Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Immunity ; 55(3): 459-474.e7, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35148827

RESUMEN

Type I interferons (IFNs) are pleiotropic cytokines with potent antiviral properties that also promote protective T cell and humoral immunity. Paradoxically, type I IFNs, including the widely expressed IFNß, also have immunosuppressive properties, including promoting persistent viral infections and treating T-cell-driven, remitting-relapsing multiple sclerosis. Although associative evidence suggests that IFNß mediates these immunosuppressive effects by impacting regulatory T (Treg) cells, mechanistic links remain elusive. Here, we found that IFNß enhanced graft survival in a Treg-cell-dependent murine transplant model. Genetic conditional deletion models revealed that the extended allograft survival was Treg cell-mediated and required IFNß signaling on T cells. Using an in silico computational model and analysis of human immune cells, we found that IFNß directly promoted Treg cell induction via STAT1- and P300-dependent Foxp3 acetylation. These findings identify a mechanistic connection between the immunosuppressive effects of IFNß and Treg cells, with therapeutic implications for transplantation, autoimmunity, and malignancy.


Asunto(s)
Interferón beta , Linfocitos T Reguladores , Acetilación , Aloinjertos , Animales , Factores de Transcripción Forkhead/metabolismo , Supervivencia de Injerto , Humanos , Interferón beta/metabolismo , Ratones
2.
Am J Transplant ; 24(5): 755-764, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38141722

RESUMEN

High frequencies of donor-reactive memory T cells in the periphery of transplant candidates prior to transplantation are linked to the development of posttransplant acute rejection episodes and reduced allograft function. Rabbit antithymocyte globulin (rATG) effectively depletes naïve CD4+ and CD8+ T cells for >6 months posttransplant, but rATG's effects on human donor-reactive T cells have not been carefully determined. To address this, we performed T cell receptor ß-chain sequencing on peripheral blood mononuclear cells aliquots collected pretransplant and serially posttransplant in 7 kidney transplant recipients who received rATG as induction therapy. We tracked the evolution of the donor-reactive CD4+ and CD8+ T cell repertoires and identified stimulated pretransplant, CTV-(surface dye)-labeled, peripheral blood mononuclear cells from each patient with donor cells or third-party cells. Our analyses showed that while rATG depleted CD4+ T cells in all tested subjects, a subset of donor-reactive CD8+ T cells that were present at high frequencies pretransplant, consistent with expanded memory cells, resisted rATG depletion, underwent posttransplant expansion and were functional. Together, our data support the conclusion that a subset of human memory CD8+ T cells specifically reactive to donor antigens expand in vivo despite induction therapy with rATG and thus have the potential to mediate allograft damage.


Asunto(s)
Suero Antilinfocítico , Linfocitos T CD8-positivos , Rechazo de Injerto , Trasplante de Riñón , Donantes de Tejidos , Trasplante de Riñón/efectos adversos , Humanos , Suero Antilinfocítico/uso terapéutico , Linfocitos T CD8-positivos/inmunología , Masculino , Rechazo de Injerto/inmunología , Rechazo de Injerto/etiología , Persona de Mediana Edad , Femenino , Adulto , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Animales , Linfocitos T CD4-Positivos/inmunología , Pronóstico , Estudios de Seguimiento , Fallo Renal Crónico/cirugía , Fallo Renal Crónico/inmunología , Conejos , Supervivencia de Injerto/inmunología , Depleción Linfocítica
3.
J Biol Chem ; 296: 100726, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33933453

RESUMEN

Transient receptor potential canonical type 5 (TRPC5) ion channels are expressed in the brain and kidney and have been identified as promising therapeutic targets whose selective inhibition can protect against diseases driven by a leaky kidney filter, such as focal segmental glomerular sclerosis. TRPC5 channels are activated not only by elevated levels of extracellular Ca2+or lanthanide ions but also by G protein (Gq/11) stimulation. Phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis by phospholipase C enzymes leads to PKC-mediated phosphorylation of TRPC5 channels and their subsequent desensitization. However, the roles of PIP2 in activation and maintenance of TRPC5 channel activity via its hydrolysis product diacyl glycerol (DAG), as well as the mechanism of desensitization of TRPC5 activity by DAG-stimulated PKC activity, remain unclear. Here, we designed experiments to distinguish between the processes underlying channel activation and inhibition. Employing whole-cell patch-clamp, we used an optogenetic tool to dephosphorylate PIP2 and assess channel-PIP2 interactions influenced by activators, such as DAG, or inhibitors, such as PKC phosphorylation. Using total internal reflection microscopy, we assessed channel cell surface density. We show that PIP2 controls both the PKC-mediated inhibition and the DAG- and lanthanide-mediated activation of TRPC5 currents via control of gating rather than channel cell surface density. These mechanistic insights promise to aid in the development of more selective and precise inhibitors to block TRPC5 channel activity and illuminate new opportunities for targeted therapies for a group of chronic kidney diseases for which there is currently a great unmet need.


Asunto(s)
Fosfatidilinositol 4,5-Difosfato/metabolismo , Canales Catiónicos TRPC/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Conformación Proteica
4.
Cell Stem Cell ; 31(6): 789-790, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38848683

RESUMEN

In this issue, Yano et al.1 present a method to obtain suppressive regulatory T (Treg) cells from human induced pluripotent stem cells (hiPSCs). This approach has the potential to address the low Treg cell yields of current ex vivo Treg cell expansion and induction protocols, an unmet challenge for autologous Treg cell treatments.


Asunto(s)
Células Madre Pluripotentes Inducidas , Linfocitos T Reguladores , Linfocitos T Reguladores/inmunología , Humanos , Células Madre Pluripotentes Inducidas/citología , Plasticidad de la Célula , Diferenciación Celular
5.
iScience ; 26(12): 108491, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38094248

RESUMEN

Foxp3 acetylation is essential to regulatory T (Treg) cell stability and function, but pharmacologically increasing it remains an unmet challenge. Here, we report that small-molecule compounds that inhibit TIP60, an acetyltransferase known to acetylate Foxp3, unexpectedly increase Foxp3 acetylation and Treg induction. Utilizing a dual experimental/computational approach combined with a newly developed FRET-based methodology compatible with flow cytometry to measure Foxp3 acetylation, we unraveled the mechanism of action of these small-molecule compounds in murine and human Treg induction cell cultures. We demonstrate that at low-mid concentrations they activate TIP60 to acetylate P300, a different acetyltransferase, which in turn increases Foxp3 acetylation, thereby enhancing Treg cell induction. These results reveal a potential therapeutic target relevant to autoimmunity and transplant.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA