Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(13): 3502-3518.e33, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34048700

RESUMEN

Thermogenic adipocytes possess a therapeutically appealing, energy-expending capacity, which is canonically cold-induced by ligand-dependent activation of ß-adrenergic G protein-coupled receptors (GPCRs). Here, we uncover an alternate paradigm of GPCR-mediated adipose thermogenesis through the constitutively active receptor, GPR3. We show that the N terminus of GPR3 confers intrinsic signaling activity, resulting in continuous Gs-coupling and cAMP production without an exogenous ligand. Thus, transcriptional induction of Gpr3 represents the regulatory parallel to ligand-binding of conventional GPCRs. Consequently, increasing Gpr3 expression in thermogenic adipocytes is alone sufficient to drive energy expenditure and counteract metabolic disease in mice. Gpr3 transcription is cold-stimulated by a lipolytic signal, and dietary fat potentiates GPR3-dependent thermogenesis to amplify the response to caloric excess. Moreover, we find GPR3 to be an essential, adrenergic-independent regulator of human brown adipocytes. Taken together, our findings reveal a noncanonical mechanism of GPCR control and thermogenic activation through the lipolysis-induced expression of constitutively active GPR3.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Receptor de Androstano Constitutivo/metabolismo , Lipólisis , Receptores Acoplados a Proteínas G/metabolismo , Termogénesis , Adipocitos/metabolismo , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , Frío , Grasas de la Dieta/farmacología , Humanos , Ratones Endogámicos C57BL , Fenotipo , Receptores Acoplados a Proteínas G/genética , Transducción de Señal , Sistema Nervioso Simpático/metabolismo , Transcripción Genética
2.
Plant Cell ; 36(6): 2289-2309, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38466226

RESUMEN

Flowering plant genomes encode four or five DICER-LIKE (DCL) enzymes that produce small interfering RNAs (siRNAs) and microRNAs, which function in RNA interference (RNAi). Different RNAi pathways in plants effect transposon silencing, antiviral defense, and endogenous gene regulation. DCL2 acts genetically redundantly with DCL4 to confer basal antiviral defense. However, DCL2 may also counteract DCL4 since knockout of DCL4 causes growth defects that are suppressed by DCL2 inactivation. Current models maintain that RNAi via DCL2-dependent siRNAs is the biochemical basis of both effects. Here, we report that DCL2-mediated antiviral resistance and growth defects cannot be explained by the silencing effects of DCL2-dependent siRNAs. Both functions are defective in genetic backgrounds that maintain high levels of DCL2-dependent siRNAs, either with specific point mutations in DCL2 or with reduced DCL2 dosage because of heterozygosity for dcl2 knockout alleles. Intriguingly, all DCL2 functions require its catalytic activity, and the penetrance of DCL2-dependent growth phenotypes in dcl4 mutants correlates with DCL2 protein levels but not with levels of major DCL2-dependent siRNAs. We discuss this requirement and correlation with catalytic activity but not with resulting siRNAs, in light of other findings that reveal a DCL2 function in innate immunity activation triggered by cytoplasmic double-stranded RNA.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Interferencia de ARN , Ribonucleasa III , Arabidopsis/genética , Arabidopsis/virología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Mutación , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
3.
Mol Cell Biochem ; 478(1): 215-227, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35771396

RESUMEN

During age-related macular degeneration (AMD), chronic inflammatory processes, possibly fueled by high glucose levels, cause a breakdown of the retinal pigment epithelium (RPE), leading to vision loss. Phloretin, a natural dihydroxychalcone found in apples, targets several anti-inflammatory signaling pathways and effectively inhibits transporter-mediated glucose uptake. It could potentially prevent inflammation and cell death of RPE cells through either direct regulation of inflammatory signaling pathways or through amelioration of high glucose levels. To test this hypothesis, ARPE-19 cells were incubated with or without phloretin for 1 h before exposure to lipopolysaccharide (LPS). Cell viability and the release of pro-inflammatory cytokines interleukin 6 (IL-6), IL-8 and vascular endothelial growth factor (VEGF) were measured. Glucose uptake was studied using isotope uptake studies. The nuclear levels of nuclear factor erythroid 2-related factor 2 (Nrf2) were determined alongside the phosphorylation levels of mitogen-activated protein kinases. Phloretin pretreatment reduced the LPS-induced release of IL-6 and IL-8 as well as VEGF. Phloretin increased intracellular levels of reactive oxygen species and nuclear translocation of Nrf2. It also inhibited glucose uptake into ARPE-19 cells and the phosphorylation of Jun-activated kinase (JNK). Subsequent studies revealed that Nrf2, but not the inhibition of glucose uptake or JNK phosphorylation, was the main pathway of phloretin's anti-inflammatory activities. Phloretin was robustly anti-inflammatory in RPE cells and reduced IL-8 secretion via activation of Nrf2 but the evaluation of its potential in the treatment or prevention of AMD requires further studies.


Asunto(s)
Degeneración Macular , Factor A de Crecimiento Endotelial Vascular , Humanos , Células Epiteliales/metabolismo , Glucosa/metabolismo , Inflamación/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lipopolisacáridos/toxicidad , Degeneración Macular/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Floretina/efectos adversos , Floretina/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Pigmentos Retinianos/efectos adversos , Pigmentos Retinianos/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
4.
Pflugers Arch ; 474(12): 1249-1262, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36175560

RESUMEN

Solute carriers (SLC) are important membrane transport proteins in normal and pathophysiological cells. The aim was to identify amino acid SLC(s) responsible for uptake of sarcosine and glycine in prostate cancer cells and investigate the impact hereon of hyperosmotic stress. Uptake of 14C-sarcosine and 3H-glycine was measured in human prostate cancer (PC-3) cells cultured under isosmotic (300 mOsm/kg) and hyperosmotic (500 mOsm/kg) conditions for 24 h. Hyperosmotic culture medium was obtained by supplementing the medium with 200 mM of the trisaccharide raffinose. Amino acid SLC expression was studied using RT-PCR, real-time PCR, and western blotting. siRNA knockdown of SNAT2 was performed. Experiments were conducted in at least 3 independent cell passages. The uptake of Sar and Gly was increased approximately 8-ninefold in PC-3 cells after 24 h hyperosmotic culture. PAT1 mRNA and protein could not be detected, while SNAT2 was upregulated at the mRNA and protein level. Transfection with SNAT2-specific siRNA reduced Vmax of Sar uptake from 2653 ± 38 to 513 ± 38 nmol mg protein-1 min-1, without altering the Km value (3.19 ± 0.13 vs. 3.42 ± 0.71 mM), indicating that SNAT2 is responsible for at least 80% of Sar uptake in hyperosmotic cultured PC-3 cells. SNAT2 is upregulated in hyperosmotic stressed prostate cancer cells and SNAT2 is responsible for cellular sarcosine and glycine uptake in hyperosmotic cultured PC-3 cells. Sar is identified as a substrate for SNAT2, and this has physiological implications for understanding cellular solute transport in prostate cancer cells.


Asunto(s)
Próstata , Neoplasias de la Próstata , Humanos , Masculino , Próstata/metabolismo , Sarcosina/metabolismo , Células PC-3 , ARN Interferente Pequeño , Glicina , Neoplasias de la Próstata/metabolismo , Aminoácidos , ARN Mensajero/genética
5.
Mol Pharm ; 19(7): 2248-2253, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35512380

RESUMEN

Much effort has been invested in the search for modulators of membrane transport proteins such as P-glycoprotein (P-gp) to improve drug bioavailability and reverse multidrug resistance in cancer. Nonionic surfactants, a class of pharmaceutical excipients, are known to inhibit such proteins, but knowledge about the exact mechanism of this inhibition is scarce. Here, we perform multiscale molecular dynamics simulations of one of these surfactants, polysorbate 20 (PS20), to reveal the behavior of such compounds on the molecular level and thereby discover the molecular mechanism of the P-gp inhibition. We show that the amphiphilic headgroup of PS20 is too hydrophobic to partition in the water phase, which drives the binding of PS20 to the amphiphilic drug-binding domain of P-gp and thereby causes the inhibition of the protein. Based on our findings, we conclude that PS20 primarily inhibits P-gp through direct binding to the drug-binding domain (DBD) from the extracellular leaflet.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Polisorbatos , Subfamilia B de Transportador de Casetes de Unión a ATP , Excipientes/química , Polisorbatos/química , Tensoactivos/química
6.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34769184

RESUMEN

Mesenchymal stromal cells have proven capable of improving cardiac pump function in patients with chronic heart failure, yet little is known about their mode of action. The aim of the study was to investigate the short-term effect of cryopreserved allogeneic rat adipose tissue-derived stromal cells (ASC) on cardiac composition, cellular subpopulations, and gene transcription in a rat model of chronic ischemic cardiomyopathy (ICM). Myocardial infarction (MI) was induced by permanent ligation of the left anterior descending coronary artery. After 6 weeks, the rats were treated with ASCs, saline, or no injection, using echo-guided trans-thoracic intramyocardial injections. The cardiac tissue was subsequently collected for analysis of cellular subpopulations and gene transcription 3 and 7 days after treatment. At day 3, an upregulation of genes associated with angiogenesis were present in the ASC group. On day 7, increases in CCR2+ and CD38+ macrophages (p = 0.047 and p = 0.021), as well as in the CD4/CD8 lymphocyte ratio (p = 0.021), were found in the ASC group compared to the saline group. This was supported by an upregulation of genes associated with monocytes/macrophages. In conclusion, ASC treatment initiated an immune response involving monocytes/macrophages and T-cells and induced a gene expression pattern associated with angiogenesis and monocyte/macrophage differentiation.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas/métodos , Isquemia Miocárdica/terapia , Células Alogénicas/citología , Animales , Células Cultivadas , Criopreservación/métodos , Masculino , Células Madre Mesenquimatosas/citología , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/terapia , Isquemia Miocárdica/fisiopatología , Ratas , Ratas Endogámicas Lew
7.
Eur J Nucl Med Mol Imaging ; 47(5): 1302-1313, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31883023

RESUMEN

PURPOSE: Despite remarkable clinical responses and prolonged survival across several cancers, not all patients benefit from PD-1/PD-L1 immune checkpoint blockade. Accordingly, assessment of tumour PD-L1 expression by immunohistochemistry (IHC) is increasingly applied to guide patient selection, therapeutic monitoring, and improve overall response rates. However, tissue-based methods are invasive and prone to sampling error. We therefore developed a PET radiotracer to specifically detect PD-L1 expression in a non-invasive manner, which could be of diagnostic and predictive value. METHODS: Anti-PD-L1 (clone 6E11, Genentech) was site-specifically conjugated with DIBO-DFO and radiolabelled with 89Zr (89Zr-DFO-6E11). 89Zr-DFO-6E11 was optimized in vivo by longitudinal PET imaging and dose escalation with excess unlabelled 6E11 in HCC827 tumour-bearing mice. Specificity of 89Zr-DFO-6E11 was evaluated in NSCLC xenografts and syngeneic tumour models with different levels of PD-L1 expression. In vivo imaging data was supported by ex vivo biodistribution, flow cytometry, and IHC. To evaluate the predictive value of 89Zr-DFO-6E11 PET imaging, CT26 tumour-bearing mice were subjected to external radiation therapy (XRT) in combination with PD-L1 blockade. RESULTS: 89Zr-DFO-6E11 was successfully labelled with a high radiochemical purity. The HCC827 tumours and lymphoid tissue were identified by 89Zr-DFO-6E11 PET imaging, and co-injection with 6E11 increased the relative tumour uptake and decreased the splenic uptake. 89Zr-DFO-6E11 detected the differences in PD-L1 expression among tumour models as evaluated by ex vivo methods. 89Zr-DFO-6E11 quantified the increase in PD-L1 expression in tumours and spleens of irradiated mice. XRT and anti-PD-L1 therapy effectively inhibited tumour growth in CT26 tumour-bearing mice (p < 0.01), and the maximum 89Zr-DFO-6E11 tumour-to-muscle ratio correlated with response to therapy (p = 0.0252). CONCLUSION: PET imaging with 89Zr-DFO-6E11 is an attractive approach for specific, non-invasive, whole-body visualization of PD-L1 expression. PD-L1 expression can be modulated by radiotherapy regimens and 89Zr-DFO-6E11 PET is able to monitor these changes and predict the response to therapy in an immunocompetent tumour model.


Asunto(s)
Antígeno B7-H1 , Neoplasias Pulmonares , Animales , Anticuerpos Monoclonales , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Xenoinjertos , Humanos , Ratones , Tomografía de Emisión de Positrones , Radioisótopos , Distribución Tisular , Circonio
8.
Genomics ; 111(6): 1557-1565, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30389539

RESUMEN

Hyperosmolality is found under physiological conditions in the kidneys, whereas hyperosmolality in other tissues may be associated with pathological conditions. In such tissues an association between inflammation and hyperosmolality has been suggested. During hyperosmotic stress, an important phenomenon is upregulation of solute carriers (SLCs). We hypothesize that hyperosmolality affects the expression of many SLCs as well as ABC transporters. Through RNA-sequencing and topological pathway analysis, the cell cycle, the cytokine-cytokine receptor interaction pathway, and the chemokine-signaling pathway were significantly activated in MDCK I cells after hyperosmotic treatment (Δ200 mOsm) with raffinose or NaCl. 9065, 8052 and 5018 genes were significantly regulated by raffinose, NaCl or urea supplementation (500 mOsm), respectively, compared to control (300 mOsm). Cytokines, that have not previously been associated with hyperosmolality, were identified. We further provide an overview of transport proteins that could be of relevance in tissues exposed to hyperosmolality. Especially Slc5a8 was found highly up-regulated.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Perfilación de la Expresión Génica , Riñón/metabolismo , Presión Osmótica/efectos de los fármacos , Rafinosa/farmacología , Cloruro de Sodio/farmacología , Transportadoras de Casetes de Unión a ATP/biosíntesis , Transportadoras de Casetes de Unión a ATP/genética , Animales , Perros , Células de Riñón Canino Madin Darby
9.
Bioconjug Chem ; 30(3): 881-887, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30807110

RESUMEN

The radionuclide copper-64 is widely used in combination with biomolecules, such as antibodies, for positron emission tomography (PET). Copper-64 is ideal for the imaging of biomolecules with long circulation times due to its relatively long half-life, and when conjugated to an antibody, specific cells can be targeted in vivo. Here, we have prepared a trastuzumab-chelator conjugate by using affinity-guided conjugation, in which an azide was attached to the antibody prior to a strain promoted azide-alkyne cycloaddition reaction with DBCO-PEG4-NOTA. The conjugate was benchmarked against a standard nonspecific labeled trastuzumab-NOTA conjugate. The conjugates were tested for incorporation of copper-64, stability in buffer and plasma, and tumor targeting in vivo using PET imaging of mice with xenograft tumors expressing HER2. Both conjugates showed good incorporation of copper-64 and a high stability with less than 10% degradation after 36 h. Furthermore, both conjugates showed accumulation at the tumor site with mean uptake of 7.2 ± 2.4%ID/g and 5.2 ± 1.3%ID/g after 40 h for the affinity-guided labeled trastuzumab and the nonspecific labeled trastuzumab, respectively.


Asunto(s)
Anticuerpos/administración & dosificación , Tomografía de Emisión de Positrones/métodos , Animales , Humanos , Ratones , Trastuzumab/administración & dosificación
10.
Bioconjug Chem ; 30(3): 775-784, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30676028

RESUMEN

A nonvolatile fluorine-18 aldehyde prosthetic group was developed from [18F]SFB, and used for site-specific labeling of active site inhibited factor VII (FVIIai). FVIIai has a high affinity for tissue factor (TF), a transmembrane protein involved in angiogenesis, proliferation, cell migration, and survival of cancer cells. A hydroxylamine N-glycan modified FVIIai (FVIIai-ONH2) was used for oxime coupling with the aldehyde [18F]2 under mild and optimized conditions in an isolated RCY of 4.7 ± 0.9%, and a synthesis time of 267 ± 5 min (from EOB). Retained binding and specificity of the resulting [18F]FVIIai to TF was shown in vitro. TF-expression imaging capability was evaluated by in vivo PET/CT imaging in a pancreatic human xenograft cancer mouse model. The conjugate showed exceptional stability in plasma (>95% at 4 h) and a binding fraction of 90%. In vivo PET/CT imaging showed a mean tumor uptake of 3.8 ± 0.2% ID/g at 4 h post-injection, a comparable uptake in liver and kidneys, and low uptake in normal tissues. In conclusion, FVIIai was labeled with fluorine-18 at the N-glycan chain without affecting TF binding. In vitro specificity and a good in vivo imaging contrast at 4 h postinjection was demonstrated.


Asunto(s)
Aldehídos/química , Factor VII/antagonistas & inhibidores , Radioisótopos de Flúor/química , Oximas/química , Animales , Sitios de Unión , Dominio Catalítico , Ciclización , Ratones , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tromboplastina/metabolismo , Distribución Tisular , Agua
11.
Mol Pharm ; 16(11): 4636-4650, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31560549

RESUMEN

In drug development, estimating fraction absorbed (Fa) in man for permeability-limited compounds is important but challenging. To model Fa of such compounds from apparent permeabilities (Papp) across filter-grown Caco-2 cell monolayers, it is central to elucidate the intestinal permeation mechanism(s) of the compound. The present study aims to refine a computational permeability model to investigate the relative contribution of paracellular and transcellular routes to the Papp across Caco-2 monolayers of the permeability-limited compound acamprosate having a bioavailability of ∼11%. The Papp values of acamprosate and of several paracellular marker molecules were measured. These Papp values were used to refine system-specific parameters of the Caco-2 monolayers, that is, paracellular pore radius, pore capacity, and potential drop. The refined parameters were subsequently used as an input in modeling the permeability (Pmodeled) of the tested compounds using mathematical models collected from two published permeability models. The experimental data show that acamprosate Papp across Caco-2 monolayers is low and similar in both transport directions. The obtained acamprosate Papp, 1.56 ± 0.28 × 10-7 cm·s-1, is similar to the Papp of molecular markers for paracellular permeability, namely, mannitol (2.72 ± 0.24 × 10-7 cm·s-1), lucifer yellow (1.80 ± 0.35 × 10-7 cm·s-1), and fluorescein (2.10 ± 0.28 × 10-7 cm·s-1), and lower than that of atenolol (7.32 ± 0.60 × 10-7 cm·s-1; mean ± SEM, n = 3-6), while the end-point amount of acamprosate internalized by the cell monolayer, Qmonolayer, was lower than that of mannitol. Acamprosate did not influence the barrier function of the monolayers since it altered neither the Papp of the three paracellular markers nor the transepithelial electrical resistance (TEER) of the cell monolayer. The Pmodeled for all the paracellular markers and acamprosate was dominated by the Ppara component and matched the experimentally obtained Papp. Furthermore, acamprosate did not inhibit the uptake of probe substrates for solute carriers PEPT1, TAUT, PAT1, EAAT1, B0,+AT/rBAT, OATP2B1, and ASBT expressed in Caco-2 cells. Thus, the Pmodeled estimated well Ppara, and the paracellular route appears to be the predominant mechanism for acamprosate Papp across Caco-2 monolayers, while the alternative transcellular routes, mediated by passive diffusion or carriers, are suggested to only play insignificant roles.


Asunto(s)
Acamprosato/metabolismo , Atenolol/metabolismo , Disponibilidad Biológica , Transporte Biológico/fisiología , Células CACO-2 , Línea Celular Tumoral , Difusión , Fluoresceína/metabolismo , Humanos , Isoquinolinas/metabolismo , Manitol/metabolismo , Permeabilidad
12.
Bioconjug Chem ; 29(1): 117-125, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29206443

RESUMEN

A method for site-specific radiolabeling of the serine protease active site inhibited factor seven (FVIIai) with 64Cu has been applied using a biorthogonal click reaction. FVIIai binds to tissue factor (TF), a trans-membrane protein involved in hemostasis, angiogenesis, proliferation, cell migration, and survival of cancer cells. First a single azide moiety was introduced in the active site of this 50 kDa protease. Then a NOTA moiety was introduced via a strain promoted azide-alkyne reaction and the corresponding conjugate was labeled with 64Cu. Binding to TF and the stability was evaluated in vitro. TF targeting capability of the radiolabeled conjugate was tested in vivo by positron emission tomography (PET) imaging in pancreatic human xenograft cancer mouse models with various TF expressions. The conjugate showed good stability (>91% at 16 h), an immunoreactivity of 93.5%, and a mean tumor uptake of 2.1 ± 0.2%ID/g at 15 h post injection. In conclusion, FVIIai was radiolabeled with 64Cu in single well-defined position of the protein. This method can be utilized to prepare conjugates from serine proteases with the label at a specific position.


Asunto(s)
Azidas/química , Química Clic/métodos , Radioisótopos de Cobre/química , Factor VII/química , Neoplasias Pancreáticas/diagnóstico por imagen , Serina Proteasas/química , Tromboplastina/análisis , Animales , Dominio Catalítico , Línea Celular Tumoral , Factor VII/farmacología , Femenino , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos con 1 Anillo , Humanos , Marcaje Isotópico/métodos , Ratones , Ratones Desnudos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Serina Proteasas/farmacología
13.
Arterioscler Thromb Vasc Biol ; 36(9): 1782-90, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27444197

RESUMEN

OBJECTIVE: Atherosclerotic lesions contain hypoxic areas, but the pathophysiological importance of hypoxia is unknown. Hypoxia-inducible factor-1α (HIF-1α) is a key transcription factor in cellular responses to hypoxia. We investigated the hypothesis that HIF-1α has effects on macrophage biology that promotes atherogenesis in mice. APPROACH AND RESULTS: Studies with molecular probes, immunostaining, and laser microdissection of aortas revealed abundant hypoxic, HIF-1α-expressing macrophages in murine atherosclerotic lesions. To investigate the significance of macrophage HIF-1α, Ldlr(-/-) mice were transplanted with bone marrow from mice with HIF-1α deficiency in the myeloid cells or control bone marrow. The HIF-1α deficiency in myeloid cells reduced atherosclerosis in aorta of the Ldlr(-/-) recipient mice by ≈72% (P=0.006).In vitro, HIF-1α-deficient macrophages displayed decreased differentiation to proinflammatory M1 macrophages and reduced expression of inflammatory genes. HIF-1α deficiency also affected glucose uptake, apoptosis, and migratory abilities of the macrophages. CONCLUSIONS: HIF-1α expression in macrophages affects their intrinsic inflammatory profile and promotes development of atherosclerosis.


Asunto(s)
Aorta Torácica/metabolismo , Enfermedades de la Aorta/metabolismo , Aterosclerosis/metabolismo , Células Espumosas/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Animales , Aorta Torácica/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/patología , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Apoptosis , Aterosclerosis/genética , Aterosclerosis/patología , Trasplante de Médula Ósea , Diferenciación Celular , Hipoxia de la Célula , Movimiento Celular , Células Cultivadas , Colesterol/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Células Espumosas/patología , Predisposición Genética a la Enfermedad , Glucosa/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/deficiencia , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Mediadores de Inflamación/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Placa Aterosclerótica , Receptores de LDL/deficiencia , Receptores de LDL/genética , Transducción de Señal
14.
Mol Pharm ; 13(9): 3119-29, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27396755

RESUMEN

Ibuprofen is a widely used drug. It has been identified as an inhibitor of several transporters, but it is not clear if ibuprofen is a substrate of any transporter itself. In the present work, we have characterized a transporter of ibuprofen, which is upregulated by hyperosmotic culture conditions in Madin-Darby canine kidney I (MDCK I) renal cells. [(3)H]-Ibuprofen uptake rate was measured in MDCK I cell cultured under normal (300 mOsm) and hyperosmotic (500 mOsm) conditions. Hyperosmotic conditions were obtained by supplementing urea, NaCl, mannitol, or raffinose to culture medium. The effect of increased osmolarity was investigated for different incubation times. [(3)H]-Ibuprofen uptake in MDCK I cells was upregulated by hyperosmotic culture condition, and was saturable with a Km value of 0.37 ± 0.08 µM and a Vmax of 233.1 ± 17.2 pmol· cm(-2)· min(-1). Racemic [(3)H]-ibuprofen uptake could be inhibited by (R)-(-)- and (S)-(+)-ibuprofen with IC50 values of 19 µM (Log IC50 1.39 ± 0.34) and 0.47 µM (Log IC50 -0.36 ± 0.41), respectively. Furthermore, the [(3)H]-ibuprofen uptake rate was increased by decreased extracellular pH but not dependent on Na(+) or Cl(-) ions. The mRNA of Mct1, -2, -4, and -6 as well as Oat1 and -3 were not upregulated by hyperosmolarity. Our findings present strong evidence for the presence of a yet unknown ibuprofen transporter in MDCK I cells. The transporter was upregulated under hyperosmotic culture conditions, and the present study is therefore a starting point for identification of the molecular correlate and potential impact on ibuprofen disposition.


Asunto(s)
Ibuprofeno/metabolismo , Células de Riñón Canino Madin Darby/efectos de los fármacos , Células de Riñón Canino Madin Darby/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Animales , Línea Celular , Perros , Manitol/farmacología , Concentración Osmolar , Rafinosa/farmacología , Cloruro de Sodio/farmacología , Urea/farmacología
15.
Pharm Res ; 32(3): 898-909, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25182974

RESUMEN

PURPOSE: Gabapentin exhibits saturable absorption kinetics, however, it remains unclear which transporters that are involved in the intestinal transport of gabapentin. Thus, the aim of the current study was to explore the mechanistic influence of transporters on the intestinal absorption of gabapentin by both in vivo and in vitro investigations METHODS: Pharmacokinetic parameters were determined following a range of intravenous (5-100 mg/kg) and oral doses (10-200 mg/kg) in rats. Transepithelial transport (50 µM-50 mM) and apical uptake of gabapentin (0.01-50 mM) were investigated in Caco-2 cells. The effect of co-application of the LAT-inhibitor, BCH, and the b(0,+)-substrate, L-lysine, on intestinal transport of gabapentin was evaluated in vivo and in vitro. RESULTS: Gabapentin showed dose-dependent oral absorption kinetics and dose-independent disposition kinetics. Co-application of BCH inhibited intestinal absorption in vivo and apical uptake in vitro, whereas no effect was observed following co-application of L-lysine. CONCLUSIONS: The present study shows for the first time that BCH was capable of inhibiting intestinal absorption of gabapentin in vivo. Furthermore, in Caco-2 cell experiments BCH inhibited apical uptake of gabapentin. These findings may imply that a BCH-sensitive transport-system was involved in the apical and possibly the basolateral transport of gabapentin across the intestinal wall.


Asunto(s)
Aminas/administración & dosificación , Aminas/farmacocinética , Ácidos Ciclohexanocarboxílicos/administración & dosificación , Ácidos Ciclohexanocarboxílicos/farmacocinética , Absorción Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ácido gamma-Aminobutírico/administración & dosificación , Ácido gamma-Aminobutírico/farmacocinética , Administración Oral , Aminas/sangre , Aminoácidos Cíclicos/farmacología , Animales , Células CACO-2 , Ácidos Ciclohexanocarboxílicos/sangre , Relación Dosis-Respuesta a Droga , Gabapentina , Humanos , Inyecciones Intravenosas , Masculino , Moduladores del Transporte de Membrana/farmacología , Proteínas de Transporte de Membrana/efectos adversos , Modelos Biológicos , Ratas Sprague-Dawley , Ácido gamma-Aminobutírico/sangre
16.
PLoS Genet ; 8(5): e1002650, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22654667

RESUMEN

KRAS mutant lung cancers are generally refractory to chemotherapy as well targeted agents. To date, the identification of drugs to therapeutically inhibit K-RAS have been unsuccessful, suggesting that other approaches are required. We demonstrate in both a novel transgenic mutant Kras lung cancer mouse model and in human lung tumors that the inhibition of Twist1 restores a senescence program inducing the loss of a neoplastic phenotype. The Twist1 gene encodes for a transcription factor that is essential during embryogenesis. Twist1 has been suggested to play an important role during tumor progression. However, there is no in vivo evidence that Twist1 plays a role in autochthonous tumorigenesis. Through two novel transgenic mouse models, we show that Twist1 cooperates with Kras(G12D) to markedly accelerate lung tumorigenesis by abrogating cellular senescence programs and promoting the progression from benign adenomas to adenocarcinomas. Moreover, the suppression of Twist1 to physiological levels is sufficient to cause Kras mutant lung tumors to undergo senescence and lose their neoplastic features. Finally, we analyzed more than 500 human tumors to demonstrate that TWIST1 is frequently overexpressed in primary human lung tumors. The suppression of TWIST1 in human lung cancer cells also induced cellular senescence. Hence, TWIST1 is a critical regulator of cellular senescence programs, and the suppression of TWIST1 in human tumors may be an effective example of pro-senescence therapy.


Asunto(s)
Adenocarcinoma , Transformación Celular Neoplásica , Neoplasias Pulmonares , Proteínas Nucleares , Proteínas Proto-Oncogénicas p21(ras) , Proteína 1 Relacionada con Twist , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animales , Línea Celular Tumoral , Senescencia Celular/genética , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Transgénicos , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo
17.
J Labelled Comp Radiopharm ; 58(5): 196-201, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25820758

RESUMEN

Activated factor VII blocked in the active site with Phe-Phe-Arg-chloromethyl ketone (active site inhibited factor VII (ASIS)) is a 50-kDa protein that binds with high affinity to its receptor, tissue factor (TF). TF is a transmembrane glycoprotein that plays an important role in, for example, thrombosis, metastasis, tumor growth, and tumor angiogenesis. The aim of this study was to develop an (18)F-labeled ASIS derivative to assess TF expression in tumors. Active site inhibited factor VII was labeled using N-succinimidyl-4-[(18)F]fluorobenzoate, and the [(18)F]ASIS was purified on a PD-10 desalting column. The radiochemical yield was 25 ± 6%, the radiochemical purity was >97%, and the pseudospecific radioactivity was 35 ± 9 GBq/µmol. The binding efficacy was evaluated in pull-down experiments, which monitored the binding of unlabeled ASIS and [(18)F]ASIS to TF and to a specific anti-factor VII antibody (F1A2-mAb). No significant difference in binding efficacy between [(18)F]ASIS and ASIS could be detected. Furthermore, [(18)F]ASIS was relatively stable in vitro and in vivo in mice. In conclusion, [(18)F]ASIS has for the first time been successfully synthesized as a possible positron emission tomography tracer to image TF expression levels. In vivo positron emission tomography studies to evaluate the full potential of [(18)F]ASIS are in progress.


Asunto(s)
Clorometilcetonas de Aminoácidos/química , Factor VII/química , Radiofármacos/síntesis química , Clorometilcetonas de Aminoácidos/farmacología , Animales , Dominio Catalítico , Factor VII/antagonistas & inhibidores , Radioisótopos de Flúor/química , Ratones , Radiofármacos/química , Radiofármacos/farmacocinética , Distribución Tisular
18.
J Labelled Comp Radiopharm ; 58(6): 227-33, 2015 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-25906708

RESUMEN

The human epidermal growth factor receptor-2 (HER2) is overexpressed in 20-30% of all breast cancer cases, leading to increased cell proliferation, growth and migration. The monoclonal antibody, trastuzumab, binds to HER2 and is used for treatment of HER2-positive breast cancer. Trastuzumab has previously been labelled with copper-64 by conjugation of a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator. The aim of this study was to optimise the (64) Cu-labelling of DOTA-trastuzumab and as the first to produce and compare with its 1,4,7-triazacyclononane, 1-glutaric acid-5,7 acetic acid (NODAGA) analogue in a preliminary HER2 tumour mouse model. The chelators were conjugated to trastuzumab using the activated esters DOTA mono-N-hydroxysuccinimide (NHS) and NODAGA-NHS. (64) Cu-labelling of DOTA-trastuzumab was studied by varying the amount of DOTA-trastuzumab used, reaction temperature and time. Full (64) Cu incorporation could be achieved using a minimum of 10-µg DOTA-trastuzumab, but the fastest labelling was obtained after 15 min at room temperature using 25 µg of DOTA-trastuzumab. In comparison, 80% incorporation was achieved for (64) Cu-labelling of NODAGA-trastuzumab. Both [(64) Cu]DOTA-trastuzumab and [(64) Cu]NODAGA-trastuzumab were produced after purification with radiochemical purities of >97%. The tracers were injected into mice with HER2 expressing tumours. The mice were imaged by positron emission tomography and showed high tumour uptake of 3-9% ID/g for both tracers.


Asunto(s)
Compuestos Organometálicos/síntesis química , Radiofármacos/síntesis química , Acetatos/química , Animales , Anticuerpos Monoclonales Humanizados/farmacocinética , Compuestos Heterocíclicos con 1 Anillo/química , Ratones , Compuestos Organometálicos/farmacocinética , Unión Proteica , Radiofármacos/farmacocinética , Receptor ErbB-2/metabolismo , Distribución Tisular , Trastuzumab
19.
Am J Physiol Endocrinol Metab ; 306(1): E65-74, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24222668

RESUMEN

The proton-coupled amino acid transporter 1 (PAT1) is a transporter of amino acids in small intestinal enterocytes. PAT1 is, however, also capable of regulating cell growth and sensing the availability of amino acids in other cell types. The aim of the present study was to investigate the localization and function of PAT1 in smooth muscle cells (SMCs). The PAT1 protein was found in smooth muscles from rat intestine and in the embryonic rat aorta cell line A7r5. Immunolocalization and cellular fractionation studies revealed that the majority of the PAT1 protein located within the cell nucleus of A7r5 cells. These results were confirmed in primary SMCs derived from rat aorta and colon. A 3'-untranslated region of the PAT1 transcript directed the nuclear localization. Neither cellular starvation nor cell division altered the nuclear localization. In agreement, uptake studies of l-proline, a PAT1 substrate, in A7r5 cells suggested an alternative role for PAT1 in SMCs than in transport. To shed light on the function of PAT1 in A7r5 cells, experiments with downregulation of the PAT1 level by use of a siRNA approach were conducted. The growth rates of the cells were evaluated, and knockdown of PAT1 led to induced cellular growth, suggesting a role for PAT1 in regulating cellular proliferation of SMCs.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/análisis , Sistemas de Transporte de Aminoácidos Neutros/fisiología , Núcleo Celular/química , Proliferación Celular , Miocitos del Músculo Liso/fisiología , Miocitos del Músculo Liso/ultraestructura , Simportadores/análisis , Simportadores/fisiología , Sistemas de Transporte de Aminoácidos Neutros/genética , Animales , Aorta , Células CACO-2 , Fraccionamiento Celular , Línea Celular , Colon , Embrión de Mamíferos , Expresión Génica , Humanos , Masculino , Prolina/metabolismo , ARN Mensajero/análisis , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Ratas , Ratas Wistar , Simportadores/genética , Transfección
20.
Addict Biol ; 19(4): 606-11, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23362976

RESUMEN

Corticotrophin-releasing factor (CRF) is a mediator of stress responses and a key modulator of ethanol-mediated behaviors. We report here that the CRF receptor 1 (CRF-R1) antagonist, CP-376395 reduces 20% ethanol consumption in animals trained to consume ethanol on an intermittent, but not a continuous, schedule. Furthermore, using [(35) S]GTPγS binding assays, we demonstrate that CRF-mediated G-protein signaling in the hypothalamus of the intermittent drinkers is decreased when compared to controls suggesting that the effects of CP-376395 are mediated by extrahypothalamic mechanisms. The present study provides further support for the use of CRF-R1 antagonists for the treatment of alcohol use disorders and suggests that ethanol consumption dysregulates CRF function in the hypothalamus.


Asunto(s)
Consumo de Bebidas Alcohólicas/fisiopatología , Aminopiridinas/farmacología , Depresores del Sistema Nervioso Central/farmacología , Hormona Liberadora de Corticotropina/efectos de los fármacos , Etanol/farmacología , Hipotálamo/fisiopatología , Análisis de Varianza , Animales , Depresores del Sistema Nervioso Central/administración & dosificación , Etanol/administración & dosificación , Hipotálamo/efectos de los fármacos , Masculino , Modelos Animales , Ratas , Ratas Long-Evans
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA