanced oxidation processes gain growing attention in degrading antibiotics (e.g., tetracycline (TC)) in wastewater for their high capacity and relatively low cost, while designing efficient catalysts for PMS activation remains a challenge. In this study, a sulfur-doped Fe/C catalyst (Fe@C-S) synthesized from iron metal-organic frameworks (Fe-MOFs) was developed for PMS activation towards TC removal. Under optimal conditions, the TC removal efficiency of Fe@C-S150/PMS system within 40 min was 91.2%. Meanwhile, the k value for Fe@C-S150/PMS system (0.2038 min-1) was 3.36-fold as high as the S-free Fe@C-based PMS system. Also, Fe@C-S150/PMS system showed high robustness in different water matrices. Further studies found that the TC degradation mechanism was mainly ascribed to the non-radical pathway (1O2 and electron transfer). Fe nanoparticles, S and CO groups on the catalyst all participated in the generation of reactive oxygen species (ROS). Besides, S species could enhance the Fe2+/Fe3+ redox cycle and accelerate the electron transfer process. This work highlights the critical role of S in enhancing the catalytic performance of Fe/C-based catalysts for PMS activation, which would provide meaningful insights into the design of high-performance PMS activators for the sustainable remediation of emerging contaminants-polluted water bodies.


Asunto(s)
Antibacterianos , Tetraciclina , Dominio Catalítico , Peróxidos , Azufre , Agua
17.
Small ; 18(40): e2204758, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36058652

RESUMEN

Regulating the electronic structure and intrinsic activity of catalysts' active sites with optimal hydrogen intermediates adsorption is crucial to enhancing the hydrogen evolution reaction (HER) in alkaline media. Herein, a heterostructured V-doped Ni2 P/Ni12 P5 (V-Ni2 P/Ni12 P5 ) electrocatalyst is  fabricated through a hydrothermal treatment and controllable phosphidation process. In comparison with pure-phase V-Ni2 P, in/ex situ characterizations and theoretical calculations reveal a redistribution of electrons and active sites in V-Ni2 P/Ni12 P5 due to the V doping and heterointerfaces effect. The strong coupling between Ni2 P and Ni12 P5 at the interface leads to an increased electron density at interfacial Ni sites while depleting at P sites, with V-doping further promoting the electron accumulation at Ni sites. This is accompanied by the change of active sites from the anionic P sites to the interfacial Ni-V bridge sites in V-Ni2 P/Ni12 P5 . Benefiting from the interface electronic structure, increased number of active sites, and optimized H-adsorption energy, the V-Ni2 P/Ni12 P5 exhibits an overpotential of 62 mV to deliver 10 mA cm-2 and excellent long-term stability for HER. The V-Ni2 P/Ni12 P5 catalyst is applied for anion exchange membrane water electrolysis to deliver superior performance with a current density of 500 mA cm-2 at a cell voltage of 1.79 V and excellent durability.

18.
Biotechnol Bioeng ; 119(1): 257-267, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34693996

RESUMEN

Nitrous oxide (N2 O) was previously deemed as a potent greenhouse gas but is actually an untapped energy source, which can accumulate during the microbial denitrification of nitric oxide (NO). Compared with the organic electron donor required in heterotrophic denitrification, elemental sulfur (S0 ) is a promising electron donor alternative due to its cheap cost and low biomass yield in sulfur-driven autotrophic denitrification. However, no effort has been made to test N2 O recovery from sulfur-driven denitrification of NO so far. Therefore, in this study, batch and continuous experiments were carried out to investigate the NO removal performance and N2 O recovery potential via sulfur-driven NO-based denitrification under various Fe(II)EDTA-NO concentrations. Efficient energy recovery was achieved, as up to 35.5%-40.9% of NO was converted to N2 O under various NO concentrations. N2 O recovery from Fe(II)EDTA-NO could be enhanced by the low bioavailability of sulfur and the acid environment caused by sulfur oxidation. The NO reductase (NOR) and N2 O reductase (N2 OR) were inhibited distinctively at relatively low NO levels, leading to efficient N2 O accumulation, but were suppressed irreversibly at NO level beyond 15 mM in continuous experiments. Such results indicated that the regulation of NO at a relatively low level would benefit the system stability and NO removal capacity during long-term system operation. The continuous operation of the sulfur-driven Fe(II)EDTA-NO-based denitrification reduced the overall microbial diversity but enriched several key microbial community. Thauera, Thermomonas, and Arenimonas that are able to carry out sulfur-driven autotrophic denitrification became the dominant organisms with their relative abundance increased from 25.8% to 68.3%, collectively.


Asunto(s)
Desnitrificación/fisiología , Microbiota , Óxido Nítrico , Óxido Nitroso , Azufre/metabolismo , Procesos Autotróficos/fisiología , Microbiota/genética , Microbiota/fisiología , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Óxido Nitroso/análisis , Óxido Nitroso/metabolismo
19.
Environ Sci Technol ; 56(6): 3658-3668, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35254057

RESUMEN

This study demonstrated that Fe3O4 simultaneously improves the total production and formation rate of medium-chain fatty acids (MCFAs) and long-chain alcohols (LCAs) from waste activated sludge (WAS) in anaerobic fermentation. Results revealed that when Fe3O4 increased from 0 to 5 g/L, the maximal MCFA and LCA production increased significantly, and the optimal fermentation time was also remarkably shortened from 24 to 9 days. Moreover, Fe3O4 also enhanced WAS degradation, and the corresponding degradation rate in the fermentation system increased from 43.86 to 72.38% with an increase in Fe3O4 from 0 to 5 g/L. Further analysis showed that Fe3O4 promoted the microbe activities of all the bioprocesses (including hydrolysis, acidogenesis, and chain elongation processes) involved in the MCFA and LCA production from WAS. Microbial community analysis indicated that Fe3O4 increased the abundances of key microbes involved in abovementioned bioprocesses correspondingly. Mechanistic investigations showed that Fe3O4 increased the conductivity of the fermented sludge, providing a better conductive environment for the anaerobic microbes. The redox cycle of Fe(II) and Fe(III) existed in the fermentation system with Fe3O4, which was likely to act as electron shuttles to conduct electron transfer (ET) from the electron donor to the acceptor, thus increasing ET efficiency. This study provides an effective method for enhancing the biotransformation of WAS into high-value products, potentially bringing economic benefits to WAS treatment.


Asunto(s)
Ácidos Grasos Volátiles , Aguas del Alcantarillado , Anaerobiosis , Biotransformación , Fermentación , Compuestos Férricos , Concentración de Iones de Hidrógeno
20.
Environ Sci Technol ; 56(4): 2816-2826, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35107268

RESUMEN

Mathematical modeling plays a critical role toward the mitigation of nitrous oxide (N2O) emissions from wastewater treatment plants (WWTPs). In this work, we proposed a novel hybrid modeling approach by integrating the first principal model with deep learning techniques to predict N2O emissions. The hybrid model was successfully implemented and validated with the N2O emission data from a full-scale WWTP. This hybrid model is demonstrated to have higher accuracy for N2O emission modeling in the WWTP than the mechanistic model or pure deep learning model. Equally important, the hybrid model is more applicable than the pure deep learning model due to the lower requirement of data and the pure mechanistic model due to the less calibration requirement. This superior performance was due to the hybrid nature of the proposed model. It integrated the essential wastewater treatment knowledge as the first principal component and the less understood N2O production processes by the data-driven deep learning approach. The developed hybrid model was also successfully implemented under different circumstances for the prediction of N2O flux, which showed the generalizability of the model. The hybrid model also showed great potential to be applied for the N2O mitigation work. Nevertheless, the capability of the hybrid model in evaluating N2O mitigation strategies still requires validation with experiments. Going beyond N2O modeling in WWTP, the novel hybridization modeling concept can potentially be applied to other environmental systems.


Asunto(s)
Aprendizaje Profundo , Purificación del Agua , Modelos Teóricos , Óxido Nitroso/análisis , Aguas Residuales , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA