Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 584(7819): 109-114, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32669710

RESUMEN

The size of plants is largely determined by growth of the stem. Stem elongation is stimulated by gibberellic acid1-3. Here we show that internode stem elongation in rice is regulated antagonistically by an 'accelerator' and a 'decelerator' in concert with gibberellic acid. Expression of a gene we name ACCELERATOR OF INTERNODE ELONGATION 1 (ACE1), which encodes a protein of unknown function, confers cells of the intercalary meristematic region with the competence for cell division, leading to internode elongation in the presence of gibberellic acid. By contrast, upregulation of DECELERATOR OF INTERNODE ELONGATION 1 (DEC1), which encodes a zinc-finger transcription factor, suppresses internode elongation, whereas downregulation of DEC1 allows internode elongation. We also show that the mechanism of internode elongation that is mediated by ACE1 and DEC1 is conserved in the Gramineae family. Furthermore, an analysis of genetic diversity suggests that mutations in ACE1 and DEC1 have historically contributed to the selection of shorter plants in domesticated populations of rice to increase their resistance to lodging, and of taller plants in wild species of rice for adaptation to growth in deep water. Our identification of these antagonistic regulatory factors enhances our understanding of the gibberellic acid response as an additional mechanism that regulates internode elongation and environmental fitness, beyond biosynthesis and gibberellic acid signal transduction.


Asunto(s)
Giberelinas/metabolismo , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Aclimatación , Mutación , Oryza/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tallos de la Planta/genética , Sitios de Carácter Cuantitativo , Transducción de Señal
2.
Demography ; 59(2): 461-483, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35138375

RESUMEN

Using microdata from the Japanese Panel Survey of Consumers, this article examines the relationship between marriage and wealth among women. By exploiting unique data on personal wealth, it also assesses whether the wealth effect of marriage differs depending on whether wealth is measured as household or personal wealth, an issue that very few studies have examined. When wealth is measured as equivalized household net worth, on the assumption that married couples share household resources equally, marriage is found to contribute to women's wealth holdings but only to their nonfinancial net worth; however, the results show signs that marriage also contributes to women's total net worth as marriage durations increase. By contrast, when wealth is measured as personal net worth based on the actual ownership of assets, marriage is found to be negatively and significantly associated with women's wealth holdings. These findings underscore the fact that Japanese women are potentially in a financially vulnerable position even after marriage, which is at least partly driven by married women's career disruptions arising from their family responsibilities.


Asunto(s)
Matrimonio , Persona Soltera , Composición Familiar , Femenino , Humanos , Japón , Factores Socioeconómicos
3.
Plant Physiol ; 176(4): 3081-3102, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29475897

RESUMEN

Water submergence is an environmental factor that limits plant growth and survival. Deepwater rice (Oryza sativa) adapts to submergence by rapidly elongating its internodes and thereby maintaining its leaves above the water surface. We performed a comparative RNA sequencing transcriptome analysis of the shoot base region, including basal nodes, internodes, and shoot apices of seedlings at two developmental stages from two varieties with contrasting deepwater growth responses. A transcriptomic comparison between deepwater rice cv C9285 and nondeepwater rice cv Taichung 65 revealed both similar and differential expression patterns between the two genotypes during submergence. The expression of genes related to gibberellin biosynthesis, trehalose biosynthesis, anaerobic fermentation, cell wall modification, and transcription factors that include ethylene-responsive factors was significantly different between the varieties. Interestingly, in both varieties, the jasmonic acid content at the shoot base decreased during submergence, while exogenous jasmonic acid inhibited submergence-induced internode elongation in cv C9285, suggesting that jasmonic acid plays a role in the submergence response of rice. Furthermore, a targeted de novo transcript assembly revealed transcripts that were specific to cv C9285, including submergence-induced biotic stress-related genes. Our multifaceted transcriptome approach using the rice shoot base region illustrates a differential response to submergence between deepwater and nondeepwater rice. Jasmonic acid metabolism appears to participate in the submergence-mediated internode elongation response of deepwater rice.


Asunto(s)
Inundaciones , Perfilación de la Expresión Génica/métodos , Oryza/genética , Hojas de la Planta/genética , Brotes de la Planta/genética , Agua/metabolismo , Adaptación Fisiológica/genética , Ciclopentanos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Giberelinas/biosíntesis , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Oxilipinas/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
J Vis Exp ; (184)2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35815983

RESUMEN

The recently developed clearing technology that eliminates refractive index mismatches and diminishes auto-fluorescent material has made it possible to observe plant tissues in three dimensions (3D) while preserving their internal structures. In rice (Oryza sativa L.), a monocot model plant and a globally important crop, clearing technology has been reported in organs that are relatively easy to observe, such as the roots and leaves. Applications of clearing technology in shoot apical meristem (SAM) and stems have also been reported, but only to a limited degree because of the poor penetration of the clearing solution (CS) in these tissues. The limited efficiency of the clearing solutions in these tissues has been attributed to auto-fluorescence, thickening, and hardening of the tissues in the stem as the vascular bundles and epidermis develop and layering of the SAM with water-repellent leaves. The present protocol reports the optimization of a clearing approach for continuous and 3D observation of gene expression from the SAM/young panicle to the base of the shoots during development. Fixed tissue samples expressing a fluorescent protein reporter were trimmed into sections using a vibrating micro-slicer. When an appropriate thickness was achieved, the CS was applied. By specifically targeting the central tissue, the penetration rate and uniformity of the CS increased, and the time required to make the tissue transparent decreased. Additionally, clearing of the trimmed sections enabled the observation of the internal structure of the whole shoot from a macro perspective. This method has potential applications in deep imaging of tissues of other plant species that are difficult to clear.


Asunto(s)
Oryza , Fluorescencia , Meristema , Oryza/genética , Raíces de Plantas/metabolismo , Tecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA