Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 200(8): 2738-2747, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29491009

RESUMEN

IL-15 is a key regulator of NK cell maintenance and proliferation and synergizes with other myeloid cell-derived cytokines to enhance NK cell effector function. At low concentrations, trans-presentation of IL-15 by dendritic cells can activate NK cells, whereas at higher concentrations it can act directly on NK cells, independently of accessory cells. In this study, we investigate the potential for IL-15 to boost responses to influenza virus by promoting accessory cell function. We find that coculture of human PBMCs with inactivated whole influenza virus (A/Victoria/361/2011) in the presence of very low concentrations of IL-15 results in increased production of myeloid cell-derived cytokines, including IL-12, IFN-α2, GM-CSF, and IL-1ß, and an increased frequency of polyfunctional NK cells (defined by the expression of two or more of CD107a, IFN-γ, and CD25). Neutralization experiments demonstrate that IL-15-mediated enhancement of NK cell responses is primarily dependent on IL-12 and partially dependent on IFN-αßR1 signaling. Critically, IL-15 boosted the production of IL-12 in influenza-stimulated blood myeloid dendritic cells. IL-15 costimulation also restored the ability of less-differentiated NK cells from human CMV-seropositive individuals to respond to influenza virus. These data suggest that very low concentrations of IL-15 play an important role in boosting accessory cell function to support NK cell effector functions.


Asunto(s)
Virus de la Influenza A/inmunología , Interleucina-12/biosíntesis , Interleucina-15/inmunología , Células Asesinas Naturales/inmunología , Activación de Linfocitos/inmunología , Humanos , Gripe Humana/inmunología , Interleucina-12/inmunología , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo
2.
J Immunol ; 197(1): 313-25, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27233958

RESUMEN

Human NK cells are activated by cytokines, immune complexes, and signals transduced via activating ligands on other host cells. After vaccination, or during secondary infection, adaptive immune responses can enhance both cytokine-driven and Ab-dependent NK cell responses. However, induction of NK cells for enhanced function after in vitro exposure to innate inflammatory cytokines has also been reported and may synergize with adaptive signals to potentiate NK cell activity during infection or vaccination. To test this hypothesis, we examined the effect of seasonal influenza vaccination on NK cell function and phenotype in 52 previously unvaccinated individuals. Enhanced, IL-2-dependent, NK cell IFN-γ responses to Influenza A/California/7/2009 virus were detected up to 4 wk postvaccination and higher in human CMV (HCMV)-seronegative (HCMV(-)) individuals than in HCMV-seropositive (HCMV(+)) individuals. By comparison, robust NK cell degranulation responses were observed both before and after vaccination, due to high titers of naturally occurring anti-influenza Abs in human plasma, and did not differ between HCMV(+) and HCMV(-) subjects. In addition to these IL-2-dependent and Ab-dependent responses, NK cell responses to innate cytokines were also enhanced after influenza vaccination; this was associated with proliferation of CD57(-) NK cells and was most evident in HCMV(+) subjects. Similar enhancement of cytokine responsiveness was observed when NK cells were cocultured in vitro with Influenza A/California/7/2009 virus, and this was at least partially dependent upon IFN-αßR2. In summary, our data indicate that attenuated or live viral vaccines promote cytokine-induced memory-like NK cells and that this process is influenced by HCMV infection.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Citomegalovirus/inmunología , Memoria Inmunológica , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Células Asesinas Naturales/inmunología , Orthomyxoviridae/inmunología , Adulto , Células Cultivadas , Infecciones por Citomegalovirus/complicaciones , Humanos , Gripe Humana/complicaciones , Interferón gamma/metabolismo , Interleucina-2/metabolismo , Activación de Linfocitos , Persona de Mediana Edad , Vacunación , Adulto Joven
3.
J Immunol ; 194(10): 4657-67, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25855356

RESUMEN

NK cells contribute to postvaccination immune responses after activation by IL-2 from Ag-specific memory T cells or by cross-linking of the low-affinity IgG receptor, CD16, by Ag-Ab immune complexes. Sensitivity of NK cells to these signals from the adaptive immune system is heterogeneous and influenced by their stage of differentiation. CD56(dim)CD57(+) NK cells are less responsive to IL-2 and produce less IFN-γ in response to T cell-mediated activation than do CD56(bright) or CD56(dim)CD57(-) NK cells. Conversely, NK cell cytotoxicity, as measured by degranulation, is maintained across the CD56(dim) subsets. Human CMV (HCMV), a highly prevalent herpes virus causing lifelong, usually latent, infections, drives the expansion of the CD56(dim)CD57(+)NKG2C(+) NK cell population, skewing the NK cell repertoire in favor of cytotoxic responses at the expense of cytokine-driven responses. We hypothesized, therefore, that HCMV seropositivity would be associated with altered NK cell responses to vaccine Ags. In a cross-sectional study of 152 U.K. adults, with HCMV seroprevalence rate of 36%, we find that HCMV seropositivity is associated with lower NK cell IFN-γ production and degranulation after in vitro restimulation with pertussis or H1N1 influenza vaccine Ags. Higher expression of CD57/NKG2C and lower expression of IL-18Rα on NK cells from HCMV seropositive subjects do not fully explain these impaired responses, which are likely the result of multiple receptor-ligand interactions. This study demonstrates for the first time, to our knowledge, that HCMV serostatus influences NK cell contributions to adaptive immunity and raises important questions regarding the impact of HCMV infection on vaccine efficacy.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Células Asesinas Naturales/inmunología , Vacuna contra la Tos Ferina/inmunología , Adulto , Anciano , Estudios Transversales , Citomegalovirus/inmunología , Femenino , Citometría de Flujo , Humanos , Masculino , Persona de Mediana Edad , Estudios Seroepidemiológicos , Adulto Joven
4.
Blood ; 124(14): 2213-22, 2014 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-25150297

RESUMEN

Natural killer (NK) cells differentiate and mature during the human life course; human cytomegalovirus (HCMV) infection is a known driver of this process. We have explored human NK cell phenotypic and functional maturation in a rural African (Gambian) population with a high prevalence of HCMV. The effect of age on the frequency, absolute number, phenotype, and functional capacity of NK cells was monitored in 191 individuals aged from 1 to 49 years. Increasing frequencies of NK cells with age were associated with increased proportions of CD56dim cells expressing the differentiation marker CD57 and expansion of the NKG2C+ subset. Frequencies of NK cells responding to exogenous cytokines declined with age in line with a decreased proportion of CD57- cells. These changes coincided with a highly significant drop in anti-HCMV IgG titers by the age of 10 years, suggesting that HCMV infection is brought under control as NK cells differentiate (or vice versa). Deletion at the NKG2C locus was associated with a gene dose-dependent reduction in proportions of CD94+ and CD57+ NK cells. Importantly, anti-HCMV IgG titers were significantly elevated in NKG2C-/- children, suggesting that lack of expression of NKG2C may be associated with altered control of HCMV in childhood.


Asunto(s)
Infecciones por Citomegalovirus/metabolismo , Citomegalovirus/metabolismo , Eliminación de Gen , Células Asesinas Naturales/citología , Subfamília C de Receptores Similares a Lectina de Células NK/genética , Adolescente , Adulto , Antígenos CD57/metabolismo , Diferenciación Celular , Células Cultivadas , Niño , Preescolar , Femenino , Perfilación de la Expresión Génica , Genotipo , Humanos , Lactante , Leucocitos Mononucleares/citología , Masculino , Persona de Mediana Edad , Subfamília D de Receptores Similares a Lectina de las Células NK/metabolismo , Fenotipo , Adulto Joven
5.
Immunology ; 142(1): 140-50, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24843874

RESUMEN

Natural killer (NK) cells contribute to the effector phase of vaccine-induced adaptive immune responses, secreting cytokines and releasing cytotoxic granules. The proportion of responding NK cells varies between individuals and by vaccine, suggesting that functionally discrete subsets of NK cells with different activation requirements may be involved. Here, we have used responses to individual components of the DTP vaccine [tetanus toxoid (TT), diphtheria toxoid (DT), whole cell inactivated pertussis] to characterize the NK cell subsets involved in interleukin-2-dependent recall responses. Culture with TT, DT or pertussis induced NK cell CD25 expression and interferon-γ production in previously vaccinated individuals. Responses were the most robust against whole cell pertussis, with responses to TT being particularly low. Functional analysis of discrete NK cell subsets revealed that transition from CD56bright to CD56dim correlated with increased responsiveness to CD16 cross-linking, whereas increasing CD57 expression correlated with a loss of responsiveness to cytokines. A higher frequency of CD56dim CD57− NK cells expressed CD25 and interferon-γ following stimulation with vaccine antigen compared with CD56dim CD57+ NK cells and made the largest overall contribution to this response. CD56dim CD57int NK cells represent an intermediate functional phenotype in response to vaccine-induced and receptor-mediated stimuli. These findings have implications for the ability of NK cells to contribute to the effector response after vaccination and for vaccine-induced immunity in older individuals.


Asunto(s)
Inmunidad Adaptativa , Antígenos Bacterianos/inmunología , Antígenos CD57/metabolismo , Vacuna contra Difteria, Tétanos y Tos Ferina/inmunología , Células Asesinas Naturales/inmunología , Subgrupos Linfocitarios/inmunología , Adulto , Anciano , Biomarcadores/metabolismo , Antígeno CD56/metabolismo , Células Cultivadas , Toxoide Diftérico/inmunología , Proteínas Ligadas a GPI/metabolismo , Humanos , Memoria Inmunológica , Interferón gamma/metabolismo , Subunidad alfa del Receptor de Interleucina-18/metabolismo , Células Asesinas Naturales/clasificación , Células Asesinas Naturales/metabolismo , Subgrupos Linfocitarios/clasificación , Subgrupos Linfocitarios/metabolismo , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Persona de Mediana Edad , Vacuna contra la Tos Ferina/inmunología , Fenotipo , Receptores de IgG/metabolismo , Receptores de Interleucina-12/metabolismo , Toxoide Tetánico/inmunología , Adulto Joven
6.
NPJ Vaccines ; 9(1): 10, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184681

RESUMEN

The receptor-binding domain, region II, of the Plasmodium vivax Duffy binding protein (PvDBPII) binds the Duffy antigen on the reticulocyte surface to mediate invasion. A heterologous vaccine challenge trial recently showed that a delayed dosing regimen with recombinant PvDBPII SalI variant formulated with adjuvant Matrix-MTM reduced the in vivo parasite multiplication rate (PMR) in immunized volunteers challenged with the Thai P. vivax isolate PvW1. Here, we describe extensive analysis of the polyfunctional antibody responses elicited by PvDBPII immunization and identify immune correlates for PMR reduction. A classification algorithm identified antibody features that significantly contribute to PMR reduction. These included antibody titre, receptor-binding inhibitory titre, dissociation constant of the PvDBPII-antibody interaction, complement C1q and Fc gamma receptor binding and specific IgG subclasses. These data suggest that multiple immune mechanisms elicited by PvDBPII immunization are likely to be associated with protection and the immune correlates identified could guide the development of an effective vaccine for P. vivax malaria. Importantly, all the polyfunctional antibody features that correlated with protection cross-reacted with both PvDBPII SalI and PvW1 variants, suggesting that immunization with PvDBPII should protect against diverse P. vivax isolates.

7.
Lancet Infect Dis ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38880111

RESUMEN

BACKGROUND: A blood-stage Plasmodium falciparum malaria vaccine would provide a second line of defence to complement partially effective or waning immunity conferred by the approved pre-erythrocytic vaccines. RH5.1 is a soluble protein vaccine candidate for blood-stage P falciparum, formulated with Matrix-M adjuvant to assess safety and immunogenicity in a malaria-endemic adult and paediatric population for the first time. METHODS: We did a non-randomised, phase 1b, single-centre, dose-escalation, age de-escalation, first-in-human trial of RH5.1/Matrix-M in Bagamoyo, Tanzania. We recruited healthy adults (aged 18-45 years) and children (aged 5-17 months) to receive the RH5.1/Matrix-M vaccine candidate in the following three-dose regimens: 10 µg RH5.1 at 0, 1, and 2 months (Adults 10M), and the higher dose of 50 µg RH5.1 at 0 and 1 month and 10 µg RH5.1 at 6 months (delayed-fractional third dose regimen; Adults DFx). Children received either 10 µg RH5.1 at 0, 1, and 2 months (Children 10M) or 10 µg RH5.1 at 0, 1, and 6 months (delayed third dose regimen; Children 10D), and were recruited in parallel, followed by children who received the dose-escalation regimen (Children DFx) and children with higher malaria pre-exposure who also received the dose-escalation regimen (High Children DFx). All RH5.1 doses were formulated with 50 µg Matrix-M adjuvant. Primary outcomes for vaccine safety were solicited and unsolicited adverse events after each vaccination, along with any serious adverse events during the study period. The secondary outcome measures for immunogenicity were the concentration and avidity of anti-RH5.1 serum IgG antibodies and their percentage growth inhibition activity (GIA) in vitro, as well as cellular immunogenicity to RH5.1. All participants receiving at least one dose of vaccine were included in the primary analyses. This trial is registered at ClinicalTrials.gov, NCT04318002, and is now complete. FINDINGS: Between Jan 25, 2021, and April 15, 2021, we recruited 12 adults (six [50%] in the Adults 10M group and six [50%] in the Adults DFx group) and 48 children (12 each in the Children 10M, Children 10D, Children DFx, and High Children DFx groups). 57 (95%) of 60 participants completed the vaccination series and 55 (92%) completed 22 months of follow-up following the third vaccination. Vaccinations were well-tolerated across both age groups. There were five serious adverse events involving four child participants during the trial, none of which were deemed related to vaccination. RH5-specific T cell and serum IgG antibody responses were induced by vaccination and purified total IgG showed in vitro GIA against P falciparum. We found similar functional quality (ie, GIA per µg RH5-specific IgG) across all age groups and dosing regimens at 14 days after the final vaccination; the concentration of RH5.1-specific polyclonal IgG required to give 50% GIA was 14·3 µg/mL (95% CI 13·4-15·2). 11 children were vaccinated with the delayed third dose regimen and showed the highest median anti-RH5 serum IgG concentration 14 days following the third vaccination (723 µg/mL [IQR 511-1000]), resulting in all 11 who received the full series showing greater than 60% GIA following dilution of total IgG to 2·5 mg/mL (median 88% [IQR 81-94]). INTERPRETATION: The RH5.1/Matrix-M vaccine candidate shows an acceptable safety and reactogenicity profile in both adults and 5-17-month-old children residing in a malaria-endemic area, with all children in the delayed third dose regimen reaching a level of GIA previously associated with protective outcome against blood-stage P falciparum challenge in non-human primates. These data support onward efficacy assessment of this vaccine candidate against clinical malaria in young African children. FUNDING: The European and Developing Countries Clinical Trials Partnership; the UK Medical Research Council; the UK Department for International Development; the National Institute for Health and Care Research Oxford Biomedical Research Centre; the Division of Intramural Research, National Institute of Allergy and Infectious Diseases; the US Agency for International Development; and the Wellcome Trust.

8.
JCI Insight ; 8(2)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36692019

RESUMEN

Modifications to vaccine delivery that increase serum antibody longevity are of great interest for maximizing efficacy. We have previously shown that a delayed fractional (DFx) dosing schedule (0-1-6 month) - using AS01B-adjuvanted RH5.1 malaria antigen - substantially improves serum IgG durability as compared with monthly dosing (0-1-2 month; NCT02927145). However, the underlying mechanism and whether there are wider immunological changes with DFx dosing were unclear. Here, PfRH5-specific Ig and B cell responses were analyzed in depth through standardized ELISAs, flow cytometry, systems serology, and single-cell RNA-Seq (scRNA-Seq). Data indicate that DFx dosing increases the magnitude and durability of circulating PfRH5-specific B cells and serum IgG1. At the peak antibody magnitude, DFx dosing was distinguished by a systems serology feature set comprising increased FcRn binding, IgG avidity, and proportion of G2B and G2S2F IgG Fc glycans, alongside decreased IgG3, antibody-dependent complement deposition, and proportion of G1S1F IgG Fc glycan. Concomitantly, scRNA-Seq data show a higher CDR3 percentage of mutation from germline and decreased plasma cell gene expression in circulating PfRH5-specific B cells. Our data, therefore, reveal a profound impact of DFx dosing on the humoral response and suggest plausible mechanisms that could enhance antibody longevity, including improved FcRn binding by serum Ig and a potential shift in the underlying cellular response from circulating short-lived plasma cells to nonperipheral long-lived plasma cells.


Asunto(s)
Vacunas contra la Malaria , Humanos , Antígenos de Protozoos , Linfocitos B , Linfocitos , Inmunoglobulina G
9.
Front Immunol ; 14: 1193079, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38299155

RESUMEN

We have previously reported primary endpoints of a clinical trial testing two vaccine platforms for the delivery of Plasmodium vivax malaria DBPRII: viral vectors (ChAd63, MVA), and protein/adjuvant (PvDBPII with 50µg Matrix-M™ adjuvant). Delayed boosting was necessitated due to trial halts during the pandemic and provides an opportunity to investigate the impact of dosing regimens. Here, using flow cytometry - including agnostic definition of B cell populations with the clustering tool CITRUS - we report enhanced induction of DBPRII-specific plasma cell and memory B cell responses in protein/adjuvant versus viral vector vaccinees. Within protein/adjuvant groups, delayed boosting further improved B cell immunogenicity compared to a monthly boosting regimen. Consistent with this, delayed boosting also drove more durable anti-DBPRII serum IgG. In an independent vaccine clinical trial with the P. falciparum malaria RH5.1 protein/adjuvant (50µg Matrix-M™) vaccine candidate, we similarly observed enhanced circulating B cell responses in vaccinees receiving a delayed final booster. Notably, a higher frequency of vaccine-specific (putatively long-lived) plasma cells was detected in the bone marrow of these delayed boosting vaccinees by ELISPOT and correlated strongly with serum IgG. Finally, following controlled human malaria infection with P. vivax parasites in the DBPRII trial, in vivo growth inhibition was observed to correlate with DBPRII-specific B cell and serum IgG responses. In contrast, the CD4+ and CD8+ T cell responses were impacted by vaccine platform but not dosing regimen and did not correlate with in vivo growth inhibition in a challenge model. Taken together, our DBPRII and RH5 data suggest an opportunity for protein/adjuvant dosing regimen optimisation in the context of rational vaccine development against pathogens where protection is antibody-mediated.


Asunto(s)
Malaria Vivax , Vacunas , Humanos , Plasmodium falciparum , Médula Ósea , Antígenos de Protozoos , Adyuvantes Inmunológicos , Malaria Vivax/prevención & control , Inmunoglobulina G
10.
Med ; 4(10): 668-686.e7, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37572659

RESUMEN

BACKGROUND: RH5 is a leading blood-stage candidate antigen for a Plasmodium falciparum vaccine; however, its safety and immunogenicity in malaria-endemic populations are unknown. METHODS: A phase 1b, single-center, dose-escalation, age-de-escalation, double-blind, randomized, controlled trial was conducted in Bagamoyo, Tanzania (NCT03435874). Between 12th April and 25th October 2018, 63 healthy adults (18-35 years), young children (1-6 years), and infants (6-11 months) received a priming dose of viral-vectored ChAd63 RH5 or rabies control vaccine. Sixty participants were boosted with modified vaccinia virus Ankara (MVA) RH5 or rabies control vaccine 8 weeks later and completed 6 months of follow-up post priming. Primary outcomes were the number of solicited and unsolicited adverse events post vaccination and the number of serious adverse events over the study period. Secondary outcomes included measures of the anti-RH5 immune response. FINDINGS: Vaccinations were well tolerated, with profiles comparable across groups. No serious adverse events were reported. Vaccination induced RH5-specific cellular and humoral responses. Higher anti-RH5 serum immunoglobulin G (IgG) responses were observed post boost in young children and infants compared to adults. Vaccine-induced antibodies showed growth inhibition activity (GIA) in vitro against P. falciparum blood-stage parasites; their highest levels were observed in infants. CONCLUSIONS: The ChAd63-MVA RH5 vaccine shows acceptable safety and reactogenicity and encouraging immunogenicity in children and infants residing in a malaria-endemic area. The levels of functional GIA observed in RH5-vaccinated infants are the highest reported to date following human vaccination. These data support onward clinical development of RH5-based blood-stage vaccines to protect against clinical malaria in young African infants. FUNDING: Medical Research Council, London, UK.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Adulto , Niño , Preescolar , Humanos , Lactante , Adenovirus de los Simios , Anticuerpos Antivirales , Vacunas contra la Malaria/efectos adversos , Vacunas contra la Malaria/inmunología , Malaria Falciparum/prevención & control , Rabia , Tanzanía , Adolescente , Adulto Joven , Método Doble Ciego
11.
Sci Transl Med ; 15(704): eadf1782, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37437014

RESUMEN

There are no licensed vaccines against Plasmodium vivax. We conducted two phase 1/2a clinical trials to assess two vaccines targeting P. vivax Duffy-binding protein region II (PvDBPII). Recombinant viral vaccines using chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) vectors as well as a protein and adjuvant formulation (PvDBPII/Matrix-M) were tested in both a standard and a delayed dosing regimen. Volunteers underwent controlled human malaria infection (CHMI) after their last vaccination, alongside unvaccinated controls. Efficacy was assessed by comparisons of parasite multiplication rates in the blood. PvDBPII/Matrix-M, given in a delayed dosing regimen, elicited the highest antibody responses and reduced the mean parasite multiplication rate after CHMI by 51% (n = 6) compared with unvaccinated controls (n = 13), whereas no other vaccine or regimen affected parasite growth. Both viral-vectored and protein vaccines were well tolerated and elicited expected, short-lived adverse events. Together, these results support further clinical evaluation of the PvDBPII/Matrix-M P. vivax vaccine.


Asunto(s)
Malaria , Parásitos , Humanos , Animales , Plasmodium vivax , Vacunación
12.
Front Immunol ; 13: 1045529, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466924

RESUMEN

Long-lived plasma cells (LLPCs) - largely resident in the bone marrow - secrete antibody over months and years, thus maintaining serum antibody concentrations relevant for vaccine-mediated immunity. Little is known regarding factors that can modulate the induction of human LLPC responses in draining lymph node germinal centres, or those that maintain LLPCs in bone marrow niches following vaccination. Here, we review human and non-human primate vaccination studies which incorporate draining lymph node and/or bone marrow aspirate sampling. We emphasise the key contributions these samples can make to improve our understanding of LLPC immunology and guide rational vaccine development. Specifically, we highlight findings related to the impact of vaccine dosing regimens, adjuvant/vaccine platform selection, duration of germinal centre reactions in draining lymph nodes and relevance for timing of tissue sampling, and heterogeneity in bone marrow plasma cell populations. Much of this work has come from recent studies with SARS-CoV-2 vaccine candidates or, with respect to the non-human primate work, HIV vaccine development.


Asunto(s)
COVID-19 , Vacunología , Animales , Humanos , Vacunas contra la COVID-19 , COVID-19/prevención & control , SARS-CoV-2 , Tejido Linfoide
13.
Front Immunol ; 13: 984323, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072606

RESUMEN

In endemic settings it is known that natural malaria immunity is gradually acquired following repeated exposures. Here we sought to assess whether similar acquisition of blood-stage malaria immunity would occur following repeated parasite exposure by controlled human malaria infection (CHMI). We report the findings of repeat homologous blood-stage Plasmodium falciparum (3D7 clone) CHMI studies VAC063C (ClinicalTrials.gov NCT03906474) and VAC063 (ClinicalTrials.gov NCT02927145). In total, 24 healthy, unvaccinated, malaria-naïve UK adult participants underwent primary CHMI followed by drug treatment. Ten of these then underwent secondary CHMI in the same manner, and then six of these underwent a final tertiary CHMI. As with primary CHMI, malaria symptoms were common following secondary and tertiary infection, however, most resolved within a few days of treatment and there were no long term sequelae or serious adverse events related to CHMI. Despite detectable induction and boosting of anti-merozoite serum IgG antibody responses following each round of CHMI, there was no clear evidence of anti-parasite immunity (manifest as reduced parasite growth in vivo) conferred by repeated challenge with the homologous parasite in the majority of volunteers. However, three volunteers showed some variation in parasite growth dynamics in vivo following repeat CHMI that were either modest or short-lived. We also observed no major differences in clinical symptoms or laboratory markers of infection across the primary, secondary and tertiary challenges. However, there was a trend to more severe pyrexia after primary CHMI and the absence of a detectable transaminitis post-treatment following secondary and tertiary infection. We hypothesize that this could represent the initial induction of clinical immunity. Repeat homologous blood-stage CHMI is thus safe and provides a model with the potential to further the understanding of naturally acquired immunity to blood-stage infection in a highly controlled setting. Clinical Trial Registration: ClinicalTrials.gov, identifier NCT03906474, NCT02927145.


Asunto(s)
Malaria Falciparum , Malaria , Parásitos , Adulto , Animales , Humanos , Plasmodium falciparum , Reino Unido
14.
medRxiv ; 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35664997

RESUMEN

Background: There are no licensed vaccines against Plasmodium vivax , the most common cause of malaria outside of Africa. Methods: We conducted two Phase I/IIa clinical trials to assess the safety, immunogenicity and efficacy of two vaccines targeting region II of P. vivax Duffy-binding protein (PvDBPII). Recombinant viral vaccines (using ChAd63 and MVA vectors) were administered at 0, 2 months or in a delayed dosing regimen (0, 17, 19 months), whilst a protein/adjuvant formulation (PvDBPII/Matrix-M™) was administered monthly (0, 1, 2 months) or in a delayed dosing regimen (0, 1, 14 months). Delayed regimens were due to trial halts during the COVID-19 pandemic. Volunteers underwent heterologous controlled human malaria infection (CHMI) with blood-stage P. vivax parasites at 2-4 weeks following their last vaccination, alongside unvaccinated controls. Efficacy was assessed by comparison of parasite multiplication rate (PMR) in blood post-CHMI, modelled from parasitemia measured by quantitative polymerase-chain-reaction (qPCR). Results: Thirty-two volunteers were enrolled and vaccinated (n=16 for each vaccine). No safety concerns were identified. PvDBPII/Matrix-M™, given in the delayed dosing regimen, elicited the highest antibody responses and reduced the mean PMR following CHMI by 51% (range 36-66%; n=6) compared to unvaccinated controls (n=13). No other vaccine or regimen impacted parasite growth. In vivo growth inhibition of blood-stage P. vivax correlated with functional antibody readouts of vaccine immunogenicity. Conclusions: Vaccination of malaria-naïve adults with a delayed booster regimen of PvDBPII/ Matrix-M™ significantly reduces the growth of blood-stage P. vivax . Funded by the European Commission and Wellcome Trust; VAC069, VAC071 and VAC079 ClinicalTrials.gov numbers NCT03797989 , NCT04009096 and NCT04201431 .

15.
Front Immunol ; 12: 690348, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305923

RESUMEN

The hurdles to effective blood stage malaria vaccine design include immune evasion tactics used by the parasite such as redundant invasion pathways and antigen variation among circulating parasite strains. While blood stage malaria vaccine development primarily focuses on eliciting optimal humoral responses capable of blocking erythrocyte invasion, clinically-tested Plasmodium falciparum (Pf) vaccines have not elicited sterile protection, in part due to the dramatically high levels of antibody needed. Recent development efforts with non-redundant, conserved blood stage antigens suggest both high antibody titer and rapid antibody binding kinetics are important efficacy factors. Based on the central role of helper CD4 T cells in development of strong, protective immune responses, we systematically analyzed the class II epitope content in five leading Pf blood stage antigens (RH5, CyRPA, RIPR, AMA1 and EBA175) using in silico, in vitro, and ex vivo methodologies. We employed in silico T cell epitope analysis to enable identification of 67 HLA-restricted class II epitope clusters predicted to bind a panel of nine HLA-DRB1 alleles. We assessed a subset of these for HLA-DRB1 allele binding in vitro, to verify the in silico predictions. All clusters assessed (40 clusters represented by 46 peptides) bound at least two HLA-DR alleles in vitro. The overall epitope prediction to in vitro HLA-DRB1 allele binding accuracy was 71%. Utilizing the set of RH5 class II epitope clusters (10 clusters represented by 12 peptides), we assessed stimulation of T cells collected from HLA-matched RH5 vaccinees using an IFN-γ T cell recall assay. All clusters demonstrated positive recall responses, with the highest responses - by percentage of responders and response magnitude - associated with clusters located in the N-terminal region of RH5. Finally, a statistically significant correlation between in silico epitope predictions and ex vivo IFN-γ recall response was found when accounting for HLA-DR matches between the epitope predictions and donor HLA phenotypes. This is the first comprehensive analysis of class II epitope content in RH5, CyRPA, RIPR, AMA1 and EBA175 accompanied by in vitro HLA binding validation for all five proteins and ex vivo T cell response confirmation for RH5.


Asunto(s)
Antígenos de Protozoos/farmacología , Linfocitos T CD4-Positivos/efectos de los fármacos , Epítopos de Linfocito T/inmunología , Vacunas contra la Malaria/farmacología , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Antígenos de Protozoos/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/parasitología , Proteínas Portadoras/inmunología , Proteínas Portadoras/farmacología , Antígenos HLA-DR/inmunología , Interacciones Huésped-Parásitos , Humanos , Interferón gamma/metabolismo , Vacunas contra la Malaria/inmunología , Malaria Falciparum/sangre , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/farmacología
16.
Front Immunol ; 12: 732667, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34659219

RESUMEN

Plasmodium falciparum transmission-blocking vaccines (TBVs) targeting the Pfs25 antigen have shown promise in mice but the same efficacy has never been achieved in humans. We have previously published pre-clinical data related to a TBV candidate Pfs25-IMX313 encoded in viral vectors which was very promising and hence progressed to human clinical trials. The results from the clinical trial of this vaccine were very modest. Here we unravel why, contrary to mice, this vaccine has failed to induce robust antibody (Ab) titres in humans to elicit transmission-blocking activity. We examined Pfs25-specific B cell and T follicular helper (Tfh) cell responses in mice and humans after vaccination with Pfs25-IMX313 encoded by replication-deficient chimpanzee adenovirus serotype 63 (ChAd63) and the attenuated orthopoxvirus modified vaccinia virus Ankara (MVA) delivered in the heterologous prime-boost regimen via intramuscular route. We found that after vaccination, the Pfs25-IMX313 was immunologically suboptimal in humans compared to mice in terms of serum Ab production and antigen-specific B, CD4+ and Tfh cell responses. We identified that the key determinant for the poor anti-Pfs25 Ab formation in humans was the lack of CD4+ T cell recognition of Pfs25-IMX313 derived peptide epitopes. This is supported by correlations established between the ratio of proliferated antigen-specific CD4+/Tfh-like T cells, CXCL13 sera levels, and the corresponding numbers of circulating Pfs25-specific memory B cells, that consequently reflected on antigen-specific IgG sera levels. These correlations can inform the design of next-generation Pfs25-based vaccines for robust and durable blocking of malaria transmission.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Linfocitos T CD4-Positivos/efectos de los fármacos , Inmunidad Humoral/efectos de los fármacos , Inmunogenicidad Vacunal , Vacunas contra la Malaria/administración & dosificación , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Proteínas Protozoarias/administración & dosificación , Proteínas Recombinantes/administración & dosificación , Adolescente , Adulto , Animales , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Linfocitos B/parasitología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/parasitología , Células Cultivadas , Modelos Animales de Enfermedad , Epítopos , Femenino , Humanos , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Malaria Falciparum/transmisión , Masculino , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/inmunología , Proteínas Recombinantes/inmunología , Especificidad de la Especie , Vacunación , Adulto Joven
17.
Cell Rep Med ; 2(3): 100207, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33763653

RESUMEN

Interactions between B cells and CD4+ T follicular helper (Tfh) cells are key determinants of humoral responses. Using samples from clinical trials performed with the malaria vaccine candidate antigen Plasmodium falciparum merozoite protein (PfRH5), we compare the frequency, phenotype, and gene expression profiles of PfRH5-specific circulating Tfh (cTfh) cells elicited by two leading human vaccine delivery platforms: heterologous viral vector prime boost and protein with AS01B adjuvant. We demonstrate that the protein/AS01B platform induces a higher-magnitude antigen-specific cTfh cell response and that this correlates with peak anti-PfRH5 IgG concentrations, frequency of PfRH5-specific memory B cells, and antibody functionality. Furthermore, our data indicate a greater Th2/Tfh2 skew within the polyfunctional response elicited following vaccination with protein/AS01B as compared to a Th1/Tfh1 skew with viral vectors. These data highlight the impact of vaccine platform on the cTfh cell response driving humoral immunity, associating a high-magnitude, Th2-biased cTfh response with potent antibody production.


Asunto(s)
Anticuerpos Antiprotozoarios/biosíntesis , Proteínas Portadoras/inmunología , Inmunidad Humoral/efectos de los fármacos , Vacunas contra la Malaria/inmunología , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Adenoviridae/genética , Adenoviridae/inmunología , Adolescente , Adulto , Linfocitos B/citología , Linfocitos B/inmunología , Proteínas Portadoras/administración & dosificación , Proteínas Portadoras/genética , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/inmunología , Humanos , Inmunogenicidad Vacunal , Interferón gamma/genética , Interferón gamma/inmunología , Interleucina-5/genética , Interleucina-5/inmunología , Lípido A/administración & dosificación , Lípido A/análogos & derivados , Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/genética , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Masculino , Persona de Mediana Edad , Receptores CXCR5/genética , Receptores CXCR5/inmunología , Saponinas/administración & dosificación , Células T Auxiliares Foliculares/citología , Células T Auxiliares Foliculares/inmunología , Células Th2/citología , Células Th2/inmunología , Vacunación , Vacunas de Subunidad , Virus Vaccinia/genética , Virus Vaccinia/inmunología
18.
Med ; 2(6): 701-719.e19, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34223402

RESUMEN

BACKGROUND: Development of an effective vaccine against the pathogenic blood-stage infection of human malaria has proved challenging, and no candidate vaccine has affected blood-stage parasitemia following controlled human malaria infection (CHMI) with blood-stage Plasmodium falciparum. METHODS: We undertook a phase I/IIa clinical trial in healthy adults in the United Kingdom of the RH5.1 recombinant protein vaccine, targeting the P. falciparum reticulocyte-binding protein homolog 5 (RH5), formulated in AS01B adjuvant. We assessed safety, immunogenicity, and efficacy against blood-stage CHMI. Trial registered at ClinicalTrials.gov, NCT02927145. FINDINGS: The RH5.1/AS01B formulation was administered using a range of RH5.1 protein vaccine doses (2, 10, and 50 µg) and was found to be safe and well tolerated. A regimen using a delayed and fractional third dose, in contrast to three doses given at monthly intervals, led to significantly improved antibody response longevity over ∼2 years of follow-up. Following primary and secondary CHMI of vaccinees with blood-stage P. falciparum, a significant reduction in parasite growth rate was observed, defining a milestone for the blood-stage malaria vaccine field. We show that growth inhibition activity measured in vitro using purified immunoglobulin G (IgG) antibody strongly correlates with in vivo reduction of the parasite growth rate and also identify other antibody feature sets by systems serology, including the plasma anti-RH5 IgA1 response, that are associated with challenge outcome. CONCLUSIONS: Our data provide a new framework to guide rational design and delivery of next-generation vaccines to protect against malaria disease. FUNDING: This study was supported by USAID, UK MRC, Wellcome Trust, NIAID, and the NIHR Oxford-BRC.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Adulto , Humanos , Malaria/inducido químicamente , Vacunas contra la Malaria/uso terapéutico , Malaria Falciparum/prevención & control , Plasmodium falciparum , Vacunación , Vacunas Sintéticas
19.
JCI Insight ; 6(23)2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34609964

RESUMEN

Controlled human malaria infection (CHMI) provides a highly informative means to investigate host-pathogen interactions and enable in vivo proof-of-concept efficacy testing of new drugs and vaccines. However, unlike Plasmodium falciparum, well-characterized P. vivax parasites that are safe and suitable for use in modern CHMI models are limited. Here, 2 healthy malaria-naive United Kingdom adults with universal donor blood group were safely infected with a clone of P. vivax from Thailand by mosquito-bite CHMI. Parasitemia developed in both volunteers, and prior to treatment, each volunteer donated blood to produce a cryopreserved stabilate of infected RBCs. Following stringent safety screening, the parasite stabilate from one of these donors (PvW1) was thawed and used to inoculate 6 healthy malaria-naive United Kingdom adults by blood-stage CHMI, at 3 different dilutions. Parasitemia developed in all volunteers, who were then successfully drug treated. PvW1 parasite DNA was isolated and sequenced to produce a high-quality genome assembly by using a hybrid assembly method. We analyzed leading vaccine candidate antigens and multigene families, including the vivax interspersed repeat (VIR) genes, of which we identified 1145 in the PvW1 genome. Our genomic analysis will guide future assessment of candidate vaccines and drugs, as well as experimental medicine studies.


Asunto(s)
Genoma/genética , Malaria Falciparum/genética , Animales , Voluntarios Sanos , Humanos , Masculino , Plasmodium vivax
20.
J Immunol Res ; 2020: 8624963, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32802896

RESUMEN

Single-cell RNA sequencing allows highly detailed profiling of cellular immune responses from limited-volume samples, advancing prospects of a new era of systems immunology. The power of single-cell RNA sequencing offers various opportunities to decipher the immune response to infectious diseases and vaccines. Here, we describe the potential uses of single-cell RNA sequencing methods in prophylactic vaccine development, concentrating on infectious diseases including COVID-19. Using examples from several diseases, we review how single-cell RNA sequencing has been used to evaluate the immunological response to different vaccine platforms and regimens. By highlighting published and unpublished single-cell RNA sequencing studies relevant to vaccinology, we discuss some general considerations how the field could be enriched with the widespread adoption of this technology.


Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Pandemias/prevención & control , Neumonía Viral/prevención & control , RNA-Seq/métodos , Análisis de la Célula Individual , Vacunología/métodos , Vacunas Virales/administración & dosificación , Animales , COVID-19 , Línea Celular , Ensayos Clínicos como Asunto , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Celular/genética , Inmunidad Innata/genética , Inmunogenicidad Vacunal , Neumonía Viral/epidemiología , Neumonía Viral/inmunología , Neumonía Viral/virología , ARN Viral/aislamiento & purificación , SARS-CoV-2 , Vacunas Virales/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA