Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Physiol Rev ; 103(3): 2271-2319, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36731030

RESUMEN

The intercalated disc (ID) is a highly specialized structure that connects cardiomyocytes via mechanical and electrical junctions. Although described in some detail by light microscopy in the 19th century, it was in 1966 that electron microscopy images showed that the ID represented apposing cell borders and provided detailed insight into the complex ID nanostructure. Since then, much has been learned about the ID and its molecular composition, and it has become evident that a large number of proteins, not all of them involved in direct cell-to-cell coupling via mechanical or gap junctions, reside at the ID. Furthermore, an increasing number of functional interactions between ID components are emerging, leading to the concept that the ID is not the sum of isolated molecular silos but an interacting molecular complex, an "organelle" where components work in concert to bring about electrical and mechanical synchrony. The aim of the present review is to give a short historical account of the ID's discovery and an updated overview of its composition and organization, followed by a discussion of the physiological implications of the ID architecture and the local intermolecular interactions. The latter will focus on both the importance of normal conduction of cardiac action potentials as well as the impact on the pathophysiology of arrhythmias.


Asunto(s)
Miocardio , Miocitos Cardíacos , Humanos , Miocitos Cardíacos/fisiología , Miocardio/metabolismo , Uniones Comunicantes/metabolismo , Arritmias Cardíacas
2.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36982697

RESUMEN

Understanding the vesicular trafficking of receptors and receptor ligands in the brain capillary endothelium is essential for the development of the next generations of biologics targeting neurodegenerative diseases. Such complex biological questions are often approached by in vitro models in combination with various techniques. Here, we present the development of a stem cell-based human in vitro blood-brain barrier model composed of induced brain microvascular endothelial cells (iBMECs) on the modular µSiM (a microdevice featuring a silicon nitride membrane) platform. The µSiM was equipped with a 100 nm thick nanoporous silicon nitride membrane with glass-like imaging quality that allowed the use of high-resolution in situ imaging to study the intracellular trafficking. As a proof-of-concept experiment, we investigated the trafficking of two monoclonal antibodies (mAb): an anti-human transferrin receptor mAb (15G11) and an anti-basigin mAb (#52) using the µSiM-iBMEC-human astrocyte model. Our results demonstrated effective endothelial uptake of the selected antibodies; however, no significant transcytosis was observed when the barrier was tight. In contrast, when the iBMECs did not form a confluent barrier on the µSiM, the antibodies accumulated inside both the iBMECs and astrocytes, demonstrating that the cells have an active endocytic and subcellular sorting machinery and that the µSiM itself does not hinder antibody transport. In conclusion, our µSiM-iBMEC-human astrocyte model provides a tight barrier with endothelial-like cells, which can be used for high-resolution in situ imaging and for studying receptor-mediated transport and transcytosis in a physiological barrier.


Asunto(s)
Barrera Hematoencefálica , Células Endoteliales , Humanos , Barrera Hematoencefálica/metabolismo , Técnicas de Cocultivo , Células Endoteliales/metabolismo , Encéfalo/metabolismo , Anticuerpos/metabolismo , Dispositivos Laboratorio en un Chip
3.
J Assist Reprod Genet ; 37(6): 1355-1365, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32399794

RESUMEN

PURPOSE: The aim of the study is to investigate presence and role of the gene encoding the maternally contributed nucleotide-binding oligomerization domain (NOD)-like receptors with a pyrin domain (PYD)-containing protein 9 (NLRP9) in human and mouse ovaries, respectively, and in preimplantation mouse embryo development by knocking down Nlrp9b. METHODS: Expression levels of NLRP9 mRNA in human follicles were extracted from RNA sequencing data from previous studies. In this study, we performed a qPCR analysis of Nlpr9b mRNA in mouse oocytes and found it present. Intracellular ovarian distribution of NLRP9B protein was accomplished using immunohistochemistry. The distribution of NLRP9B was explored using a reporter gene approach, fusing NLRP9B to green fluorescent protein and microinjection of in vitro-generated mRNA. Nlrp9b mRNA function was knocked down by microinjection of short interference (si) RNA targeting Nlrp9b, into mouse pronuclear zygotes. Knockdown of the Nlrp9b mRNA transcript was confirmed by qPCR. RESULT: We found that the human NLRP9 gene and its corresponding protein are highly expressed in human primordial and primary follicles. The NLRP9B protein is localized to the cytoplasm in the blastomeres of a 2-cell embryo in mice. SiRNA-mediated knockdown of Nlrp9b caused rapid elimination of endogenous Nlrp9b mRNA and premature embryo arrest at the 2- to 4-cell stages compared with that of the siRNA-scrambled control group. CONCLUSIONS: These results suggest that mouse Nlrp9b, as a maternal effect gene, could contribute to mouse preimplantation embryo development. It remains to investigate whether NLRP9 have a crucial role in human preimplantation embryo and infertility.


Asunto(s)
Desarrollo Embrionario/genética , Oocitos/crecimiento & desarrollo , Folículo Ovárico/crecimiento & desarrollo , Receptores Acoplados a Proteínas G/genética , Animales , Blastómeros/citología , Blastómeros/metabolismo , Citoplasma/genética , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Ratones , Folículo Ovárico/metabolismo , Análisis de Secuencia de ARN , Cigoto/crecimiento & desarrollo
4.
Am J Physiol Heart Circ Physiol ; 316(4): H849-H861, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30707595

RESUMEN

We previously demonstrated that altering extracellular sodium (Nao) and calcium (Cao) can modulate a form of electrical communication between cardiomyocytes termed "ephaptic coupling" (EpC), especially during loss of gap junction coupling. We hypothesized that altering Nao and Cao modulates conduction velocity (CV) and arrhythmic burden during ischemia. Electrophysiology was quantified by optically mapping Langendorff-perfused guinea pig ventricles with modified Nao (147 or 155 mM) and Cao (1.25 or 2.0 mM) during 30 min of simulated metabolic ischemia (pH 6.5, anoxia, aglycemia). Gap junction-adjacent perinexal width ( WP), a candidate cardiac ephapse, and connexin (Cx)43 protein expression and Cx43 phosphorylation at S368 were quantified by transmission electron microscopy and Western immunoblot analysis, respectively. Metabolic ischemia slowed CV in hearts perfused with 147 mM Nao and 2.0 mM Cao; however, theoretically increasing EpC with 155 mM Nao was arrhythmogenic, and CV could not be measured. Reducing Cao to 1.25 mM expanded WP, as expected during ischemia, consistent with reduced EpC, but attenuated CV slowing while delaying arrhythmia onset. These results were further supported by osmotically reducing WP with albumin, which exacerbated CV slowing and increased early arrhythmias during ischemia, whereas mannitol expanded WP, permitted conduction, and delayed the onset of arrhythmias. Cx43 expression patterns during the various interventions insufficiently correlated with observed CV changes and arrhythmic burden. In conclusion, decreasing perfusate calcium during metabolic ischemia enhances perinexal expansion, attenuates conduction slowing, and delays arrhythmias. Thus, perinexal expansion may be cardioprotective during metabolic ischemia. NEW & NOTEWORTHY This study demonstrates, for the first time, that modulating perfusate ion composition can alter cardiac electrophysiology during simulated metabolic ischemia.


Asunto(s)
Calcio/farmacología , Sistema de Conducción Cardíaco/efectos de los fármacos , Sistema de Conducción Cardíaco/fisiopatología , Isquemia Miocárdica/fisiopatología , Sodio/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Arritmias Cardíacas/fisiopatología , Conexina 43/metabolismo , Uniones Comunicantes/efectos de los fármacos , Cobayas , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/fisiopatología , Técnicas In Vitro , Masculino , Concentración Osmolar
5.
Microvasc Res ; 122: 131-135, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30144413

RESUMEN

The blood-brain barrier consists of a tightly sealed monolayer of endothelial cells being vital in maintaining a stable intracerebral microenvironment. The barrier is receptive to leakage upon exposure to environmental factors, like hypoxia, and its disruption has been suggested as a constituent in the pathophysiology of both neurological and psychiatric disorders. The schizophrenia associated ZEB1 gene encodes a transcription factor susceptible to transcriptional control by a hypoxia induced factor, HIF1A, known to be implicated in blood-brain barrier dysfunction. However, whether ZEB1 is also implicated in maintaining blood-brain barrier integrity upon hypoxia is unknown. Here we assessed Hif1a, Zo1 and Zeb1 mRNA expression and ZO1 protein abundancy in a mimetic system of the in vivo blood-brain barrier comprising mouse brain endothelial cells subjected to the norm- and proven hypoxic conditions. Despite that, Hif1a mRNA expression was significantly increased, clearly indicating that the oxygen-deprived environment introduced a hypoxia response in the cells, we found no hypoxia-induced changes in neither ZO1 abundancy nor in the expression of Zo1 and Zeb1 mRNA. However, independent of hypoxia status, we found that Zeb1 and Zo1 mRNA expression is highly correlated. Further studies are warranted that investigate the implication of the ZEB1/ZO1 axis in blood-brain barrier maintenance under different physiological conditions.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Microambiente Celular , Células Endoteliales/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Animales , Hipoxia de la Célula , Línea Celular , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación hacia Arriba , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismo
6.
PLoS Genet ; 11(7): e1005386, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26197441

RESUMEN

Nonsyndromic hearing impairment (NSHI) is a highly heterogeneous condition with more than eighty known causative genes. However, in the clinical setting, a large number of NSHI families have unexplained etiology, suggesting that there are many more genes to be identified. In this study we used SNP-based linkage analysis and follow up microsatellite markers to identify a novel locus (DFNA66) on chromosome 6q15-21 (LOD 5.1) in a large Danish family with dominantly inherited NSHI. By locus specific capture and next-generation sequencing, we identified a c.574C>T heterozygous nonsense mutation (p.R192*) in CD164. This gene encodes a 197 amino acid transmembrane sialomucin (known as endolyn, MUC-24 or CD164), which is widely expressed and involved in cell adhesion and migration. The mutation segregated with the phenotype and was absent in 1200 Danish control individuals and in databases with whole-genome and exome sequence data. The predicted effect of the mutation was a truncation of the last six C-terminal residues of the cytoplasmic tail of CD164, including a highly conserved canonical sorting motif (YXXФ). In whole blood from an affected individual, we found by RT-PCR both the wild-type and the mutated transcript suggesting that the mutant transcript escapes nonsense mediated decay. Functional studies in HEK cells demonstrated that the truncated protein was almost completely retained on the plasma cell membrane in contrast to the wild-type protein, which targeted primarily to the endo-lysosomal compartments, implicating failed endocytosis as a possible disease mechanism. In the mouse ear, we found CD164 expressed in the inner and outer hair cells of the organ of Corti, as well as in other locations in the cochlear duct. In conclusion, we have identified a new DFNA locus located on chromosome 6q15-21 and implicated CD164 as a novel gene for hearing impairment.


Asunto(s)
Endolina/genética , Animales , Secuencia de Bases , Línea Celular , Codón sin Sentido/genética , Sordera/genética , Dinamarca , Familia , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Repeticiones de Microsatélite/genética , Órgano Espiral/metabolismo , Linaje , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN
7.
Int J Mol Sci ; 19(5)2018 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-29748463

RESUMEN

Connexins are integral membrane building blocks that form gap junctions, enabling direct cytoplasmic exchange of ions and low-molecular-mass metabolites between adjacent cells. In the heart, gap junctions mediate the propagation of cardiac action potentials and the maintenance of a regular beating rhythm. A number of connexin interacting proteins have been described and are known gap junction regulators either through direct effects (e.g., kinases) or the formation of larger multifunctional complexes (e.g., cytoskeleton scaffold proteins). Most connexin partners can be categorized as either proteins promoting coupling by stimulating forward trafficking and channel opening or inhibiting coupling by inducing channel closure, internalization, and degradation. While some interactions have only been implied through co-localization using immunohistochemistry, others have been confirmed by biophysical methods that allow detection of a direct interaction. Our understanding of these interactions is, by far, most well developed for connexin 43 (Cx43) and the scope of this review is to summarize our current knowledge of their functional and regulatory roles. The significance of these interactions is further exemplified by demonstrating their importance at the intercalated disc, a major hub for Cx43 regulation and Cx43 mediated effects.


Asunto(s)
Conexina 43/genética , Citoesqueleto/genética , Uniones Comunicantes/genética , Mapas de Interacción de Proteínas/genética , Fenómenos Biofísicos , Comunicación Celular/genética , Conexina 43/química , Citoesqueleto/química , Uniones Comunicantes/química , Humanos , Proteínas Asociadas a Matriz Nuclear/química , Proteínas Asociadas a Matriz Nuclear/genética
8.
Mol Cell Neurosci ; 76: 59-67, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27567687

RESUMEN

Receptor-mediated transcytosis of the transferrin receptor has been suggested as a potential transport system to deliver therapeutic molecules into the brain. Recent studies have however shown that therapeutic antibodies, which have been reported to cross the brain endothelium, reach greater brain exposure when the affinity of the antibodies to the transferrin receptor is lowered. The lower affinity of the antibodies to the transferrin receptor facilitates the dissociation from the receptor within the endosomal compartments, which may indicate that the receptor itself does not necessarily move across the endothelial cells by transcytosis. The aim of the present study was to investigate transferrin receptor expression and role in transendothelial transferrin transport in cultured bovine brain endothelial cell monolayers. Transferrin receptor mRNA and protein levels were investigated in endothelial mono-cultures and co-cultures with astrocytes, as well as in freshly isolated brain capillaries using qPCR, immunocytochemistry and Western blotting. Transendothelial transport and luminal association of holo-transferrin was investigated using [125I]holo-transferrin or [59Fe]-transferrin. Transferrin receptor mRNA expression in all cell culture configurations was lower than in freshly isolated capillaries, but the expression slightly increased during six days of culture. The mRNA expression levels were similar in mono-cultures and co-cultures. Immunostaining demonstrated comparable transferrin receptor localization patterns in mono-cultures and co-cultures. The endothelial cells demonstrated an up-regulation of transferrin receptor mRNA after treatment with the iron chelator deferoxamine. The association of [125I]holo-transferrin and [59Fe]-transferrin to the endothelial cells was inhibited by an excess of unlabeled holo-transferrin, indicating receptor mediated association. However, over time the cell associated [59Fe]-label exceeded that of [125I]holo-transferrin, which could indicate release of iron in the endothelial cells and receptor recycling. Luminal-to-abluminal transport of [125I]holo-transferrin across endothelial cell monolayers was low and not inhibited by unlabeled holo-transferrin. This indicated that transendothelial transferrin transport was independent of transferrin receptor-mediated transcytosis.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Permeabilidad Capilar , Células Endoteliales/metabolismo , Receptores de Transferrina/metabolismo , Animales , Barrera Hematoencefálica/citología , Bovinos , Células Cultivadas , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Transferrina/genética , Transcitosis
9.
Traffic ; 13(9): 1273-85, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22708738

RESUMEN

The small GTPase Rab7b localizes to late endosomes-lysosomes and to the Golgi, regulating the transport between these two intracellular compartments. We have recently demonstrated that depletion of Rab7b causes missorting of the cation-independent mannose 6-phosphate receptor (CI-MPR), suggesting that Rab7b may control the trafficking of this receptor. Here we further investigated the function of this small GTPase with special attention to its role in the trafficking of sorting receptors and dynamics in living cells. Using endosome-to-Golgi retrieval assays we show that Rab7b is involved not only in CI-MPR transport but also in the MPRs independent pathway. Indeed, we find that it regulates and interacts with sortilin, a mannose 6-phosphate-independent sorting receptor. CI-MPR and sortilin are sorted from the trans-Golgi network (TGN) in tubular structures and the expression of Rab7b mutants or its silencing reduces CI-MPR and sortilin tubulation. In addition, the constitutively active mutant Rab7b Q67L impairs the formation of carriers from TGN. Collectively, our observations show for the first time that Rab7b is required for transport from endosomes to the TGN, not only of the CI-MPR, but also of sortilin, and that alterations in this transport result in impaired carrier formation from TGN.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Receptor IGF Tipo 2/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Endosomas/metabolismo , Células HeLa , Humanos , Mutación Missense , Dominios y Motivos de Interacción de Proteínas/genética , Transporte de Proteínas , ARN Interferente Pequeño , Proteínas de Unión al GTP rab/genética , Proteínas de Unión a GTP rab7 , Red trans-Golgi/metabolismo
10.
J Neurosci ; 33(1): 358-70, 2013 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-23283348

RESUMEN

Apolipoprotein E (APOE) is the major risk factor for sporadic Alzheimer's disease. Among other functions, APOE is proposed to sequester neurotoxic amyloid-ß (Aß) peptides in the brain, delivering them to cellular catabolism via neuronal APOE receptors. Still, the receptors involved in this process remain controversial. Here, we identified the pro-neurotrophin receptor sortilin as major endocytic pathway for clearance of APOE/Aß complexes in neurons. Sortilin binds APOE with high affinity. Lack of receptor expression in mice results in accumulation of APOE and of Aß in the brain and in aggravated plaque burden. Also, primary neurons lacking sortilin exhibit significantly impaired uptake of APOE/Aß complexes despite proper expression of other APOE receptors. Despite higher than normal brain APOE levels, sortilin-deficient animals display anomalies in brain lipid metabolism (e.g., accumulation of sulfatides) seen in APOE-deficient mice, indicating functional deficiency in cellular APOE uptake pathways. Together, our findings identified sortilin as an essential neuronal pathway for APOE-containing lipoproteins in vivo and suggest an intriguing link between Aß catabolism and pro-neurotrophin signaling converging on this receptor.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Neuronas/metabolismo , Animales , Apolipoproteínas E/metabolismo , Astrocitos/metabolismo , Ratones , Placa Amiloide/metabolismo
11.
Eur J Cell Biol ; 103(2): 151406, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38547677

RESUMEN

Despite extensive research, targeted delivery of substances to the brain still poses a great challenge due to the selectivity of the blood-brain barrier (BBB). Most molecules require either carrier- or receptor-mediated transport systems to reach the central nervous system (CNS). These transport systems form attractive routes for the delivery of therapeutics into the CNS, yet the number of known brain endothelium-enriched receptors allowing the transport of large molecules into the brain is scarce. Therefore, to identify novel BBB targets, we combined transcriptomic analysis of human and murine brain endothelium and performed a complex screening of BBB-enriched genes according to established selection criteria. As a result, we propose the high-affinity cationic amino acid transporter 1 (SLC7A1) as a novel candidate for transport of large molecules across the BBB. Using RNA sequencing and in situ hybridization assays, we demonstrated elevated SLC7A1 gene expression in both human and mouse brain endothelium. Moreover, we confirmed SLC7A1 protein expression in brain vasculature of both young and aged mice. To assess the potential of SLC7A1 as a transporter for larger proteins, we performed internalization and transcytosis studies using a radiolabelled or fluorophore-labelled anti-SLC7A1 antibody. Our results showed that SLC7A1 internalised a SLC7A1-specific antibody in human colorectal carcinoma (HCT116) cells. Moreover, transcytosis studies in both immortalised human brain endothelial (hCMEC/D3) cells and primary mouse brain endothelial cells clearly demonstrated that SLC7A1 effectively transported the SLC7A1-specific antibody from luminal to abluminal side. Therefore, here in this study, we present for the first time the SLC7A1 as a novel candidate for transport of larger molecules across the BBB.


Asunto(s)
Barrera Hematoencefálica , Transportador de Aminoácidos Catiónicos 1 , Barrera Hematoencefálica/metabolismo , Animales , Humanos , Ratones , Transportador de Aminoácidos Catiónicos 1/metabolismo , Transportador de Aminoácidos Catiónicos 1/genética , Células Endoteliales/metabolismo , Ratones Endogámicos C57BL
12.
J Cell Sci ; 124(Pt 7): 1095-105, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21385844

RESUMEN

Many different tissues and cell types exhibit regulated secretion of lipoprotein lipase (LPL). However, the sorting of LPL in the trans Golgi network has not, hitherto, been understood in detail. Here, we characterize the role of SorLA (officially known as SorLA-1 or sortilin-related receptor) in the intracellular trafficking of LPL. We found that LPL bound to SorLA under neutral and acidic conditions, and in cells this binding mainly occurred in vesicular structures. SorLA expression changed the subcellular distribution of LPL so it became more concentrated in endosomes. From the endosomes, LPL was further routed to the lysosomes, which resulted in a degradation of newly synthesized LPL. Consequently, an 80% reduction of LPL activity was observed in cells that expressed SorLA. By analogy, SorLA regulated the vesicle-like localization of LPL in primary neuronal cells. Thus, LPL binds to SorLA in the biosynthetic pathway and is subsequently transported to endosomes. As a result of this SorLA mediated-transport, newly synthesized LPL can be routed into specialized vesicles and eventually sent to degradation, and its activity thereby regulated.


Asunto(s)
Espacio Intracelular/metabolismo , Proteínas Relacionadas con Receptor de LDL/metabolismo , Lipoproteína Lipasa/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Animales , Bovinos , Línea Celular , Cricetinae , Humanos , Espacio Intracelular/química , Espacio Intracelular/enzimología , Espacio Intracelular/genética , Proteínas Relacionadas con Receptor de LDL/genética , Lipoproteína Lipasa/química , Lipoproteína Lipasa/genética , Proteínas de Transporte de Membrana/genética , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas
13.
Cardiovasc Res ; 119(13): 2342-2354, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37556386

RESUMEN

AIMS: No effective therapy is available in clinics to protect the heart from ischaemia/reperfusion (I/R) injury. Endothelial cells are activated after I/R, which may drive the inflammatory response by releasing ATP through pannexin1 (Panx1) channels. Here, we investigated the role of Panx1 in cardiac I/R. METHODS AND RESULTS: Panx1 was found in cardiac endothelial cells, neutrophils, and cardiomyocytes. After in vivo I/R, serum Troponin-I, and infarct size were less pronounced in Panx1-/- mice, but leukocyte infiltration in the infarct area was similar between Panx1-/- and wild-type mice. Serum Troponin-I and infarct size were not different between mice with neutrophil-specific deletion of Panx1 and Panx1fl/fl mice, suggesting that cardioprotection by Panx1 deletion rather involved cardiomyocytes than the inflammatory response. Physiological cardiac function in wild-type and Panx1-/- hearts was similar. The time to onset of contracture and time to maximal contracture were delayed in Panx1-/- hearts, suggesting reduced sensitivity of these hearts to ischaemic injury. Moreover, Panx1-/- hearts showed better recovery of left ventricle developed pressure, cardiac contractility, and relaxation after I/R. Ischaemic preconditioning failed to confer further protection in Panx1-/- hearts. Panx1 was found in subsarcolemmal mitochondria (SSM). SSM in WT or Panx1-/- hearts showed no differences in morphology. The function of the mitochondrial permeability transition pore and production of reactive oxygen species in SSM was not affected, but mitochondrial respiration was reduced in Panx1-/- SSM. Finally, Panx1-/- cardiomyocytes had a decreased mitochondrial membrane potential and an increased mitochondrial ATP content. CONCLUSION: Panx1-/- mice display decreased sensitivity to cardiac I/R injury, resulting in smaller infarcts and improved recovery of left ventricular function. This cardioprotective effect of Panx1 deletion seems to involve cardiac mitochondria rather than a reduced inflammatory response. Thus, Panx1 may represent a new target for controlling cardiac reperfusion damage.


Asunto(s)
Contractura , Daño por Reperfusión Miocárdica , Ratones , Animales , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/prevención & control , Células Endoteliales , Troponina I , Miocitos Cardíacos , Mitocondrias Cardíacas , Adenosina Trifosfato , Infarto , Proteínas del Tejido Nervioso/genética , Conexinas/genética
14.
Fluids Barriers CNS ; 20(1): 2, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36624498

RESUMEN

The detailed mechanisms by which the transferrin receptor (TfR) and associated ligands traffic across brain capillary endothelial cells (BECs) of the CNS-protective blood-brain barrier constitute an important knowledge gap within maintenance and regulation of brain iron homeostasis. This knowledge gap also presents a major obstacle in research aiming to develop strategies for efficient receptor-mediated drug delivery to the brain. While TfR-mediated trafficking from blood to brain have been widely studied, investigation of TfR-mediated trafficking from brain to blood has been limited. In this study we investigated TfR distribution on the apical and basal plasma membranes of BECs using expansion microscopy, enabling sufficient resolution to separate the cellular plasma membranes of these morphological flat cells, and verifying both apical and basal TfR membrane domain localization. Using immunofluorescence-based transcellular transport studies, we delineated endosomal sorting of TfR endocytosed from the apical and basal membrane, respectively, as well as bi-directional TfR transcellular transport capability. The findings indicate different intracellular sorting mechanisms of TfR, depending on the apicobasal trafficking direction across the BBB, with the highest transcytosis capacity in the brain-to-blood direction. These results are of high importance for the current understanding of brain iron homeostasis. Also, the high level of TfR trafficking from the basal to apical membrane of BECs potentially explains the low transcytosis which are observed for the TfR-targeted therapeutics to the brain parenchyma.


Asunto(s)
Encéfalo , Células Endoteliales , Células Endoteliales/metabolismo , Encéfalo/metabolismo , Receptores de Transferrina/metabolismo , Barrera Hematoencefálica/metabolismo , Hierro/metabolismo
15.
Fluids Barriers CNS ; 19(1): 37, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35637478

RESUMEN

Parkinson's disease is mainly caused by aggregation of α-synuclein (α-syn) in the brain. Exchange of α-syn between the brain and peripheral tissues could have important pathophysiological and therapeutic implications, but the trafficking mechanism of α-syn across the blood brain-barrier (BBB) remains unclear. In this study, we therefore investigated uptake and transport mechanisms of α-syn monomers and oligomers across an in vitro BBB model system. Both α-syn monomers and oligomers were internalized by primary brain endothelial cells, with increased restriction of oligomeric over monomeric transport. To enlighten the trafficking route of monomeric α-syn in brain endothelial cells, we investigated co-localization of α-syn and intracellular markers of vesicular transport. Here, we observed the highest colocalization with clathrin, Rab7 and VPS35, suggesting a clathrin-dependent internalization, preferentially followed by a late endosome retromer-connected trafficking pathway. Furthermore, STED microscopy revealed monomeric α-syn trafficking via Rab7-decorated carriers. Knockdown of Caveolin1, VPS35, and Rab7 using siRNA did not affect monomeric α-syn uptake into endothelial cells. However, it significantly reduced transcytosis of monomeric α-syn in the luminal-abluminal direction, suggesting a polarized regulation of monomeric α-syn vesicular transport. Our findings suggest a direct role for Rab7 in polarized trafficking of monomeric α-syn across BBB endothelium, and the potential of Rab7 directed trafficking to constitute a target pathway for new therapeutic strategies against Parkinson's disease and related synucleinopathies.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Encéfalo/metabolismo , Clatrina/metabolismo , Células Endoteliales/metabolismo , Endotelio/metabolismo , Humanos , Enfermedad de Parkinson/metabolismo , Transcitosis , Proteínas de Transporte Vesicular , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Proteínas de Unión a GTP rab7
16.
FEBS J ; 289(4): 1062-1079, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34626084

RESUMEN

Brain homeostasis depends on the existence of the blood-brain barrier (BBB). Despite decades of research, the factors and signalling pathways for modulating and maintaining BBB integrity are not fully elucidated. Here, we characterise the expression and function of the multifunctional receptor, sortilin, in the cells of the BBB, in vivo and in vitro. We show that sortilin acts as an important regulatory protein of the BBB's tightness. In rats lacking sortilin, the BBB was leaky, which correlated well with relocated distribution of the localisation of zonula occludens-1, VE-cadherin and ß-catenin junctional proteins. Furthermore, the absence of sortilin in brain endothelial cells resulted in decreased phosphorylation of Akt signalling protein and increased the level of phospho-ERK1/2. As a putative result of MAPK/ERK pathway activity, the junctions between the brain endothelial cells were disintegrated and the integrity of the BBB became compromised. The identified barrier differences between wild-type and Sort1-/- brain endothelial cells can pave the way for a better understanding of sortilin's role in the healthy and diseased BBB.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Barrera Hematoencefálica/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/deficiencia , Animales , Células Cultivadas , Ratas , Ratas Sprague-Dawley
17.
Scand J Clin Lab Invest ; 71(6): 492-9, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21728898

RESUMEN

AIM: Atrial angiotensin II (Ang II) levels are increased in atrial fibrillation and are believed to be important in the pathogenesis of atrial arrhythmias. Ang II reduces intercellular coupling by inhibiting gap junctions (connexins) and may thereby increase the risk of reentry arrhythmia. The aim of the current study was to investigate the acute effect of Ang II on conduction velocity (CV) in atrial tissue from normal and chronically infarcted rats. METHODS: Contractile force was measured and CV was determined from the conduction time between electrodes placed on the tissue preparation. Expression of AT1a and AT1b receptors was examined by real-time PCR. RESULTS: Acute stimulation with Ang II did not affect CV in tissue from auricle or atrial free wall. A transient 6.5 ± 3.6% increase in resting tension was observed in atrial free wall preparations, indicating that receptors are present and functional in the free wall preparation. The difference between free wall and auricle was probably not caused by differences in receptor expression since equal amounts of AT1 mRNA were present. To test if myocardial infarction (MI) sensitizes the atrium to Ang II, free atrial wall from rats subjected to 4-5 weeks ventricular MI was examined. Although CV was significantly reduced by MI, no effect on CV of Ang II was seen. CONCLUSION: Ang II does not acutely regulate CV in tissue preparations from the free wall of the left atria or the left auricle. Although ventricular MI reduces CV, this does not sensitize the atria to Ang II.


Asunto(s)
Angiotensina II/farmacología , Diástole/efectos de los fármacos , Atrios Cardíacos/fisiopatología , Vasoconstrictores/farmacología , Animales , Infarto de la Pared Anterior del Miocardio/etiología , Infarto de la Pared Anterior del Miocardio/fisiopatología , Atrios Cardíacos/efectos de los fármacos , Atrios Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Técnicas In Vitro , Masculino , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/metabolismo , Transcripción Genética
18.
Methods Mol Biol ; 2367: 193-205, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32813236

RESUMEN

Drug delivery to the brain is a tremendous problem for the academic society and the industry. One solution with a huge potential is to use endocytic receptors as carriers. Here we describe how endocytic activity and subcellular trafficking of a specific receptor in brain endothelial cells can be characterized in three steps. (1) Labeling, endocytosis, and trafficking of a specific receptor at given time points in a pulse-chase experiment. (2) Fixed antibody labeling and co-staining of subcellular markers for image acquisition. (3) Analysis and quantification of co-localization between the receptor and subcellular markers in ImageJ.


Asunto(s)
Endocitosis , Células Endoteliales , Encéfalo , Proteínas Portadoras , Sistemas de Liberación de Medicamentos , Transporte de Proteínas
19.
PLoS One ; 16(4): e0249686, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33798235

RESUMEN

The blood-brain barrier (BBB) is one of the main obstacles for therapies targeting brain diseases. Most macromolecules fail to pass the tight BBB, formed by brain endothelial cells interlinked by tight junctions. A wide range of small, lipid-soluble molecules can enter the brain parenchyma via diffusion, whereas macromolecules have to transcytose via vesicular transport. Vesicular transport can thus be utilized as a strategy to deliver brain therapies. By conjugating BBB targeting antibodies and peptides to therapeutic molecules or nanoparticles, it is possible to increase uptake into the brain. Previously, the synthetic peptide GYR and a peptide derived from melanotransferrin (MTfp) have been suggested as candidates for mediating transcytosis in brain endothelial cells (BECs). Here we study uptake, intracellular trafficking, and translocation of these two peptides in BECs. The peptides were synthesized, and binding studies to purified endocytic receptors were performed using surface plasmon resonance. Furthermore, the peptides were conjugated to a fluorophore allowing for live-cell imaging studies of their uptake into murine brain endothelial cells. Both peptides bound to low-density lipoprotein receptor-related protein 1 (LRP-1) and the human transferrin receptor, while lower affinity was observed against the murine transferrin receptor. The MTfp showed a higher binding affinity to all receptors when compared to the GYR peptide. The peptides were internalized by the bEnd.3 mouse endothelial cells within 30 min of incubation and frequently co-localized with endo-lysosomal vesicles. Moreover, our in vitro Transwell translocation experiments confirmed that GYR was able to cross the murine barrier and indicated the successful translocation of MTfp. Thus, despite binding to endocytic receptors with different affinities, both peptides are able to transcytose across the murine BECs.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Células Endoteliales/efectos de los fármacos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/antagonistas & inhibidores , Péptidos/farmacología , Receptores de Transferrina/antagonistas & inhibidores , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Células Cultivadas , Células Endoteliales/metabolismo , Colorantes Fluorescentes/química , Colorantes Fluorescentes/farmacología , Humanos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones , Receptores de Transferrina/metabolismo , Transcitosis
20.
Traffic ; 9(6): 980-94, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18315530

RESUMEN

The type I transmembrane protein SorCS1 is a member of the Vps10p-domain receptor family comprised of Sortilin, SorLA and SorCS1, -2 and -3. Current information indicates that Sortilin and SorLA mediate intracellular protein trafficking and sorting, but little is known about the cellular functions of the SorCS subgroup. SorCS1 binds platelet-derived growth factor-BB (PDGF-BB) and is expressed in isoforms differing only in their cytoplasmic domains. Here, we identify two novel isoforms of mouse SorCS1 designated m-SorCS1c and -d. In situ hybridization revealed a combinatorial expression pattern of the variants in brain and embryonic tissues. We demonstrate that among the mouse variants, only SorCS1c mediates internalization and that the highly conserved SorCS1c is internalized through a canonical tyrosine-based motif. In contrast, human SorCS1a, whose cytoplasmic domain is completely different from mouse SorCS1a, is internalized through a DXXLL motif. We report that the human SorCS1a cytoplasmic domain interacts with the alphaC/sigma2 subunits of the adaptor protein (AP)-2 complex, and internalization of human SorCS1a and -c is mediated by AP-2. Our results suggest that the endocytic isoforms target internalized cargo to lysosomes but are not engaged in Golgi-endosomal transport to a significant degree.


Asunto(s)
Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Células CHO , Cricetinae , Cricetulus , Fibroblastos/metabolismo , Humanos , Inmunohistoquímica , Hibridación in Situ , Glicoproteínas de Membrana/genética , Proteínas de Transporte de Membrana/genética , Ratones , Isoformas de Proteínas/química , Estructura Terciaria de Proteína , Transporte de Proteínas , Receptores de Superficie Celular/genética , Análisis de Secuencia de Proteína , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA