Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 383
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 52(6): 1075-1087.e8, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32445619

RESUMEN

Enhancing immune cell functions in tumors remains a major challenge in cancer immunotherapy. Hypoxia is a common feature of solid tumors, and cells adapt by upregulating the transcription factor HIF-1α. Here, we defined the transcriptional landscape of mouse tumor-infiltrating natural killer (NK) cells by using single-cell RNA sequencing. Conditional deletion of Hif1a in NK cells resulted in reduced tumor growth, elevated expression of activation markers, effector molecules, and an enriched NF-κB pathway in tumor-infiltrating NK cells. Interleukin-18 (IL-18) from myeloid cells was required for NF-κB activation and the enhanced anti-tumor activity of Hif1a-/- NK cells. Extended culture with an HIF-1α inhibitor increased human NK cell responses. Low HIF1A expression was associated with high expression of IFNG in human tumor-infiltrating NK cells, and an enriched NK-IL18-IFNG signature in solid tumors correlated with increased overall patient survival. Thus, inhibition of HIF-1α unleashes NK cell anti-tumor activity and could be exploited for cancer therapy.


Asunto(s)
Citotoxicidad Inmunológica , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Activación de Linfocitos/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Animales , Biomarcadores , Biología Computacional , Citocinas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Activación de Linfocitos/genética , Ratones , Ratones Noqueados , Células Mieloides/inmunología , Células Mieloides/metabolismo , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/mortalidad , Pronóstico , Análisis de la Célula Individual , Transcriptoma , Microambiente Tumoral/inmunología
2.
Blood ; 143(19): 1965-1979, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38271660

RESUMEN

ABSTRACT: Acute myeloid leukemia (AML) is an aggressive hematological malignancy originating from transformed hematopoietic stem or progenitor cells. AML prognosis remains poor owing to resistance and relapse driven by leukemia stem cells (LSCs). Targeting molecules essential for LSC function is a promising therapeutic approach. The phosphatidylinositol 3-kinase (PI3K)/AKT pathway is often dysregulated in AML. We found that although PI3Kγ is highly enriched in LSCs and critical for self-renewal, it was dispensable for normal hematopoietic stem cells. Mechanistically, PI3Kγ-AKT signaling promotes nuclear factor erythroid 2-related factor 2 (NRF2) nuclear accumulation, which induces 6-phosphogluconate dehydrogenase (PGD) and the pentose phosphate pathway, thereby maintaining LSC stemness. Importantly, genetic or pharmacological inhibition of PI3Kγ impaired expansion and stemness of murine and human AML cells in vitro and in vivo. Together, our findings reveal a key role for PI3Kγ in selectively maintaining LSC function by regulating AKT-NRF2-PGD metabolic pathway. Targeting the PI3Kγ pathway may, therefore, eliminate LSCs without damaging normal hematopoiesis, providing a promising therapeutic strategy for AML.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ib , Leucemia Mieloide Aguda , Células Madre Neoplásicas , Vía de Pentosa Fosfato , Animales , Humanos , Ratones , Autorrenovación de las Células , Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Fosfatidilinositol 3-Quinasa Clase Ib/genética , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Vía de Pentosa Fosfato/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal
3.
Genet Epidemiol ; 47(2): 121-134, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36490288

RESUMEN

The large-scale open access whole-exome sequencing (WES) data of the UK Biobank ~200,000 participants is accelerating a new wave of genetic association studies aiming to identify rare and functional loss-of-function (LoF) variants associated with complex traits and diseases. We proposed to merge the WES genotypes and the genome-wide genotyping (GWAS) genotypes of 167,000 UKB homogeneous European participants into a combined reference panel, and then to impute 241,911 UKB homogeneous European participants who had the GWAS genotypes only. We then used the imputed data to replicate association identified in the discovery WES sample. The average imputation accuracy measure r2 is modest to high for LoF variants at all minor allele frequency intervals: 0.942 at MAF interval (0.01, 0.5), 0.807 at (1.0 × 10-3 , 0.01), 0.805 at (1.0 × 10-4 , 1.0 × 10-3 ), 0.664 at (1.0 × 10-5 , 1.0 × 10-4 ) and 0.410 at (0, 1.0 × 10-5 ). As applications, we studied associations of LoF variants with estimated heel BMD and four lipid traits. In addition to replicating dozens of previously reported genes, we also identified three novel associations, two genes PLIN1 and ANGPTL3 for high-density-lipoprotein cholesterol and one gene PDE3B for triglycerides. Our results highlighted the strength of WES based genotype imputation as well as provided useful imputed data within the UKB cohort.


Asunto(s)
Bancos de Muestras Biológicas , Exoma , Humanos , Secuenciación del Exoma , Genotipo , Frecuencia de los Genes , Reino Unido , Estudio de Asociación del Genoma Completo/métodos , Polimorfismo de Nucleótido Simple , Proteína 3 Similar a la Angiopoyetina
4.
Psychol Med ; : 1-11, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38563283

RESUMEN

BACKGROUND: The comorbidity between schizophrenia (SCZ) and inflammatory bowel disease (IBD) observed in epidemiological studies is partially attributed to genetic overlap, but the magnitude of shared genetic components and the causality relationship between them remains unclear. METHODS: By leveraging large-scale genome-wide association study (GWAS) summary statistics for SCZ, IBD, ulcerative colitis (UC), and Crohn's disease (CD), we conducted a comprehensive genetic pleiotropic analysis to uncover shared loci, genes, or biological processes between SCZ and each of IBD, UC, and CD, independently. Univariable and multivariable Mendelian randomization (MR) analyses were applied to assess the causality across these two disorders. RESULTS: SCZ genetically correlated with IBD (rg = 0.14, p = 3.65 × 10−9), UC (rg = 0.15, p = 4.88 × 10−8), and CD (rg = 0.12, p = 2.27 × 10−6), all surpassed the Bonferroni correction. Cross-trait meta-analysis identified 64, 52, and 66 significantly independent loci associated with SCZ and IBD, UC, and CD, respectively. Follow-up gene-based analysis found 11 novel pleiotropic genes (KAT5, RABEP1, ELP5, CSNK1G1, etc) in all joint phenotypes. Co-expression and pathway enrichment analysis illustrated those novel genes were mainly involved in core immune-related signal transduction and cerebral disorder-related pathways. In univariable MR, genetic predisposition to SCZ was associated with an increased risk of IBD (OR 1.11, 95% CI 1.07­1.15, p = 1.85 × 10−6). Multivariable MR indicated a causal effect of genetic liability to SCZ on IBD risk independent of Actinobacteria (OR 1.11, 95% CI 1.06­1.16, p = 1.34 × 10−6) or BMI (OR 1.11, 95% CI 1.04­1.18, p = 1.84 × 10−3). CONCLUSIONS: We confirmed a shared genetic basis, pleiotropic loci/genes, and causal relationship between SCZ and IBD, providing novel insights into the biological mechanism and therapeutic targets underlying these two disorders.

5.
Fish Shellfish Immunol ; 149: 109615, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38719095

RESUMEN

Curcumin (Cur) exhibits diverse natural pharmacological activities, despite its limited water solubility (hydrophobicity) and low bioavailability. In this investigation, a valine-curcumin conjugate (Val-Cur) was synthesized through amino acid side chain modification, and its solubility increased to 1.78 mg/mL. In vitro experimental findings demonstrated that the antibacterial activity of Val-Cur against Escherichia coli, Staphylococcus aureus, Aeromonas hydrophila, and Vibrio parahaemolyticus was significantly superior to that of Cur. The inhibition rate of Val-Cur against HepG2 (human hepatocellular carcinoma) cells was higher than that of Cur at low concentrations (below 25 µmol/L), although the IC50 value of Val-Cur did not differ significantly from that of Cur. In vivo biological effects of Val-Cur were assessed by adding it into the feed (150 mg/kg) of American eels (Anguilla rostrata). Val-Cur significantly improved the growth performance (↑weight gain rate, ↑specific growth rate, and ↓feed conversion rate) and activities of intestinal digestive enzymes (amylase and lipase) and antioxidant enzymes (superoxide dismutase) in American eels. Additionally, Val-Cur significantly improved serum biochemical indices (↑high-density lipoprotein cholesterol, ↓low-density lipoprotein cholesterol, ↓aspartate and alanine aminotransferases). Furthermore, Val-Cur increased intestinal microbial diversity, reduced the abundance of potentially pathogenic bacteria (Spiroplasma, Clostridium, and Pseudomonas), and elevated the abundance of beneficial digestion-promoting bacteria (Romboutsia, Phyllobacterium, Romboutsia sedimentorum, and Clostridium butyricum) conducive to glucose metabolism (P < 0.05). To the best of our knowledge, this study is the first to explore water-soluble curcumin in aquaculture, and the findings will lay the groundwork for the potential application of water-soluble curcumin in the field of aquaculture.


Asunto(s)
Anguilla , Antibacterianos , Antineoplásicos , Curcumina , Animales , Curcumina/farmacología , Curcumina/química , Curcumina/administración & dosificación , Antibacterianos/farmacología , Antibacterianos/química , Antineoplásicos/farmacología , Antineoplásicos/química , Valina/farmacología , Valina/química , Alimentación Animal/análisis , Dieta/veterinaria , Humanos , Suplementos Dietéticos/análisis , Vibrio parahaemolyticus/efectos de los fármacos , Vibrio parahaemolyticus/fisiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Células Hep G2 , Aeromonas hydrophila/fisiología , Aeromonas hydrophila/efectos de los fármacos
6.
Inorg Chem ; 63(29): 13568-13575, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38973105

RESUMEN

Capturing and separating the greenhouse gas SF6 from nitrogen N2 have significant greenhouse mitigation potential and economic benefits. We used a pore engineering strategy to manipulate the pore environment of the metal-organic framework (MOF) by incorporating organic functional groups (-NH2). This resulted in an enhanced adsorption of SF6 and separation of the SF6/N2 mixture in the MOF. The introduction of amino (-NH2) groups into YTU-29 resulted in a reduction of the Brunauer-Emmett-Teller surface but an increase in interactions with SF6 within the confined pores. Water-stable YTU-29-NH2 showed a significantly higher SF6 uptake (95.5 cm3/g) than YTU-29 (77.4 cm3/g). The results of the breakthrough experiments show that YTU-29-NH2 has a significantly improved separation performance for SF6/N2 mixtures, with a high SF6 capture of 0.88 mmol/g compared to 0.56 mmol/g by YTU-29. This improvement is due to the suitable pore confinement and accessible -NH2 groups on pore surfaces. Considering its excellent regeneration ability and cycling performance, ultrastable YTU-29-NH2 demonstrates great potential for SF6 capturing and SF6/N2 separation.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38981855

RESUMEN

BACKGROUND AND AIM: Insomnia has been implicated in gastrointestinal diseases (GIs), but the causal effect between insomnia and GIs and underlying mechanisms remain unknown. METHODS: By using the released summary-level data, we conducted a two-step Mendelian randomization (MR) analysis to examine the relationship between insomnia and four GIs and estimate the mediating role of candidate mediators. The first step was to investigate the causal association between insomnia and GIs using univariable MR analysis. The second step was to estimate the mediation proportion of selected mediators in these associations using multivariable MR analysis. Subsequently, results from different datasets were combined using the fixed-effect meta-analysis. RESULTS: Univariable MR analysis provided strong evidence for the causal effects of insomnia on four GIs after Bonferroni correction for multiple comparisons, including peptic ulcer disease (PUD) (odds ratio [OR] = 1.15, 95% interval confidence [CI] = 1.10-1.20, P = 1.83 × 10-9), gastroesophageal reflux (GORD) (OR = 1.19, 95% CI = 1.16-1.22, P = 5.95 × 10-42), irritable bowel syndrome (IBS) (OR = 1.18, 95% CI = 1.15-1.22, P = 8.69 × 10-25), and inflammatory bowel disease (IBD) (OR = 1.09, 95% CI = 1.03-1.05, P = 3.46 × 10-3). In the mediation analysis, body mass index (BMI) and waist-to-hip ratio (WHR) were selected as mediators in the association between insomnia and PUD (BMI: mediation proportion [95% CI]: 13.61% [7.64%-20.70%]; WHR: 8.74% [5.50%-12.44%]) and GORD (BMI: 11.82% [5.94%-18.74%]; WHR: 7.68% [4.73%-11.12%]). CONCLUSIONS: Our findings suggest that genetically instrumented insomnia has causal effects on PUD, GORD, IBS, and IBD, respectively. Adiposity traits partially mediated the associations between insomnia and GIs. Further clinical studies are warranted to evaluate the protective effect of insomnia treatment on GIs.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38421412

RESUMEN

BACKGROUND: Intravitreal injection anti-vascular endothelial growth factor (IVI anti-VEGF) therapy serves as the primary treatment for centre involving diabetic macular oedema (DMO). Conventional laser therapy (CLT) adjunct has proven beneficial; however, it is not widely used due to significant risks of retinal scarring. Subthreshold micropulse laser (SML) therapy has, however, emerged as a comparable alternative to combination therapy, offering a distinct advantage by mitigating the risk of retinal scarring. METHODS: A search of six databases was conducted. A meta-analysis of mean differences was performed including subgroup analyses where appropriate. Primary outcome was the number of injections at 12-14 months; secondary outcomes were changes in central macular thickness (CMT) and best corrected visual acuity (BCVA) at 6-8 months and 12-14 months. RESULTS: A total of ten papers including six randomised clinical trials and four retrospective clinical studies were included in our study, capturing 563 eyes of 478 patients. Overall, the risk of bias was moderate for these studies. Significantly fewer anti-VEGF therapy injections were administered in the combination therapy versus anti-VEGF monotherapy patients at 12-14 months who had poor visual acuity (6/18 Snellen or worse) at baseline, mean difference - 2.25 (95% CI; - 3.35, - 1.15; p < 0.05). Combination therapy was not associated with significantly fewer intravitreal injections in patients with a higher visual acuity (6/15 Snellen or better) at baseline. Our analysis also showed significant improvements to both BCVA and CMT were reached at 6 - 8 month post-baseline at the 95% confidence intervals: - 1.13 (- 2.09, - 0.16) and - 4.04 (- 7.59, - 0.50). These improvements remained statistically significant at 12-14 months: - 0.94 (- 1.67, - 0.20) and - 1.92 (- 3.52, - 0.32) respectively with combination therapy. CONCLUSION: Our findings demonstrate that combination therapy (SML + IVI anti-VEGF) is associated with fewer intravitreal injections. We report a better BCVA and a reduction in CMT at 6 and 12 months from baseline with combination treatment compared to the IVI anti-VEGF monotherapy comparator. SML is a proven non-scarring cost-effective therapy for DMO that should be readily available in the medical retinal therapy as it may reduce the burden of care.

9.
Oral Dis ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934473

RESUMEN

OBJECTIVES: The purpose of this study was to determine whether indoxyl sulfate (IS) is involved in alveolar bone deterioration and to elucidate the mechanism underlying alveolar bone loss in chronic kidney disease (CKD) patients. MATERIALS AND METHODS: Mice were divided into the control group, CP group (ligature-induced periodontitis), CKD group (5/6 nephrectomy), and CKD + CP group. The concentration of IS in the gingival crevicular fluid (GCF) was determined by HPLC. The bone microarchitecture was evaluated by micro-CT. MC3T3-E1 cells were stimulated with IS, and changes in mitochondrial morphology and ferroptosis-related factors were detected. RT-PCR, western blotting, alkaline phosphatase activity assays, and alizarin red S staining were utilized to assess how IS affects osteogenic differentiation. RESULTS: Compared with that in the other groups, alveolar bone destruction in the CKD + CP group was more severe. IS accumulated in the GCF of mice with CKD. IS activated the aryl hydrocarbon receptor (AhR) in vitro, inhibited MC3T3-E1 cell osteogenic differentiation, caused changes in mitochondrial morphology, and activated the SLC7A11/GPX4 signaling pathway. An AhR inhibitor attenuated the aforementioned changes induced by IS. CONCLUSIONS: IS activated the AhR/SLC7A11/GPX4 signaling pathway, inhibited osteogenesis in MC3T3-E1 cells, and participated in alveolar bone resorption in CKD model mice through ferroptosis.

10.
Molecules ; 29(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38474657

RESUMEN

DNA polymerases are important enzymes that synthesize DNA molecules and therefore are critical to various scientific fields as essential components of in vitro DNA synthesis reactions, including PCR. Modern diagnostics, molecular biology, and genetic engineering require DNA polymerases with improved performance. This study aimed to obtain and characterize a new CL7-Taq fusion DNA polymerase, in which the DNA coding sequence of Taq DNA polymerase was fused with that of CL7, a variant of CE7 (Colicin E7 DNase) from Escherichia coli. The resulting novel recombinant open reading frame was cloned and expressed in E. coli. The recombinant CL7-Taq protein exhibited excellent thermostability, extension rate, sensitivity, and resistance to PCR inhibitors. Our results showed that the sensitivity of CL7-Taq DNA polymerase was 100-fold higher than that of wild-type Taq, which required a template concentration of at least 1.8 × 105 nM. Moreover, the extension rate of CL7-Taq was 4 kb/min, which remarkably exceeded the rate of Taq DNA polymerase (2 kb/min). Furthermore, the CL7 fusion protein showed increased resistance to inhibitors of DNA amplification, including lactoferrin, heparin, and blood. Single-cope human genomic targets were readily available from whole blood, and pretreatment to purify the template DNA was not required. Thus, this is a novel enzyme that improved the properties of Taq DNA polymerase, and thus may have wide application in molecular biology and diagnostics.


Asunto(s)
Escherichia coli , Técnicas de Amplificación de Ácido Nucleico , Humanos , Polimerasa Taq/metabolismo , Escherichia coli/metabolismo , Reacción en Cadena de la Polimerasa/métodos , ADN/metabolismo , Proteínas Recombinantes/metabolismo
11.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(7): 690-694, 2024 Jul 15.
Artículo en Zh | MEDLINE | ID: mdl-39014944

RESUMEN

OBJECTIVES: To investigate the application of endoscopic retrograde cholangiopancreatography (ERCP) in children and the risk factors for post-ERCP pancreatitis (PEP). METHODS: A retrospective analysis was conducted on the clinical data of 66 children, aged ≤16 years, who underwent ERCP for pancreaticobiliary diseases at the Gastrointestinal Endoscopy Center of the Second Affiliated Hospital of Kunming Medical University from September 2013 to September 2023. The incidence rate of PEP and the risk factors for the development of PEP were analyzed. RESULTS: A total of 78 ERCP procedures were performed on 66 children, with 5 diagnostic ERCPs, 69 therapeutic ERCPs, and 4 failed procedures. The success rate of ERCP operations was 95% (74/78). There were 17 cases of PEP in total, with an incidence rate of 22%. In the PEP group, the proportion of children with normal preoperative bilirubin and the proportion of guidewire insertion into the pancreatic duct during surgery were higher than in the non-PEP group (P<0.05). The multivariate logistic regression analysis showed that guidewire insertion into the pancreatic duct was an independent risk factor for PEP (P<0.05). CONCLUSIONS: With the increasing application of ERCP in children with pancreaticobiliary diseases, it is important to select an appropriate intubation technique during surgery to avoid blindly entering the guidewire into the pancreatic duct and reduce the occurrence of PEP.


Asunto(s)
Colangiopancreatografia Retrógrada Endoscópica , Pancreatitis , Humanos , Colangiopancreatografia Retrógrada Endoscópica/efectos adversos , Niño , Masculino , Pancreatitis/etiología , Pancreatitis/prevención & control , Femenino , Factores de Riesgo , Estudios Retrospectivos , Preescolar , Adolescente , Modelos Logísticos , Lactante
12.
BMC Med ; 21(1): 159, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37106459

RESUMEN

BACKGROUND: Effective risk prediction models are lacking for personalized endoscopic screening of gastric cancer (GC). We aimed to develop, validate, and evaluate a questionnaire-based GC risk assessment tool for risk prediction and stratification in the Chinese population. METHODS: In this three-stage multicenter study, we first selected eligible variables by Cox regression models and constructed a GC risk score (GCRS) based on regression coefficients in 416,343 subjects (aged 40-75 years) from the China Kadoorie Biobank (CKB, development cohort). In the same age range, we validated the GCRS effectiveness in 13,982 subjects from another independent Changzhou cohort (validation cohort) as well as in 5348 subjects from an endoscopy screening program in Yangzhou. Finally, we categorized participants into low (bottom 20%), intermediate (20-80%), and high risk (top 20%) groups by the GCRS distribution in the development cohort. RESULTS: The GCRS using 11 questionnaire-based variables demonstrated a Harrell's C-index of 0.754 (95% CI, 0.745-0.762) and 0.736 (95% CI, 0.710-0.761) in the two cohorts, respectively. In the validation cohort, the 10-year risk was 0.34%, 1.05%, and 4.32% for individuals with a low (≤ 13.6), intermediate (13.7~30.6), and high (≥ 30.7) GCRS, respectively. In the endoscopic screening program, the detection rate of GC varied from 0.00% in low-GCRS individuals, 0.27% with intermediate GCRS, to 2.59% with high GCRS. A proportion of 81.6% of all GC cases was identified from the high-GCRS group, which represented 28.9% of all the screened participants. CONCLUSIONS: The GCRS can be an effective risk assessment tool for tailored endoscopic screening of GC in China. Risk Evaluation for Stomach Cancer by Yourself (RESCUE), an online tool was developed to aid the use of GCRS.


Asunto(s)
Neoplasias Gástricas , Humanos , Detección Precoz del Cáncer , Pueblos del Este de Asia , Medición de Riesgo , Factores de Riesgo , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/epidemiología , Adulto , Persona de Mediana Edad , Anciano
13.
Calcif Tissue Int ; 112(3): 350-358, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36576504

RESUMEN

The two-sample Mendelian randomization (MR) study revealed a causal association of plasma proteins with osteoporosis (OP) and osteoarthritis (OA). Bone mineral density (BMD) is the gold standard for the clinical assessment of OP. Recent studies have shown that plasma proteins play an essential role in the regulation of bone development. However, the causal association of plasma proteins with BMD and OA remains unclear. We estimated the effects of 2889 plasma proteins on 2 BMD phenotypes and 6 OA phenotypes using two-sample MR analysis based on the genome-wide association study summary statistics. Then, we performed sensitivity analysis and reverse-direction MR analysis to evaluate the robustness of the MR analysis results, followed by gene ontology (GO) enrichment analysis and KEGG pathway analysis to explore the functional relevance of the identified plasma proteins. Overall, we observed a total of 257 protein-estimated heel BMD associations, 17 protein-total-body BMD associations, 2 protein-all-OA associations, and 2 protein-knee-OA associations at PFDR < 0.05. Reverse-direction MR analysis demonstrated that there was little evidence of the causal association of BMD and OA with plasma proteins. GO enrichment analysis and KEGG pathway analysis identified multiple pathways, which may be involved in the development of OP and OA. Our findings recognized plasma proteins that could be used to regulate changes in OP and OA, thus, providing new insights into protein-mediated mechanisms of bone development.


Asunto(s)
Osteoartritis de la Rodilla , Osteoporosis , Humanos , Proteoma/genética , Estudio de Asociación del Genoma Completo , Osteoporosis/metabolismo , Densidad Ósea/genética , Polimorfismo de Nucleótido Simple
14.
Hematol Oncol ; 41(1): 61-70, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36321597

RESUMEN

Endoplasmic reticulum (ER) stress has been reported to be transmitted from tumor cells to immune cells via exosome and implicated in immune escape. However, the influence of ER stress on monocytes in chronic lymphocytic leukemia (CLL) cells is largely unknown. Here, we observed the expression of ER stress markers (GRP78, ATF6, PERK, IRE1a, and XBP1s) in CLL cells. The increasing mRNA expression of these ER stress response components was positively correlated with more aggressive disease. Exosome from ER stress inducer tunicamycin (TM)-primed CLL cells (ERS-exo) up-regulated the expression of ER stress marker on monocytes, indicating ER stress is transmissible in vitro via exosome. Treatment with ERS-exo promoted the survival of monocytes and induced phenotypic changes with a significantly larger percentage of CD14+ CD16+ monocytes. Finally, we identified exosome-mediated transfer of extracellular nicotinamide phosphoribosyltransferase (eNAMPT) from ER stressed CLL cells into monocytes as a novel mechanism through which ERS-exo regulated monocytes. Exosomal eNAMPT up-regulated nicotinamide adenine dinucleotide (NAD+ ) production which subsequently activated SIRT1-C/EBPß signaling pathway in monocytes. Our results suggest the role of ER stress in mediating immunological dysfunction in CLL.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Monocitos/metabolismo , Nicotinamida Fosforribosiltransferasa/genética , Nicotinamida Fosforribosiltransferasa/metabolismo , Estrés del Retículo Endoplásmico , Fenotipo , Apoptosis
15.
Fish Shellfish Immunol ; 134: 108624, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36809842

RESUMEN

The use of selenium nanoparticles (SeNPs) in aquaculture has been increasing gradually over the past few years. SeNPs enhance immunity, are highly effective against pathogens, and have low toxicity. In this study, SeNPs were prepared using polysaccharide-protein complexes (PSP) from abalone viscera. The acute toxicity of PSP-SeNPs to juvenile Nile tilapia and their effect on growth performance, intestinal tissue structure, antioxidation capacity, hypoxic stress, and Streptococcus agalactiae infection were investigated. The results showed that the spherical PSP-SeNPs were stable and safe, with an LC50 of 13.645 mg/L against tilapia, which was about 13-fold higher than that of sodium selenite (Na2SeO3). A basal diet supplemented with 0.1-1.5 mg/kg PSP-SeNPs improved the growth performance of tilapia juveniles to a certain extent, increased the intestinal villus length, and significantly enhanced the activities of liver antioxidant enzymes, including superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and catalase (CAT). PSP-SeNPs also enhanced the resistance of tilapia to hypoxic stress and Streptococcus agalactiae infection, with supplementation at 0.1-0.3 mg/kg exerting more obvious effects than 1.5 mg/kg. However, PSP-SeNPs at a concentration of 4.5 mg/kg and Na2SeO3 at 0.3 mg/kg negatively affected the growth, gut health, and the activity of the antioxidant enzymes of tilapia. Quadric polynomial regression analysis revealed that 0.1-1.2 mg/kg was the optimal PSP-SeNP supplementation concentration for tilapia feeds. The findings of this study lay a foundation for the application of PSP-SeNPs in aquaculture.


Asunto(s)
Cíclidos , Nanopartículas , Selenio , Tilapia , Animales , Antioxidantes , Vísceras , Suplementos Dietéticos/análisis , Dieta , Hipoxia , Alimentación Animal/análisis
16.
Inorg Chem ; 62(33): 13328-13337, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37556609

RESUMEN

It is a challenging task to utilize efficient electrocatalytic metal hydroxide-based materials for the oxygen evolution reaction (OER) in order to produce clean hydrogen energy through water splitting, primarily due to the restricted availability of active sites and the undesirably high adsorption energies of oxygenated species. To address these challenges simultaneously, we intentionally engineer a hollow star-shaped Ag/CoMo-LDH heterostructure as a highly efficient electrocatalytic system. This design incorporates a considerable number of heterointerfaces between evenly dispersed Ag nanoparticles and CoMo-LDH nanosheets. The heterojunction materials have been prepared using self-assembly, in situ transformation, and spontaneous redox processes. The nanosheet-integrated hollow architecture can prevent active entities from agglomeration and facilitate mass transportation, enabling the constant exposure of active sites. Specifically, the powerful electronic interaction within the heterojunction can successfully regulate the Co3+/Co2+ ratio and the d-band center, resulting in rational optimization of the adsorption and desorption of the intermediates on the site. Benefiting from its well-defined multifunctional structures, the Ag0.4/CoMo-LDH with optimal Ag loading exhibits impressive OER activity, the overpotential being 290 mV to reach a 10 mA cm-2 current density. The present study sheds some new insights into the electron structure modulation of hollow heterostructures toward rationally designing electrocatalytic materials for the OER.

17.
Inorg Chem ; 62(21): 8347-8356, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37200596

RESUMEN

Accomplishing a green hydrogen economy in reality through water spitting ultimately relies upon earth-abundant efficient electrocatalysts that can simultaneously accelerate the oxygen and hydrogen evolution reactions (OER and HER). The perspective of electronic structure modulation via interface engineering is of great significance to optimize electrocatalytic output but remains a tremendous challenge. Herein, an efficient tactic has been explored to prepare nanosheet-assembly tumbleweed-like CoFeCe-containing precursors with time-/energy-saving and easy-operating features. Subsequently, the final metal phosphide materials containing multiple interfaces, denoted CoP/FeP/CeOx, have been synthesized via the phosphorization process. Through the optimization of the Co/Fe ratio and the content of the rare-earth Ce element, the electrocatalytic activity has been regulated. As a result, bifunctional Co3Fe/Ce0.025 reaches the top of the volcano for both OER and HER simultaneously, with the smallest overpotentials of 285 mV (OER) and 178 mV (HER) at 10 mA cm-2 current density in an alkaline environment. Multicomponent heterostructure interface engineering would lead to more exposed active sites, feasible charge transport, and strong interfacial electronic interaction. More importantly, the appropriate Co/Fe ratio and Ce content can synergistically tailor the d-band center with a downshift to enhance the per-site intrinsic activity. This work would provide valuable insights to regulate the electronic structure of superior electrocatalysts toward water splitting by constructing rare-earth compounds containing multiple heterointerfaces.

18.
Inorg Chem ; 62(49): 20279-20287, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38032042

RESUMEN

Comprehensive understanding of substituent groups located on the pore surface of metal-organic frameworks (which we call substituent engineering herein) can help to promote gas adsorption and catalytic performance through ligand functionalization. In this work, pore-space-partitioned metal-organic frameworks (PSP MOFs) were selected as a platform to evaluate the effect of organic functional groups on CO2 adsorption, separation, and catalytic conversion. Twelve partitioned acs metal-organic frameworks (pacs-MOFs, named SNNU-25-Rn here) containing different functional groups were synthesized, which can be classified into electron-donor groups (-OH, -NH2, -CH3, and -OCH3) and electron-acceptor groups (-NO2, -F, -Cl, and -Br). The experimental results showed that SNNU-25-Rn with electron donors usually perform better than those with electron acceptors for the comprehensive utilization of CO2. The CO2 uptake of the 12 SNNU-25-Rn MOFs ranged from 30.9 to 183.6 cm3 g-1 at 273 K and 1 bar, depending on the organic functional groups. In particular, SNNU-25-OH showed the highest CO2 adsorption, SNNU-25-CH3 had the highest IAST of CO2/CH4 (36.1), and SNNU-25-(OH)2 showed the best catalytic activity for the CO2 cycloaddition reaction. The -OH functionalized MOFs with excellent performance may be attributed to the Lewis acid-base and hydrogen-bonding interactions between -OH groups and the CO2 molecules. This work modulated the effect of the microenvironment of MOFs on CO2 adsorption, separation, and catalysis in terms of substituents, providing valuable information for the precise design of porous MOFs with a comprehensive utilization of CO2.

19.
Nature ; 549(7673): 533-537, 2017 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-28959975

RESUMEN

High-grade gliomas (HGG) are a devastating group of cancers, and represent the leading cause of brain tumour-related death in both children and adults. Therapies aimed at mechanisms intrinsic to glioma cells have translated to only limited success; effective therapeutic strategies will need also to target elements of the tumour microenvironment that promote glioma progression. Neuronal activity promotes the growth of a range of molecularly and clinically distinct HGG types, including adult and paediatric glioblastoma (GBM), anaplastic oligodendroglioma, and diffuse intrinsic pontine glioma (DIPG). An important mechanism that mediates this neural regulation of brain cancer is activity-dependent cleavage and secretion of the synaptic adhesion molecule neuroligin-3 (NLGN3), which promotes glioma proliferation through the PI3K-mTOR pathway. However, the necessity of NLGN3 for glioma growth, the proteolytic mechanism of NLGN3 secretion, and the further molecular consequences of NLGN3 secretion in glioma cells remain unknown. Here we show that HGG growth depends on microenvironmental NLGN3, identify signalling cascades downstream of NLGN3 binding in glioma, and determine a therapeutically targetable mechanism of secretion. Patient-derived orthotopic xenografts of paediatric GBM, DIPG and adult GBM fail to grow in Nlgn3 knockout mice. NLGN3 stimulates several oncogenic pathways, such as early focal adhesion kinase activation upstream of PI3K-mTOR, and induces transcriptional changes that include upregulation of several synapse-related genes in glioma cells. NLGN3 is cleaved from both neurons and oligodendrocyte precursor cells via the ADAM10 sheddase. ADAM10 inhibitors prevent the release of NLGN3 into the tumour microenvironment and robustly block HGG xenograft growth. This work defines a promising strategy for targeting NLGN3 secretion, which could prove transformative for HGG therapy.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Glioma/metabolismo , Glioma/patología , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteína ADAM10/antagonistas & inhibidores , Proteína ADAM10/metabolismo , Adulto , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Moléculas de Adhesión Celular Neuronal/deficiencia , Moléculas de Adhesión Celular Neuronal/genética , Proliferación Celular , Niño , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Glioma/genética , Xenoinjertos , Humanos , Masculino , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Trasplante de Neoplasias , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Neuronas/patología , Oligodendroglía/citología , Oligodendroglía/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Microambiente Tumoral
20.
Oral Dis ; 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37427856

RESUMEN

BACKGROUND: Periodontitis can eventually contribute to tooth loss. Zinc finger E-box binding homeobox 1 (ZEB1) is identified as overexpressed in the gingival tissue of mice with periodontitis. This study is designed to decipher the mechanism of ZEB1's involvement in periodontitis. METHODS: Human periodontal mesenchymal stem cells (hPDLSCs) were exposed to LPS to mimic the inflammation in periodontitis. Following ZEB1 silencing, FX1 (an inhibitor of Bcl-6) treatment or ROCK1 overexpression, cell viability, and apoptosis were analyzed. Alkaline phosphatase (ALP) staining, Alizarin red staining, RT-qPCR, and western blot were performed to evaluate osteogenic differentiation and mineralization. hPDLSCs were processed for luciferase reporter assay and ChIP-PCR to confirm the association between ZEB1 and ROCK1. RESULTS: The induction of ZEB1 silencing resulted in reduced cell apoptosis, enhanced osteogenic differentiation, and mineralization. Nevertheless, these effects were significantly blunted by FX1. ZEB1 was confirmed to bind to the promoter sites of ROCK1 and regulate the ROCK1/AMPK. Whereas ROCK1 overexpression reversed the effects of ZEB1 silencing on Bcl-6/STAT1, as well as cell proliferation and osteogenesis differentiation. CONCLUSION: hPDLSCs displayed decreased proliferation and weakened osteogenesis differentiation in response to LPS. These impacts were mediated by ZEB1 regulating Bcl-6/STAT1 via AMPK/ROCK1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA