Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 177(4): 821-836.e16, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30982602

RESUMEN

Whole-genome-sequencing (WGS) of human tumors has revealed distinct mutation patterns that hint at the causative origins of cancer. We examined mutational signatures in 324 WGS human-induced pluripotent stem cells exposed to 79 known or suspected environmental carcinogens. Forty-one yielded characteristic substitution mutational signatures. Some were similar to signatures found in human tumors. Additionally, six agents produced double-substitution signatures and eight produced indel signatures. Investigating mutation asymmetries across genome topography revealed fully functional mismatch and transcription-coupled repair pathways. DNA damage induced by environmental mutagens can be resolved by disparate repair and/or replicative pathways, resulting in an assortment of signature outcomes even for a single agent. This compendium of experimentally induced mutational signatures permits further exploration of roles of environmental agents in cancer etiology and underscores how human stem cell DNA is directly vulnerable to environmental agents. VIDEO ABSTRACT.


Asunto(s)
Carcinógenos Ambientales/clasificación , Neoplasias/genética , Carcinógenos Ambientales/efectos adversos , Daño del ADN/genética , Análisis Mutacional de ADN/métodos , Reparación del ADN/genética , Replicación del ADN , Perfil Genético , Genoma Humano/genética , Humanos , Mutación INDEL/genética , Mutagénesis , Mutación/genética , Células Madre Pluripotentes/metabolismo , Secuenciación Completa del Genoma/métodos
2.
Cell ; 176(6): 1282-1294.e20, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30849372

RESUMEN

Multiple signatures of somatic mutations have been identified in cancer genomes. Exome sequences of 1,001 human cancer cell lines and 577 xenografts revealed most common mutational signatures, indicating past activity of the underlying processes, usually in appropriate cancer types. To investigate ongoing patterns of mutational-signature generation, cell lines were cultured for extended periods and subsequently DNA sequenced. Signatures of discontinued exposures, including tobacco smoke and ultraviolet light, were not generated in vitro. Signatures of normal and defective DNA repair and replication continued to be generated at roughly stable mutation rates. Signatures of APOBEC cytidine deaminase DNA-editing exhibited substantial fluctuations in mutation rate over time with episodic bursts of mutations. The initiating factors for the bursts are unclear, although retrotransposon mobilization may contribute. The examined cell lines constitute a resource of live experimental models of mutational processes, which potentially retain patterns of activity and regulation operative in primary human cancers.


Asunto(s)
Desaminasas APOBEC/genética , Neoplasias/genética , Desaminasas APOBEC/metabolismo , Línea Celular , Línea Celular Tumoral , ADN/metabolismo , Análisis Mutacional de ADN/métodos , Bases de Datos Genéticas , Exoma , Genoma Humano/genética , Xenoinjertos , Humanos , Mutagénesis , Mutación/genética , Tasa de Mutación , Retroelementos , Secuenciación del Exoma/métodos
3.
Cell ; 149(5): 994-1007, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22608083

RESUMEN

Cancer evolves dynamically as clonal expansions supersede one another driven by shifting selective pressures, mutational processes, and disrupted cancer genes. These processes mark the genome, such that a cancer's life history is encrypted in the somatic mutations present. We developed algorithms to decipher this narrative and applied them to 21 breast cancers. Mutational processes evolve across a cancer's lifespan, with many emerging late but contributing extensive genetic variation. Subclonal diversification is prominent, and most mutations are found in just a fraction of tumor cells. Every tumor has a dominant subclonal lineage, representing more than 50% of tumor cells. Minimal expansion of these subclones occurs until many hundreds to thousands of mutations have accumulated, implying the existence of long-lived, quiescent cell lineages capable of substantial proliferation upon acquisition of enabling genomic changes. Expansion of the dominant subclone to an appreciable mass may therefore represent the final rate-limiting step in a breast cancer's development, triggering diagnosis.


Asunto(s)
Neoplasias de la Mama/genética , Transformación Celular Neoplásica , Evolución Clonal , Mutación , Algoritmos , Aberraciones Cromosómicas , Femenino , Humanos , Mutación Puntual
4.
Cell ; 149(5): 979-93, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22608084

RESUMEN

All cancers carry somatic mutations. The patterns of mutation in cancer genomes reflect the DNA damage and repair processes to which cancer cells and their precursors have been exposed. To explore these mechanisms further, we generated catalogs of somatic mutation from 21 breast cancers and applied mathematical methods to extract mutational signatures of the underlying processes. Multiple distinct single- and double-nucleotide substitution signatures were discernible. Cancers with BRCA1 or BRCA2 mutations exhibited a characteristic combination of substitution mutation signatures and a distinctive profile of deletions. Complex relationships between somatic mutation prevalence and transcription were detected. A remarkable phenomenon of localized hypermutation, termed "kataegis," was observed. Regions of kataegis differed between cancers but usually colocalized with somatic rearrangements. Base substitutions in these regions were almost exclusively of cytosine at TpC dinucleotides. The mechanisms underlying most of these mutational signatures are unknown. However, a role for the APOBEC family of cytidine deaminases is proposed.


Asunto(s)
Neoplasias de la Mama/genética , Análisis Mutacional de ADN , Estudio de Asociación del Genoma Completo , Mutación , Desaminasas APOBEC-1 , Proteína BRCA2/genética , Citidina Desaminasa/metabolismo , Femenino , Genes BRCA1 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos
5.
Cell ; 144(1): 27-40, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21215367

RESUMEN

Cancer is driven by somatically acquired point mutations and chromosomal rearrangements, conventionally thought to accumulate gradually over time. Using next-generation sequencing, we characterize a phenomenon, which we term chromothripsis, whereby tens to hundreds of genomic rearrangements occur in a one-off cellular crisis. Rearrangements involving one or a few chromosomes crisscross back and forth across involved regions, generating frequent oscillations between two copy number states. These genomic hallmarks are highly improbable if rearrangements accumulate over time and instead imply that nearly all occur during a single cellular catastrophe. The stamp of chromothripsis can be seen in at least 2%-3% of all cancers, across many subtypes, and is present in ∼25% of bone cancers. We find that one, or indeed more than one, cancer-causing lesion can emerge out of the genomic crisis. This phenomenon has important implications for the origins of genomic remodeling and temporal emergence of cancer.


Asunto(s)
Aberraciones Cromosómicas , Neoplasias/genética , Neoplasias/patología , Neoplasias Óseas/genética , Línea Celular Tumoral , Pintura Cromosómica , Femenino , Reordenamiento Génico , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Persona de Mediana Edad
6.
Blood ; 142(14): 1185-1192, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37506341

RESUMEN

Germ line variants in the DDX41 gene have been linked to myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) development. However, the risks associated with different variants remain unknown, as do the basis of their leukemogenic properties, impact on steady-state hematopoiesis, and links to other cancers. Here, we investigate the frequency and significance of DDX41 variants in 454 792 United Kingdom Biobank (UKB) participants and identify 452 unique nonsynonymous DNA variants in 3538 (1/129) individuals. Many were novel, and the prevalence of most varied markedly by ancestry. Among the 1059 individuals with germ line pathogenic variants (DDX41-GPV) 34 developed MDS/AML (odds ratio, 12.3 vs noncarriers). Of these, 7 of 218 had start-lost, 22 of 584 had truncating, and 5 of 257 had missense (odds ratios: 12.9, 15.1, and 7.5, respectively). Using multivariate logistic regression, we found significant associations of DDX41-GPV with MDS, AML, and family history of leukemia but not lymphoma, myeloproliferative neoplasms, or other cancers. We also report that DDX41-GPV carriers do not have an increased prevalence of clonal hematopoiesis (CH). In fact, CH was significantly more common before sporadic vs DDX41-mutant MDS/AML, revealing distinct evolutionary paths. Furthermore, somatic mutation rates did not differ between sporadic and DDX41-mutant AML genomes, ruling out genomic instability as a driver of the latter. Finally, we found that higher mean red cell volume (MCV) and somatic DDX41 mutations in blood DNA identify DDX41-GPV carriers at increased MDS/AML risk. Collectively, our findings give new insights into the prevalence and cognate risks associated with DDX41 variants, as well as the clonal evolution and early detection of DDX41-mutant MDS/AML.


Asunto(s)
Deficiencia GATA2 , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Humanos , Prevalencia , ARN Helicasas DEAD-box/genética , Síndromes Mielodisplásicos/epidemiología , Síndromes Mielodisplásicos/genética , Leucemia Mieloide Aguda/genética , ADN
8.
Nature ; 553(7687): 171-177, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29323295

RESUMEN

Haematopoietic stem cells renew blood. Accumulation of DNA damage in these cells promotes their decline, while misrepair of this damage initiates malignancies. Here we describe the features and mutational landscape of DNA damage caused by acetaldehyde, an endogenous and alcohol-derived metabolite. This damage results in DNA double-stranded breaks that, despite stimulating recombination repair, also cause chromosome rearrangements. We combined transplantation of single haematopoietic stem cells with whole-genome sequencing to show that this damage occurs in stem cells, leading to deletions and rearrangements that are indicative of microhomology-mediated end-joining repair. Moreover, deletion of p53 completely rescues the survival of aldehyde-stressed and mutated haematopoietic stem cells, but does not change the pattern or the intensity of genome instability within individual stem cells. These findings characterize the mutation of the stem-cell genome by an alcohol-derived and endogenous source of DNA damage. Furthermore, we identify how the choice of DNA-repair pathway and a stringent p53 response limit the transmission of aldehyde-induced mutations in stem cells.


Asunto(s)
Acetaldehído/metabolismo , Roturas del ADN de Doble Cadena/efectos de los fármacos , Etanol/metabolismo , Etanol/farmacología , Inestabilidad Genómica/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/patología , Mutación , Alcohol Deshidrogenasa/deficiencia , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Reparación del ADN por Unión de Extremidades , Etanol/administración & dosificación , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Anemia de Fanconi/patología , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/deficiencia , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Femenino , Eliminación de Gen , Genes p53/genética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Autoantígeno Ku/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Reparación del ADN por Recombinación/efectos de los fármacos , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Secuenciación Completa del Genoma
9.
Breast Cancer Res ; 25(1): 69, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316882

RESUMEN

BACKGROUND: Familial breast cancer is in most cases unexplained due to the lack of identifiable pathogenic variants in the BRCA1 and BRCA2 genes. The somatic mutational landscape and in particular the extent of BRCA-like tumour features (BRCAness) in these familial breast cancers where germline BRCA1 or BRCA2 mutations have not been identified is to a large extent unknown. METHODS: We performed whole-genome sequencing on matched tumour and normal samples from high-risk non-BRCA1/BRCA2 breast cancer families to understand the germline and somatic mutational landscape and mutational signatures. We measured BRCAness using HRDetect. As a comparator, we also analysed samples from BRCA1 and BRCA2 germline mutation carriers. RESULTS: We noted for non-BRCA1/BRCA2 tumours, only a small proportion displayed high HRDetect scores and were characterized by concomitant promoter hypermethylation or in one case a RAD51D splice variant previously reported as having unknown significance to potentially explain their BRCAness. Another small proportion showed no features of BRCAness but had mutationally active tumours. The remaining tumours lacked features of BRCAness and were mutationally quiescent. CONCLUSIONS: A limited fraction of high-risk familial non-BRCA1/BRCA2 breast cancer patients is expected to benefit from treatment strategies against homologue repair deficient cancer cells.


Asunto(s)
Neoplasias de la Mama , Genes BRCA2 , Humanos , Femenino , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/genética , Prevalencia , Mutación , Proteína BRCA2/genética
10.
Nature ; 543(7647): 714-718, 2017 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-28329761

RESUMEN

Somatic cells acquire mutations throughout the course of an individual's life. Mutations occurring early in embryogenesis are often present in a substantial proportion of, but not all, cells in postnatal humans and thus have particular characteristics and effects. Depending on their location in the genome and the proportion of cells they are present in, these mosaic mutations can cause a wide range of genetic disease syndromes and predispose carriers to cancer. They have a high chance of being transmitted to offspring as de novo germline mutations and, in principle, can provide insights into early human embryonic cell lineages and their contributions to adult tissues. Although it is known that gross chromosomal abnormalities are remarkably common in early human embryos, our understanding of early embryonic somatic mutations is very limited. Here we use whole-genome sequences of normal blood from 241 adults to identify 163 early embryonic mutations. We estimate that approximately three base substitution mutations occur per cell per cell-doubling event in early human embryogenesis and these are mainly attributable to two known mutational signatures. We used the mutations to reconstruct developmental lineages of adult cells and demonstrate that the two daughter cells of many early embryonic cell-doubling events contribute asymmetrically to adult blood at an approximately 2:1 ratio. This study therefore provides insights into the mutation rates, mutational processes and developmental outcomes of cell dynamics that operate during early human embryogenesis.


Asunto(s)
Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Mutación , Adulto , Células Sanguíneas/metabolismo , Linaje de la Célula/genética , Genoma Humano/genética , Mutación de Línea Germinal/genética , Humanos , Mosaicismo , Mutagénesis , Tasa de Mutación
11.
Genome Res ; 29(3): 356-366, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30692147

RESUMEN

Circular RNAs (circRNAs) are a class of RNAs that is under increasing scrutiny, although their functional roles are debated. We analyzed RNA-seq data of 348 primary breast cancers and developed a method to identify circRNAs that does not rely on unmapped reads or known splice junctions. We identified 95,843 circRNAs, of which 20,441 were found recurrently. Of the circRNAs that match exon boundaries of the same gene, 668 showed a poor or even negative (R < 0.2) correlation with the expression level of the linear gene. In silico analysis showed only a minority (8.5%) of circRNAs could be explained by known splicing events. Both these observations suggest that specific regulatory processes for circRNAs exist. We confirmed the presence of circRNAs of CNOT2, CREBBP, and RERE in an independent pool of primary breast cancers. We identified circRNA profiles associated with subgroups of breast cancers and with biological and clinical features, such as amount of tumor lymphocytic infiltrate and proliferation index. siRNA-mediated knockdown of circCNOT2 was shown to significantly reduce viability of the breast cancer cell lines MCF-7 and BT-474, further underlining the biological relevance of circRNAs. Furthermore, we found that circular, and not linear, CNOT2 levels are predictive for progression-free survival time to aromatase inhibitor (AI) therapy in advanced breast cancer patients, and found that circCNOT2 is detectable in cell-free RNA from plasma. We showed that circRNAs are abundantly present, show characteristics of being specifically regulated, are associated with clinical and biological properties, and thus are relevant in breast cancer.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , ARN/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Femenino , Humanos , Metástasis Linfática , Células MCF-7 , ARN/metabolismo , ARN Circular , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transcriptoma
12.
Nature ; 534(7605): 47-54, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27135926

RESUMEN

We analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive structural features probably causing elevated mutation rates and do not contain driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed twelve base substitution and six rearrangement signatures. Three rearrangement signatures, characterized by tandem duplications or deletions, appear associated with defective homologous-recombination-based DNA repair: one with deficient BRCA1 function, another with deficient BRCA1 or BRCA2 function, the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operating, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Genoma Humano/genética , Mutación/genética , Estudios de Cohortes , Análisis Mutacional de ADN , Replicación del ADN/genética , ADN de Neoplasias/genética , Femenino , Genes BRCA1 , Genes BRCA2 , Genómica , Humanos , Masculino , Mutagénesis , Tasa de Mutación , Oncogenes/genética , Reparación del ADN por Recombinación/genética
13.
Genome Res ; 28(9): 1264-1271, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30104284

RESUMEN

Somatic mutations show variation in density across cancer genomes. Previous studies have shown that chromatin organization and replication time domains are correlated with, and thus predictive of, this variation. Here, we analyze 1809 whole-genome sequences from 10 cancer types to show that a subset of repetitive DNA sequences, called non-B motifs that predict noncanonical secondary structure formation can independently account for variation in mutation density. Combined with epigenetic factors and replication timing, the variance explained can be improved to 43%-76%. Approximately twofold mutation enrichment is observed directly within non-B motifs, is focused on exposed structural components, and is dependent on physical properties that are optimal for secondary structure formation. Therefore, there is mounting evidence that secondary structures arising from non-B motifs are not simply associated with increased mutation density-they are possibly causally implicated. Our results suggest that they are determinants of mutagenesis and increase the likelihood of recurrent mutations in the genome. This analysis calls for caution in the interpretation of recurrent mutations and highlights the importance of taking non-B motifs that can simply be inferred from the reference sequence into consideration in background models of mutability henceforth.


Asunto(s)
Mutagénesis , Neoplasias/genética , Motivos de Nucleótidos , ADN Forma B/química , ADN Forma B/genética , Humanos
14.
Nat Rev Genet ; 15(9): 585-98, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24981601

RESUMEN

The collective somatic mutations observed in a cancer are the outcome of multiple mutagenic processes that have been operative over the lifetime of a patient. Each process leaves a characteristic imprint--a mutational signature--on the cancer genome, which is defined by the type of DNA damage and DNA repair processes that result in base substitutions, insertions and deletions or structural variations. With the advent of whole-genome sequencing, researchers are identifying an increasing array of these signatures. Mutational signatures can be used as a physiological readout of the biological history of a cancer and also have potential use for discerning ongoing mutational processes from historical ones, thus possibly revealing new targets for anticancer therapies.


Asunto(s)
Daño del ADN , Reparación del ADN , ADN de Neoplasias/genética , Genoma Humano/genética , Neoplasias/genética , Análisis Mutacional de ADN , Humanos , Mutación , Análisis de Secuencia de ADN
17.
Nature ; 513(7518): 422-425, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-25043003

RESUMEN

The somatic mutations present in the genome of a cell accumulate over the lifetime of a multicellular organism. These mutations can provide insights into the developmental lineage tree, the number of divisions that each cell has undergone and the mutational processes that have been operative. Here we describe whole genomes of clonal lines derived from multiple tissues of healthy mice. Using somatic base substitutions, we reconstructed the early cell divisions of each animal, demonstrating the contributions of embryonic cells to adult tissues. Differences were observed between tissues in the numbers and types of mutations accumulated by each cell, which likely reflect differences in the number of cell divisions they have undergone and varying contributions of different mutational processes. If somatic mutation rates are similar to those in mice, the results indicate that precise insights into development and mutagenesis of normal human cells will be possible.


Asunto(s)
Linaje de la Célula/genética , Células Clonales/citología , Células Clonales/metabolismo , Genoma/genética , Mutagénesis/genética , Mutación/genética , Animales , Relojes Biológicos/genética , División Celular , Células Cultivadas , Embrión de Mamíferos/citología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Tasa de Mutación , Organoides/citología , Organoides/metabolismo , Filogenia , Análisis de Secuencia de ADN , Cola (estructura animal)/citología
18.
Br J Cancer ; 121(4): 285-292, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31285590

RESUMEN

Ductal carcinoma in situ (DCIS) now represents 20-25% of all 'breast cancers' consequent upon detection by population-based breast cancer screening programmes. Currently, all DCIS lesions are treated, and treatment comprises either mastectomy or breast-conserving surgery supplemented with radiotherapy. However, most DCIS lesions remain indolent. Difficulty in discerning harmless lesions from potentially invasive ones can lead to overtreatment of this condition in many patients. To counter overtreatment and to transform clinical practice, a global, comprehensive and multidisciplinary collaboration is required. Here we review the incidence of DCIS, the perception of risk for developing invasive breast cancer, the current treatment options and the known molecular aspects of progression. Further research is needed to gain new insights for improved diagnosis and management of DCIS, and this is integrated in the PRECISION (PREvent ductal Carcinoma In Situ Invasive Overtreatment Now) initiative. This international effort will seek to determine which DCISs require treatment and prevent the consequences of overtreatment on the lives of many women affected by DCIS.


Asunto(s)
Neoplasias de la Mama/terapia , Carcinoma Intraductal no Infiltrante/terapia , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/etiología , Carcinoma Intraductal no Infiltrante/epidemiología , Carcinoma Intraductal no Infiltrante/etiología , Femenino , Humanos
19.
Nature ; 500(7463): 415-21, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23945592

RESUMEN

All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, 'kataegis', is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy.


Asunto(s)
Transformación Celular Neoplásica/genética , Mutagénesis/genética , Mutación/genética , Neoplasias/genética , Envejecimiento/genética , Algoritmos , Transformación Celular Neoplásica/patología , Citidina Desaminasa/genética , ADN/genética , ADN/metabolismo , Análisis Mutacional de ADN , Humanos , Modelos Genéticos , Mutagénesis Insercional/genética , Mutágenos/farmacología , Neoplasias/enzimología , Neoplasias/patología , Especificidad de Órganos , Reproducibilidad de los Resultados , Eliminación de Secuencia/genética , Transcripción Genética/genética
20.
Nucleic Acids Res ; 45(19): 11213-11221, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-28977645

RESUMEN

Selected repetitive sequences termed short inverted repeats (SIRs) have the propensity to form secondary DNA structures called hairpins. SIRs comprise palindromic arm sequences separated by short spacer sequences that form the hairpin stem and loop respectively. Here, we show that SIRs confer an increase in localized mutability in breast cancer, which is domain-dependent with the greatest mutability observed within spacer sequences (∼1.35-fold above background). Mutability is influenced by factors that increase the likelihood of formation of hairpins such as loop lengths (of 4-5 bp) and stem lengths (of 7-15 bp). Increased mutability is an intrinsic property of SIRs as evidenced by how almost all mutational processes demonstrate a higher rate of mutagenesis of spacer sequences. We further identified 88 spacer sequences showing enrichment from 1.8- to 90-fold of local mutability distributed across 283 sites in the genome that intriguingly, can be used to inform the biological status of a tumor.


Asunto(s)
ADN/genética , Genoma Humano/genética , Secuencias Invertidas Repetidas/genética , Mutación , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , ADN/química , Femenino , Humanos , Conformación de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA