Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Cell Physiol ; 234(9): 15194-15205, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30667054

RESUMEN

Brahma-related gene 1 (BRG1) is one of two mutually exclusive ATPases that function as the catalytic subunit of human SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeling enzymes. BRG1 has been identified as a tumor suppressor in some cancer types but has been shown to be expressed at elevated levels, relative to normal tissue, in other cancers. Using TCGA (The Cancer Genome Atlas) prostate cancer database, we determined that BRG1 mRNA and protein expression is elevated in prostate tumors relative to normal prostate tissue. Only 3 of 491 (0.6%) sequenced tumors showed amplification of the locus or mutation in the protein coding sequence, arguing against the idea that elevated expression due to amplification or expression of a mutant BRG1 protein is associated with prostate cancer. Kaplan-Meier survival curves showed that BRG1 expression in prostate tumors inversely correlated with survival. However, BRG1 expression did not correlate with Gleason score/International Society of Urological Pathology (ISUP) Grade Group, indicating it is an independent predictor of tumor progression/patient outcome. To experimentally assess BRG1 as a possible therapeutic target, we treated prostate cancer cells with a biologic inhibitor called ADAADi (active DNA-dependent ATPase A Domain inhibitor) that targets the activity of the SNF2 family of ATPases in biochemical assays but showed specificity for BRG1 in prior tissue culture experiments. The inhibitor decreased prostate cancer cell proliferation and induced apoptosis. When directly injected into xenografts established by injection of prostate cancer cells in mouse flanks, the inhibitor decreased tumor growth and increased survival. These results indicate the efficacy of pursuing BRG1 as both an indicator of patient outcome and as a therapeutic target.

2.
J Cell Physiol ; 234(6): 8597-8609, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30515788

RESUMEN

The RUNX1 transcription factor has recently been shown to be obligatory for normal development. RUNX1 controls the expression of genes essential for proper development in many cell lineages and tissues including blood, bone, cartilage, hair follicles, and mammary glands. Compromised RUNX1 regulation is associated with many cancers. In this review, we highlight evidence for RUNX1 control in both invertebrate and mammalian development and recent novel findings of perturbed RUNX1 control in breast cancer that has implications for other solid tumors. As RUNX1 is essential for definitive hematopoiesis, RUNX1 mutations in hematopoietic lineage cells have been implicated in the etiology of several leukemias. Studies of solid tumors have revealed a context-dependent function for RUNX1 either as an oncogene or a tumor suppressor. These RUNX1 functions have been reported for breast, prostate, lung, and skin cancers that are related to cancer subtypes and different stages of tumor development. Growing evidence suggests that RUNX1 suppresses aggressiveness in most breast cancer subtypes particularly in the early stage of tumorigenesis. Several studies have identified RUNX1 suppression of the breast cancer epithelial-to-mesenchymal transition. Most recently, RUNX1 repression of cancer stem cells and tumorsphere formation was reported for breast cancer. It is anticipated that these new discoveries of the context-dependent diversity of RUNX1 functions will lead to innovative therapeutic strategies for the intervention of cancer and other abnormalities of normal tissues.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Neoplasias/metabolismo , Animales , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Mutación , Neoplasias/genética , Neoplasias/patología , Pronóstico , Transducción de Señal
3.
Genome Res ; 26(9): 1188-201, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27435934

RESUMEN

The packaging of DNA into chromatin plays an important role in transcriptional regulation and nuclear processes. Brahma-related gene-1 SMARCA4 (also known as BRG1), the essential ATPase subunit of the mammalian SWI/SNF chromatin remodeling complex, uses the energy from ATP hydrolysis to disrupt nucleosomes at target regions. Although the transcriptional role of SMARCA4 at gene promoters is well-studied, less is known about its role in higher-order genome organization. SMARCA4 knockdown in human mammary epithelial MCF-10A cells resulted in 176 up-regulated genes, including many related to lipid and calcium metabolism, and 1292 down-regulated genes, some of which encode extracellular matrix (ECM) components that can exert mechanical forces and affect nuclear structure. ChIP-seq analysis of SMARCA4 localization and SMARCA4-bound super-enhancers demonstrated extensive binding at intergenic regions. Furthermore, Hi-C analysis showed extensive SMARCA4-mediated alterations in higher-order genome organization at multiple resolutions. First, SMARCA4 knockdown resulted in clustering of intra- and inter-subtelomeric regions, demonstrating a novel role for SMARCA4 in telomere organization. SMARCA4 binding was enriched at topologically associating domain (TAD) boundaries, and SMARCA4 knockdown resulted in weakening of TAD boundary strength. Taken together, these findings provide a dynamic view of SMARCA4-dependent changes in higher-order chromatin organization and gene expression, identifying SMARCA4 as a novel component of chromatin organization.


Asunto(s)
Proliferación Celular/genética , Cromatina/genética , ADN Helicasas/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Línea Celular Tumoral , Ensamble y Desensamble de Cromatina , Células Epiteliales/metabolismo , Regulación de la Expresión Génica/genética , Humanos , Nucleosomas/genética
4.
J Biol Chem ; 292(45): 18592-18607, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-28939766

RESUMEN

Transcriptional regulation is modulated in part by chromatin-remodeling enzymes that control gene accessibility by altering chromatin compaction or nucleosome positioning. Brahma-related gene 1 (Brg1), a catalytic subunit of the mammalian SWI/SNF chromatin-remodeling enzymes, is required for both myoblast proliferation and differentiation, and the control of Brg1 phosphorylation by calcineurin, PKCß1, and p38 regulates the transition to differentiation. However, we hypothesized that Brg1 activity might be regulated by additional kinases. Here, we report that Brg1 is also a target of casein kinase 2 (CK2), a serine/threonine kinase, in proliferating myoblasts. We found that CK2 interacts with Brg1, and mutation of putative phosphorylation sites to non-phosphorylatable (Ser to Ala, SA) or phosphomimetic residues (Ser to Glu, SE) reduced Brg1 phosphorylation by CK2. Although BRG1-deleted myoblasts that ectopically express the SA-Brg1 mutant proliferated similarly to the parental cells or cells ectopically expressing wild-type (WT) Brg1, ectopic expression of the SE-Brg1 mutant reduced proliferation and increased cell death, similar to observations from cells lacking Brg1. Moreover, pharmacological inhibition of CK2 increased myoblast proliferation. Furthermore, the Pax7 promoter, which controls expression of a key transcription factor required for myoblast proliferation, was in an inaccessible chromatin state in the SE-Brg1 mutant, suggesting that hyperphosphorylated Brg1 cannot remodel chromatin. WT-, SA-, and SE-Brg1 exhibited distinct differences in interacting with and affecting expression of the SWI/SNF subunits Baf155 and Baf170 and displayed differential sub-nuclear localization. Our results indicate that CK2-mediated phosphorylation of Brg1 regulates myoblast proliferation and provides insight into one mechanism by which composition of the mammalian SWI/SNF enzyme complex is regulated.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN Helicasas/metabolismo , Regulación de la Expresión Génica , Mioblastos Esqueléticos/metabolismo , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional , Factores de Transcripción/metabolismo , Sustitución de Aminoácidos , Animales , Quinasa de la Caseína II/efectos de los fármacos , Quinasa de la Caseína II/genética , Células Cultivadas , Proteínas Cromosómicas no Histona/química , ADN Helicasas/genética , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/efectos de los fármacos , Proteínas Nucleares/genética , Factor de Transcripción PAX7/agonistas , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo , Fosforilación/efectos de los fármacos , Regiones Promotoras Genéticas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Multimerización de Proteína/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/efectos de los fármacos , Células Satélite del Músculo Esquelético/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética
5.
J Cell Physiol ; 233(12): 9136-9144, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29968906

RESUMEN

Breast cancer is the most common cancer in women, and accounts for ~30% of new cancer cases and 15% of cancer-related deaths. Tumor relapse and metastasis are primary factors contributing to breast cancer-related deaths. Therefore, the challenge for breast cancer treatment is to sustain remission. A driving force behind tumor relapse is breast cancer heterogeneity (both intertumor, between different patients, and intratumor, within the same tumor). Understanding breast cancer heterogeneity is necessary to develop preventive interventions and targeted therapies. A recently emerging concept is that intratumor heterogeneity is driven by cancer stem cells (CSCs) that are capable of giving rise to a multitude of different cells within a tumor. Studies have highlighted linkage of CSC formation with epithelial-to-mesenchymal transition (EMT). In this review, we summarize the current understanding of breast cancer heterogeneity, links between EMT and CSCs, regulation of EMT by Runx transcription factors, and potential therapeutic strategies targeting these processes.


Asunto(s)
Neoplasias de la Mama/genética , Carcinogénesis/genética , Subunidades alfa del Factor de Unión al Sitio Principal/genética , Transición Epitelial-Mesenquimal/genética , Neoplasias de la Mama/patología , Femenino , Heterogeneidad Genética , Humanos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología
6.
Proc Natl Acad Sci U S A ; 112(18): 5720-5, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25901323

RESUMEN

How cells maintain nuclear shape and position against various intracellular and extracellular forces is not well understood, although defects in nuclear mechanical homeostasis are associated with a variety of human diseases. We estimated the force required to displace and deform the nucleus in adherent living cells with a technique to locally pull the nuclear surface. A minimum pulling force of a few nanonewtons--far greater than typical intracellular motor forces--was required to significantly displace and deform the nucleus. Upon force removal, the original shape and position were restored quickly within a few seconds. This stiff, elastic response required the presence of vimentin, lamin A/C, and SUN (Sad1p, UNC-84)-domain protein linkages, but not F-actin or microtubules. Although F-actin and microtubules are known to exert mechanical forces on the nuclear surface through molecular motor activity, we conclude that the intermediate filament networks maintain nuclear mechanical homeostasis against localized forces.


Asunto(s)
Núcleo Celular/metabolismo , Regulación de la Expresión Génica , Homeostasis , Actinas/química , Actinas/metabolismo , Animales , Adhesión Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , Supervivencia Celular , Citoesqueleto/metabolismo , Elasticidad , Fibroblastos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ratones , Micromanipulación , Microscopía Fluorescente , Microtúbulos/metabolismo , Células 3T3 NIH , Membrana Nuclear/metabolismo , ARN Interferente Pequeño/metabolismo
7.
J Cell Physiol ; 232(6): 1295-1305, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27627025

RESUMEN

Experimental approaches to define the relationship between gene expression and nuclear matrix attachment regions (MARs) have given contrasting and method-specific results. We have developed a next generation sequencing strategy to identify MARs across the human genome (MAR-Seq). The method is based on crosslinking chromatin to its nuclear matrix attachment sites to minimize changes during biochemical processing. We used this method to compare nuclear matrix organization in MCF-10A mammary epithelial-like cells and MDA-MB-231 breast cancer cells and evaluated the results in the context of global gene expression (array analysis) and positional enrichment of gene-regulatory histone modifications (ChIP-Seq). In the normal-like cells, nuclear matrix-attached DNA was enriched in expressed genes, while in the breast cancer cells, it was enriched in non-expressed genes. In both cell lines, the chromatin modifications that mark transcriptional activation or repression were appropriately associated with gene expression. Using this new MAR-Seq approach, we provide the first genome-wide characterization of nuclear matrix attachment in mammalian cells and reveal that the nuclear matrix-associated genome is highly cell-context dependent. J. Cell. Physiol. 232: 1295-1305, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
ADN/metabolismo , Genoma Humano , Regiones de Fijación a la Matriz/genética , Matriz Nuclear/metabolismo , Neoplasias de la Mama/genética , Línea Celular , Cromatina/metabolismo , Reactivos de Enlaces Cruzados/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Humanos , Sistemas de Lectura Abierta/genética , Reproducibilidad de los Resultados
8.
J Cell Biochem ; 118(4): 764-774, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27632380

RESUMEN

The epigenetics and molecular biology of human embryonic stem cells (hES cells) have received much more attention than their architecture. We present a more complete look at hES cells by electron microscopy, with a special emphasis on the architecture of the nucleus. We propose that there is an ultrastructural signature of pluripotent human cells. hES cell nuclei lack heterochromatin, including the peripheral heterochromatin, that is common in most somatic cell types. The absence of peripheral heterochromatin may be related to the absence of lamins A and C, proteins important for linking chromatin to the nuclear lamina and envelope. Lamins A and C expression and the development of peripheral heterochromatin were early steps in the development of embryoid bodies. While hES cell nuclei had abundant nuclear pores, they also had an abundance of nuclear pores in the cytoplasm in the form of annulate lamellae. These were not a residue of annulate lamellae from germ cells or the early embryos from which hES cells were derived. Subnuclear structures including nucleoli, interchromatin granule clusters, and Cajal bodies were observed in the nuclear interior. The architectural organization of human ES cell nuclei has important implications for cell structure-gene expression relationships and for the maintenance of pluripotency. J. Cell. Biochem. 118: 764-774, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Células Madre Embrionarias Humanas/ultraestructura , Línea Celular , Nucléolo Celular/ultraestructura , Núcleo Celular/ultraestructura , Estructuras del Núcleo Celular/ultraestructura , Cromatina/ultraestructura , Células Madre Embrionarias Humanas/metabolismo , Humanos , Microscopía Electrónica , Microscopía Fluorescente , Poro Nuclear/ultraestructura
9.
J Cell Sci ; 128(4): 728-40, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25609707

RESUMEN

Cancer cells exhibit modifications in nuclear architecture and transcriptional control. Tumor growth and metastasis are supported by RUNX family transcriptional scaffolding proteins, which mediate the assembly of nuclear-matrix-associated gene-regulatory hubs. We used proteomic analysis to identify RUNX2-dependent protein-protein interactions associated with the nuclear matrix in bone, breast and prostate tumor cell types and found that RUNX2 interacts with three distinct proteins that respond to DNA damage - RUVBL2, INTS3 and BAZ1B. Subnuclear foci containing these proteins change in intensity or number following UV irradiation. Furthermore, RUNX2, INTS3 and BAZ1B form UV-responsive complexes with the serine-139-phosphorylated isoform of H2AX (γH2AX). UV irradiation increases the interaction of BAZ1B with γH2AX and decreases histone H3 lysine 9 acetylation levels, which mark accessible chromatin. RUNX2 depletion prevents the BAZ1B-γH2AX interaction and attenuates loss of H3K9 and H3K56 acetylation. Our data are consistent with a model in which RUNX2 forms functional complexes with BAZ1B, RUVBL2 and INTS3 to mount an integrated response to DNA damage. This proposed cytoprotective function for RUNX2 in cancer cells might clarify its expression in chemotherapy-resistant and/or metastatic tumors.


Asunto(s)
Proteínas Portadoras/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , ADN Helicasas/metabolismo , Reparación del ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Acetilación , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Línea Celular Tumoral , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Daño del ADN/genética , Histonas/metabolismo , Humanos , Complejos Multiproteicos/metabolismo , Osteosarcoma/genética , Osteosarcoma/patología , Fosforilación , Interferencia de ARN , ARN Interferente Pequeño , Rayos Ultravioleta
10.
Methods ; 96: 75-84, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26521976

RESUMEN

Understanding the properties and functions of complex biological systems depends upon knowing the proteins present and the interactions between them. Recent advances in mass spectrometry have given us greater insights into the participating proteomes, however, monoclonal antibodies remain key to understanding the structures, functions, locations and macromolecular interactions of the involved proteins. The traditional single immunogen method to produce monoclonal antibodies using hybridoma technology are time, resource and cost intensive, limiting the number of reagents that are available. Using a high content analysis screening approach, we have developed a method in which a complex mixture of proteins (e.g., subproteome) is used to generate a panel of monoclonal antibodies specific to a subproteome located in a defined subcellular compartment such as the nucleus. The immunofluorescent images in the primary hybridoma screen are analyzed using an automated processing approach and classified using a recursive partitioning forest classification model derived from images obtained from the Human Protein Atlas. Using an ammonium sulfate purified nuclear matrix fraction as an example of reverse proteomics, we identified 866 hybridoma supernatants with a positive immunofluorescent signal. Of those, 402 produced a nuclear signal from which patterns similar to known nuclear matrix associated proteins were identified. Detailed here is our method, the analysis techniques, and a discussion of the application to further in vivo antibody production.


Asunto(s)
Anticuerpos Monoclonales/química , Ensayos Analíticos de Alto Rendimiento , Matriz Nuclear/química , Proteoma/administración & dosificación , Animales , Anticuerpos Monoclonales/biosíntesis , Anticuerpos Monoclonales/aislamiento & purificación , Afinidad de Anticuerpos , Especificidad de Anticuerpos , Atlas como Asunto , Células HeLa , Humanos , Hibridomas/química , Hibridomas/inmunología , Inmunización , Aprendizaje Automático , Ratones , Ratones Endogámicos BALB C , Matriz Nuclear/inmunología , Análisis de Componente Principal , Proteoma/química , Proteoma/inmunología , Vacunación
11.
J Cell Physiol ; 231(6): 1269-75, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26496460

RESUMEN

Despite being densely packed with chromatin, nuclear bodies and a nucleoskeletal network, the nucleus is a remarkably dynamic organelle. Chromatin loops form and relax, RNA transcripts and transcription factors move diffusively, and nuclear bodies move. We show here that RNA splicing speckled domains (splicing speckles) fluctuate in constrained nuclear volumes and remodel their shapes. Small speckles move in a directed way toward larger speckles with which they fuse. This directed movement is reduced upon decreasing cellular ATP levels or inhibiting RNA polymerase II activity. The random movement of speckles is reduced upon decreasing cellular ATP levels, moderately reduced after inhibition of SWI/SNF chromatin remodeling and modestly increased upon inhibiting RNA polymerase II activity. To define the paths through which speckles can translocate in the nucleus, we generated a pressure gradient to create flows in the nucleus. In response to the pressure gradient, speckles moved along curvilinear paths in the nucleus. Collectively, our results demonstrate a new type of ATP-dependent motion in the nucleus. We present a model where recycling splicing factors return as part of small sub-speckles from distal sites of RNA processing to larger splicing speckles by a directed ATP-driven mechanism through interchromatin spaces.


Asunto(s)
Núcleo Celular/metabolismo , Células Epiteliales/metabolismo , Glándulas Mamarias Humanas/metabolismo , Empalme del ARN , Transporte de ARN , ARN/metabolismo , Adenosina Trifosfato/metabolismo , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Línea Celular , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Glándulas Mamarias Humanas/citología , Modelos Biológicos , Proteínas Asociadas a Matriz Nuclear/genética , Proteínas Asociadas a Matriz Nuclear/metabolismo , Presión , ARN/genética , Interferencia de ARN , ARN Polimerasa II/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Tiempo , Transfección
12.
J Cell Physiol ; 231(1): 31-5, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26059817

RESUMEN

Three-dimensional organization of the chromatin has important roles in transcription, replication, DNA repair, and pathologic events such as translocations. There are two fundamental ways to study higher-order chromatin organization: microscopic and molecular approaches. In this review, we briefly introduce the molecular approaches, focusing on chromosome conformation capture or "3C" technology and its derivatives, which can be used to probe chromatin folding at resolutions beyond that provided by microscopy techniques. We further discuss the different types of data generated by the 3C-based methods and how they can be used to answer distinct biological questions.


Asunto(s)
Cromatina/genética , Reparación del ADN/fisiología , Replicación del ADN/genética , ADN/genética , Genoma/genética , Microscopía , Animales , Cromatina/química , Humanos , Microscopía/métodos
13.
J Cell Physiol ; 230(11): 2683-94, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25808524

RESUMEN

The Brahma (BRM) and Brahma-related Gene 1 (BRG1) ATPases are highly conserved homologs that catalyze the chromatin remodeling functions of the multi-subunit human SWI/SNF chromatin remodeling enzymes in a mutually exclusive manner. SWI/SNF enzyme subunits are mutated or missing in many cancer types, but are overexpressed without apparent mutation in other cancers. Here, we report that both BRG1 and BRM are overexpressed in most primary breast cancers independent of the tumor's receptor status. Knockdown of either ATPase in a triple negative breast cancer cell line reduced tumor formation in vivo and cell proliferation in vitro. Fewer cells in S phase and an extended cell cycle progression time were observed without any indication of apoptosis, senescence, or alterations in migration or attachment properties. Combined knockdown of BRM and BRG1 showed additive effects in the reduction of cell proliferation and time required for completion of cell cycle, suggesting that these enzymes promote cell cycle progression through independent mechanisms. Knockout of BRG1 or BRM using CRISPR/Cas9 technology resulted in the loss of viability, consistent with a requirement for both enzymes in triple negative breast cancer cells.


Asunto(s)
Proliferación Celular/genética , ADN Helicasas/biosíntesis , Proteínas Nucleares/biosíntesis , Factores de Transcripción/biosíntesis , Neoplasias de la Mama Triple Negativas/genética , Adenosina Trifosfatasas/biosíntesis , Adenosina Trifosfatasas/genética , Animales , Sistemas CRISPR-Cas , Ciclo Celular/genética , Línea Celular Tumoral , Supervivencia Celular/genética , Ensamble y Desensamble de Cromatina/genética , ADN Helicasas/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Ratones , Proteínas Nucleares/genética , Factores de Transcripción/genética , Neoplasias de la Mama Triple Negativas/patología
14.
Dev Biol ; 374(1): 164-73, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23085236

RESUMEN

The formation of the anteroposterior axis in mice requires a Wnt3-dependent symmetry-breaking event that leads to the formation of the primitive streak and gastrulation. Wnt3 is expressed sequentially in two distinct areas of the mouse embryo before the appearance of the primitive streak; first in the posterior visceral endoderm and soon after in the adjacent posterior epiblast. Hence, although an axial requirement for Wnt3 is well established, its temporal and tissue specific requirements remain an open question. Here, we report the conditional inactivation of Wnt3 in the epiblast of developing mouse embryos. Contrary to previous studies, our data shows that embryos lacking Wnt3 specifically in the epiblast are able to initiate gastrulation and advance to late primitive streak stages but fail to thrive and are resorbed by E9.5. At the molecular level, we provide evidence that Wnt3 regulates its own expression and that of other primitive streak markers via activation of the canonical Wnt signaling pathway.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteína Wnt3/metabolismo , Animales , Medios de Cultivo Condicionados/farmacología , Femenino , Gástrula/metabolismo , Genotipo , Células HeLa , Humanos , Hibridación in Situ , Masculino , Ratones , Ratones Noqueados , Microscopía Fluorescente/métodos , Línea Primitiva/metabolismo , ARN/metabolismo , Transducción de Señal , Factores de Tiempo
15.
Nucleus ; 15(1): 2350180, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38773934

RESUMEN

Most of the genome is transcribed into RNA but only 2% of the sequence codes for proteins. Non-coding RNA transcripts include a very large number of long noncoding RNAs (lncRNAs). A growing number of identified lncRNAs operate in cellular stress responses, for example in response to hypoxia, genotoxic stress, and oxidative stress. Additionally, lncRNA plays important roles in epigenetic mechanisms operating at chromatin and in maintaining chromatin architecture. Here, we address three lncRNA topics that have had significant recent advances. The first is an emerging role for many lncRNAs in cellular stress responses. The second is the development of high throughput screening assays to develop causal relationships between lncRNAs across the genome with cellular functions. Finally, we turn to recent advances in understanding the role of lncRNAs in regulating chromatin architecture and epigenetics, advances that build on some of the earliest work linking RNA to chromatin architecture.


Asunto(s)
Cromatina , Epigénesis Genética , ARN Largo no Codificante , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Cromatina/metabolismo , Cromatina/genética , Humanos , Animales , Estrés Fisiológico/genética
16.
Nat Commun ; 15(1): 2497, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509062

RESUMEN

Microglia play a pivotal role in neurodegenerative disease pathogenesis, but the mechanisms underlying microglia dysfunction and toxicity remain to be elucidated. To investigate the effect of neurodegenerative disease-linked genes on the intrinsic properties of microglia, we studied microglia-like cells derived from human induced pluripotent stem cells (iPSCs), termed iMGs, harboring mutations in profilin-1 (PFN1) that are causative for amyotrophic lateral sclerosis (ALS). ALS-PFN1 iMGs exhibited evidence of lipid dysmetabolism, autophagy dysregulation and deficient phagocytosis, a canonical microglia function. Mutant PFN1 also displayed enhanced binding affinity for PI3P, a critical signaling molecule involved in autophagic and endocytic processing. Our cumulative data implicate a gain-of-toxic function for mutant PFN1 within the autophagic and endo-lysosomal pathways, as administration of rapamycin rescued phagocytic dysfunction in ALS-PFN1 iMGs. These outcomes demonstrate the utility of iMGs for neurodegenerative disease research and implicate microglial vesicular degradation pathways in the pathogenesis of these disorders.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células Madre Pluripotentes Inducidas , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Microglía/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Profilinas/metabolismo , Mutación
17.
Nature ; 445(7126): 442-6, 2007 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-17251981

RESUMEN

Regulation of ribosomal RNA genes is a fundamental process that supports the growth of cells and is tightly coupled with cell differentiation. Although rRNA transcriptional control by RNA polymerase I (Pol I) and associated factors is well studied, the lineage-specific mechanisms governing rRNA expression remain elusive. Runt-related transcription factors Runx1, Runx2 and Runx3 establish and maintain cell identity, and convey phenotypic information through successive cell divisions for regulatory events that determine cell cycle progression or exit in progeny cells. Here we establish that mammalian Runx2 not only controls lineage commitment and cell proliferation by regulating genes transcribed by RNA Pol II, but also acts as a repressor of RNA Pol I mediated rRNA synthesis. Within the condensed mitotic chromosomes we find that Runx2 is retained in large discrete foci at nucleolar organizing regions where rRNA genes reside. These Runx2 chromosomal foci are associated with open chromatin, co-localize with the RNA Pol I transcription factor UBF1, and undergo transition into nucleoli at sites of rRNA synthesis during interphase. Ribosomal RNA transcription and protein synthesis are enhanced by Runx2 deficiency that results from gene ablation or RNA interference, whereas induction of Runx2 specifically and directly represses rDNA promoter activity. Runx2 forms complexes containing the RNA Pol I transcription factors UBF1 and SL1, co-occupies the rRNA gene promoter with these factors in vivo, and affects local chromatin histone modifications at rDNA regulatory regions. Thus Runx2 is a critical mechanistic link between cell fate, proliferation and growth control. Our results suggest that lineage-specific control of ribosomal biogenesis may be a fundamental function of transcription factors that govern cell fate.


Asunto(s)
Linaje de la Célula , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Genes de ARNr/genética , Mitosis , Transcripción Genética , Animales , Secuencia de Bases , Cromátides/genética , Cromátides/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/deficiencia , ADN Ribosómico/genética , Humanos , Interfase , Metafase , Ratones , Mitosis/genética , Modelos Biológicos , Complejos Multienzimáticos/metabolismo , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , ARN Polimerasa I/metabolismo , ARN Ribosómico/biosíntesis , Proteínas Represoras/metabolismo , Transcripción Genética/genética
18.
Nat Rev Cancer ; 4(9): 677-87, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15343274

RESUMEN

Nuclear architecture - the spatial arrangement of chromosomes and other nuclear components - provides a framework for organizing and regulating the diverse functional processes within the nucleus. There are characteristic differences in the nuclear architectures of cancer cells, compared with normal cells, and some anticancer treatments restore normal nuclear structure and function. Advances in understanding nuclear structure have revealed insights into the process of malignant transformation and provide a basis for the development of new diagnostic tools and therapeutics.


Asunto(s)
Núcleo Celular/ultraestructura , Cromatina/ultraestructura , Neoplasias/patología , Matriz Nuclear , Humanos , Neoplasias/diagnóstico
19.
Curr Opin Genet Dev ; 75: 101940, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35777349

RESUMEN

There is a long experimental history supporting the principle that RNA is essential for normal nuclear and chromatin architecture. Most of the genome is transcribed into RNA but only 2% of the sequence codes for proteins. In the nucleus, most non-coding RNA, packaged in proteins, is bound into structures including chromatin and a non-chromatin scaffolding, the nuclear matrix, which was first observed by electron microscopy. Removing nuclear RNA or inhibiting its transcription causes the condensation of chromatin, showing the importance of RNA in spatially and functionally organizing the genome. Today, powerful techniques for the molecular characterization of RNA and for mapping its spatial organization in the nucleus have provided molecular detail to these principles.


Asunto(s)
Núcleo Celular , Ribonucleoproteínas , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Matriz Nuclear/química , Matriz Nuclear/genética , Matriz Nuclear/metabolismo , ARN/metabolismo , Ribonucleoproteínas/análisis , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
20.
J Cell Physiol ; 226(5): 1383-9, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-20945391

RESUMEN

The nuclear matrix bound transcription factor RUNX2 is a lineage-specific developmental regulator that is linked to cancer. We have previously shown that RUNX2 controls transcription of both RNA polymerase II genes and RNA polymerase I-dependent ribosomal RNA genes. RUNX2 is epigenetically retained through mitosis on both classes of target genes in condensed chromosomes. We have used fluorescence recovery after photobleaching to measure the relative binding kinetics of enhanced green fluorescent protein (EGFP)-RUNX2 at transcription sites in the nucleus and nucleoli during interphase, as well as on mitotic chromosomes. RUNX2 becomes more strongly bound as cells go from interphase through prophase, with a doubling of the most tightly bound "immobile fraction." RUNX2 exchange then becomes much more facile during metaphase to telophase. During interphase the less tightly bound pool of RUNX2 exchanges more slowly at nucleoli than at subnuclear foci, and the non-exchanging immobile fraction is greater in nucleoli. These results are consistent with a model in which the molecular mechanism of RUNX2 binding is different at protein-coding and ribosomal RNA genes. The binding interactions of RUNX2 change as cells go through mitosis, with binding affinity increasing as chromosomes condense and then decreasing through subsequent mitotic phases. The increased binding affinity of RUNX2 at mitotic chromosomes may reflect its epigenetic function in "bookmarking" of target genes in cancer cells.


Asunto(s)
Núcleo Celular/metabolismo , Cromosomas Humanos/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Microscopía Fluorescente , Mitosis , Sitios de Unión , Línea Celular Tumoral , Nucléolo Celular/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Recuperación de Fluorescencia tras Fotoblanqueo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Cinética , Unión Proteica , ARN Polimerasa I/metabolismo , ARN Polimerasa II/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Transfección , Grabación en Video
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA