Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(2): 305-326.e27, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36638792

RESUMEN

All living things experience an increase in entropy, manifested as a loss of genetic and epigenetic information. In yeast, epigenetic information is lost over time due to the relocalization of chromatin-modifying proteins to DNA breaks, causing cells to lose their identity, a hallmark of yeast aging. Using a system called "ICE" (inducible changes to the epigenome), we find that the act of faithful DNA repair advances aging at physiological, cognitive, and molecular levels, including erosion of the epigenetic landscape, cellular exdifferentiation, senescence, and advancement of the DNA methylation clock, which can be reversed by OSK-mediated rejuvenation. These data are consistent with the information theory of aging, which states that a loss of epigenetic information is a reversible cause of aging.


Asunto(s)
Envejecimiento , Epigénesis Genética , Animales , Envejecimiento/genética , Metilación de ADN , Epigenoma , Mamíferos/genética , Nucleoproteínas , Saccharomyces cerevisiae/genética
3.
Nature ; 595(7866): 266-271, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34163066

RESUMEN

Obesity is a worldwide epidemic that predisposes individuals to many age-associated diseases, but its exact effects on organ dysfunction are largely unknown1. Hair follicles-mini-epithelial organs that grow hair-are miniaturized by ageing to cause hair loss through the depletion of hair follicle stem cells (HFSCs)2. Here we report that obesity-induced stress, such as that induced by a high-fat diet (HFD), targets HFSCs to accelerate hair thinning. Chronological gene expression analysis revealed that HFD feeding for four consecutive days in young mice directed activated HFSCs towards epidermal keratinization by generating excess reactive oxygen species, but did not reduce the pool of HFSCs. Integrative analysis using stem cell fate tracing, epigenetics and reverse genetics showed that further feeding with an HFD subsequently induced lipid droplets and NF-κB activation within HFSCs via autocrine and/or paracrine IL-1R signalling. These integrated factors converge on the marked inhibition of Sonic hedgehog (SHH) signal transduction in HFSCs, thereby further depleting lipid-laden HFSCs through their aberrant differentiation and inducing hair follicle miniaturization and eventual hair loss. Conversely, transgenic or pharmacological activation of SHH rescued HFD-induced hair loss. These data collectively demonstrate that stem cell inflammatory signals induced by obesity robustly represses organ regeneration signals to accelerate the miniaturization of mini-organs, and suggests the importance of daily prevention of organ dysfunction.


Asunto(s)
Alopecia/patología , Alopecia/fisiopatología , Folículo Piloso/patología , Obesidad/fisiopatología , Células Madre/patología , Animales , Comunicación Autocrina , Recuento de Células , Diferenciación Celular , Linaje de la Célula , Senescencia Celular , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Proteínas Hedgehog/metabolismo , Inflamación , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/patología , Estrés Oxidativo , Comunicación Paracrina , Receptores de Interleucina-1/metabolismo
4.
Nature ; 568(7752): 344-350, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30944469

RESUMEN

Stem cells underlie tissue homeostasis, but their dynamics during ageing-and the relevance of these dynamics to organ ageing-remain unknown. Here we report that the expression of the hemidesmosome component collagen XVII (COL17A1) by epidermal stem cells fluctuates physiologically through genomic/oxidative stress-induced proteolysis, and that the resulting differential expression of COL17A1 in individual stem cells generates a driving force for cell competition. In vivo clonal analysis in mice and in vitro 3D modelling show that clones that express high levels of COL17A1, which divide symmetrically, outcompete and eliminate adjacent stressed clones that express low levels of COL17A1, which divide asymmetrically. Stem cells with higher potential or quality are thus selected for homeostasis, but their eventual loss of COL17A1 limits their competition, thereby causing ageing. The resultant hemidesmosome fragility and stem cell delamination deplete adjacent melanocytes and fibroblasts to promote skin ageing. Conversely, the forced maintenance of COL17A1 rescues skin organ ageing, thereby indicating potential angles for anti-ageing therapeutic intervention.


Asunto(s)
Homeostasis , Envejecimiento de la Piel/patología , Envejecimiento de la Piel/fisiología , Piel/citología , Piel/patología , Células Madre/citología , Células Madre/patología , Animales , Atrofia , Autoantígenos/química , Autoantígenos/metabolismo , División Celular , Proliferación Celular , Células Clonales/citología , Células Epidérmicas/citología , Células Epidérmicas/patología , Femenino , Genoma , Hemidesmosomas/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Colágenos no Fibrilares/química , Colágenos no Fibrilares/metabolismo , Estrés Oxidativo , Proteolisis , Colágeno Tipo XVII
5.
Cell ; 137(6): 1088-99, 2009 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-19524511

RESUMEN

Somatic stem cell depletion due to the accumulation of DNA damage has been implicated in the appearance of aging-related phenotypes. Hair graying, a typical sign of aging in mammals, is caused by the incomplete maintenance of melanocyte stem cells (MSCs) with age. Here, we report that irreparable DNA damage, as caused by ionizing radiation, abrogates renewal of MSCs in mice. Surprisingly, the DNA-damage response triggers MSC differentiation into mature melanocytes in the niche, rather than inducing their apoptosis or senescence. The resulting MSC depletion leads to irreversible hair graying. Furthermore, deficiency of Ataxia-telangiectasia mutated (ATM), a central transducer kinase of the DNA-damage response, sensitizes MSCs to ectopic differentiation, demonstrating that the kinase protects MSCs from their premature differentiation by functioning as a "stemness checkpoint" to maintain the stem cell quality and quantity.


Asunto(s)
Diferenciación Celular , Daño del ADN , Melanocitos/citología , Melanocitos/efectos de la radiación , Células Madre/citología , Células Madre/efectos de la radiación , Envejecimiento , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Cabello/citología , Cabello/patología , Cabello/fisiopatología , Melanosomas/metabolismo , Ratones , Factor de Transcripción Asociado a Microftalmía/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Rayos X
6.
Biochem Biophys Res Commun ; 596: 29-35, 2022 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-35108651

RESUMEN

Thymic dendritic cells (DCs) promote immune tolerance by regulating negative selection of autoreactive T cells in the thymus. How DC homing to the thymus is transcriptionally regulated is still unclear. Microphthalmia-associated transcription factor (Mitf) is broadly expressed and plays essential roles in the hematopoietic system. Here, we used Mitf-mutated mice (Mitfvit/vit) and found enlargement of the thymus and expansion of CD4/CD8 double-positive T cells. Mitf was highly expressed in a subset of thymic DCs among the hematopoietic system. Genetic mutation or pharmacological inhibition of Mitf in DCs decreased the expression levels of Itga4, which are critical molecules for the homing of DCs to the thymus. Further, inhibition of Mitf decreased thymic DC number. These results suggest a pivotal role of Mitf in the maintenance of T cell differentiation by regulating the homing of DC subsets within the thymus.


Asunto(s)
Diferenciación Celular/inmunología , Células Dendríticas/inmunología , Factor de Transcripción Asociado a Microftalmía/inmunología , Linfocitos T/inmunología , Timo/inmunología , Animales , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Diferenciación Celular/genética , Células Cultivadas , Células Dendríticas/metabolismo , Citometría de Flujo , Regulación de la Expresión Génica/inmunología , Hiperplasia , Integrina alfa4/genética , Integrina alfa4/inmunología , Integrina alfa4/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T/metabolismo , Timo/metabolismo , Timo/patología
7.
Stem Cells ; 39(8): 1091-1100, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33783921

RESUMEN

Stem cell-based products have clinical and industrial applications. Thus, there is a need to develop quality control methods to standardize stem cell manufacturing. Here, we report a deep learning-based automated cell tracking (DeepACT) technology for noninvasive quality control and identification of cultured human stem cells. The combination of deep learning-based cascading cell detection and Kalman filter algorithm-based tracking successfully tracked the individual cells within the densely packed human epidermal keratinocyte colonies in the phase-contrast images of the culture. DeepACT rapidly analyzed the motion of individual keratinocytes, which enabled the quantitative evaluation of keratinocyte dynamics in response to changes in culture conditions. Furthermore, DeepACT can distinguish keratinocyte stem cell colonies from non-stem cell-derived colonies by analyzing the spatial and velocity information of cells. This system can be widely applied to stem cell cultures used in regenerative medicine and provides a platform for developing reliable and noninvasive quality control technology.


Asunto(s)
Aprendizaje Profundo , Células Epidérmicas , Diferenciación Celular , Rastreo Celular , Células Cultivadas , Humanos , Queratinocitos , Control de Calidad , Células Madre
8.
Mol Cell ; 32(4): 554-63, 2008 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-19026785

RESUMEN

The protein encoded by paired-box homeotic gene 3 (PAX3) is a key regulator of the microphthalmia-associated transcription factor (Mitf) in the melanocyte lineage. Here, we show that PAX3 expression in skin is directly inhibited by TGF-beta/Smads. UV irradiation represses TGF-beta in keratinocytes, and the repression of TGF-beta/Smads upregulates PAX3 in melanocytes, which is associated with a UV-induced melanogenic response and consequent pigmentation. Furthermore, the TGF-beta-PAX3 signaling pathway interacts with the p53-POMC/MSH-MC1R signaling pathway, and both are crucial in melanogenesis. The activation of p53-POMC/MSH-MC1R signaling is required for the UV-induced melanogenic response because PAX3 functions in synergy with SOX10 in a cAMP-response element (CRE)-dependent manner to regulate the transcription of Mitf. This study will provide a rich foundation for further research on skin cancer prevention by enabling us to identify targeted small molecules in the signaling pathways of the UV-induced melanogenic response that are highly likely to induce naturally protective pigmentation.


Asunto(s)
Regulación de la Expresión Génica , Melanocitos/fisiología , Factores de Transcripción Paired Box/antagonistas & inhibidores , Factores de Transcripción Paired Box/genética , Factor de Crecimiento Transformador beta/metabolismo , Genes Reguladores , Genes Reporteros , Humanos , Queratinocitos/metabolismo , Queratinocitos/efectos de la radiación , Luciferasas/metabolismo , Melanocitos/metabolismo , Factor de Transcripción PAX3 , Regiones Promotoras Genéticas/genética , Transducción de Señal/genética , Pigmentación de la Piel/genética , Pigmentación de la Piel/fisiología , Proteína Smad4/metabolismo , Factor de Crecimiento Transformador beta/genética , Rayos Ultravioleta
9.
Cancer Cell ; 6(6): 565-76, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15607961

RESUMEN

The genomic organization of the CDK2 gene, which overlaps the melanocyte-specific gene SILV/PMEL17, poses an interesting regulatory challenge. We show that, despite its ubiquitous expression, CDK2 exhibits tissue-specific regulation by the essential melanocyte lineage transcription factor MITF. In addition, functional studies revealed this regulation to be critical for maintaining CDK2 kinase activity and growth of melanoma cells. Expression levels of MITF and CDK2 are tightly correlated in primary melanoma specimens and predict susceptibility to the CDK2 inhibitor roscovitine. CDK2 depletion suppressed growth and cell cycle progression in melanoma, but not other cancers, corroborating previous results. Collectively, these data indicate that CDK2 activity in melanoma is largely maintained at the transcriptional level by MITF, and unlike other malignancies, it may be a suitable drug target in melanoma.


Asunto(s)
Quinasas CDC2-CDC28/fisiología , Proteínas de Unión al ADN/fisiología , Melanoma/patología , Factores de Transcripción/fisiología , Western Blotting , Quinasas CDC2-CDC28/genética , Quinasas CDC2-CDC28/metabolismo , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular/efectos de los fármacos , Inmunoprecipitación de Cromatina , Quinasa 2 Dependiente de la Ciclina , Quinasas Ciclina-Dependientes/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Elementos E-Box/fisiología , Fibroblastos/metabolismo , Citometría de Flujo , Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genes Reporteros/genética , Humanos , Melanocitos/metabolismo , Melanocitos/patología , Melanoma/metabolismo , Glicoproteínas de Membrana , Factor de Transcripción Asociado a Microftalmía , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas/genética , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Purinas/farmacología , ARN Interferente Pequeño/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Roscovitina , Fase S/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Transfección , Proteína bcl-X , Antígeno gp100 del Melanoma
10.
Nature ; 443(7109): 340-4, 2006 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-16988713

RESUMEN

Ultraviolet-light (UV)-induced tanning is defective in numerous 'fair-skinned' individuals, many of whom contain functional disruption of the melanocortin 1 receptor (MC1R). Although this suggested a critical role for the MC1R ligand melanocyte stimulating hormone (MSH) in this response, a genetically controlled system has been lacking in which to determine the precise role of MSH-MC1R. Here we show that ultraviolet light potently induces expression of MSH in keratinocytes, but fails to stimulate pigmentation in the absence of functional MC1R in red/blonde-haired Mc1r(e/e) mice. However, pigmentation could be rescued by topical application of the cyclic AMP agonist forskolin, without the need for ultraviolet light, demonstrating that the pigmentation machinery is available despite the absence of functional MC1R. This chemically induced pigmentation was protective against ultraviolet-light-induced cutaneous DNA damage and tumorigenesis when tested in the cancer-prone, xeroderma-pigmentosum-complementation-group-C-deficient genetic background. These data emphasize the essential role of intercellular MSH signalling in the tanning response, and suggest a clinical strategy for topical small-molecule manipulation of pigmentation.


Asunto(s)
Colforsina/administración & dosificación , Colforsina/farmacología , Receptor de Melanocortina Tipo 1/metabolismo , Enfermedades de la Piel/prevención & control , Pigmentación de la Piel/efectos de los fármacos , Pigmentación de la Piel/efectos de la radiación , Rayos Ultravioleta , Administración Tópica , Animales , Melaninas/biosíntesis , Hormonas Estimuladoras de los Melanocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptor de Melanocortina Tipo 1/deficiencia , Receptor de Melanocortina Tipo 1/genética , Transducción de Señal , Piel/efectos de los fármacos , Piel/metabolismo , Piel/patología , Piel/efectos de la radiación , Enfermedades de la Piel/etiología , Enfermedades de la Piel/patología , Pigmentación de la Piel/fisiología
11.
Nat Aging ; 2(2): 105-114, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-37117756

RESUMEN

Canonically, hormones are produced in the endocrine organs and delivered to target tissues. However, for steroids, the concept of tissue intracrinology, whereby hormones are produced in the tissues where they exert their effect without release into circulation, has been proposed, but its role in physiology/disease remains unclear. The meibomian glands in the eyelids produce oil to prevent tear evaporation, which reduces with aging. Here, we demonstrate that (re)activation of local intracrine activity through nicotinamide adenine dinucleotide (NAD+)-dependent circadian 3ß-hydroxyl-steroid dehydrogenase (3ß-HSD) activity ameliorates age-associated meibomian gland dysfunction and accompanying evaporative dry eye disease. Genetic ablation of 3ß-HSD nullified local steroidogenesis and led to atrophy of the meibomian gland. Conversely, reactivation of 3ß-HSD activity by boosting its coenzyme NAD+ availability improved glandular cell proliferation and alleviated the dry eye disease phenotype. Both women and men express 3ß-HSD in the meibomian gland. Enhancing local steroidogenesis may help combat age-associated meibomian gland dysfunction.


Asunto(s)
Síndromes de Ojo Seco , Disfunción de la Glándula de Meibomio , Femenino , Humanos , NAD , Glándulas Tarsales , Lágrimas/fisiología , Esteroides , Hormonas
12.
J Cell Biol ; 220(11)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34550317

RESUMEN

Skin regenerative capacity declines with age, but the underlying mechanisms are largely unknown. Here we demonstrate a functional link between epidermal growth factor receptor (EGFR) signaling and type XVII collagen (COL17A1) proteolysis on age-associated alteration of keratinocyte stem cell dynamics in skin regeneration. Live-imaging and computer simulation experiments predicted that human keratinocyte stem cell motility is coupled with self-renewal and epidermal regeneration. Receptor tyrosine kinase array identified the age-associated decline of EGFR signaling in mouse skin wound healing. Culture experiments proved that EGFR activation drives human keratinocyte stem cell motility with increase of COL17A1 by inhibiting its proteolysis through the secretion of tissue inhibitor of metalloproteinases 1 (TIMP1). Intriguingly, COL17A1 directly regulated keratinocyte stem cell motility and collective cell migration by coordinating actin and keratin filament networks. We conclude that EGFR-COL17A1 axis-mediated keratinocyte stem cell motility drives epidermal regeneration, which provides a novel therapeutic approach for age-associated impaired skin regeneration.


Asunto(s)
Autoantígenos/metabolismo , Movimiento Celular/fisiología , Colágenos no Fibrilares/metabolismo , Regeneración/fisiología , Piel/metabolismo , Células 3T3 , Animales , Línea Celular , Células Epidérmicas/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Folículo Piloso/metabolismo , Humanos , Queratinocitos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteolisis , Transducción de Señal/fisiología , Células Madre/metabolismo , Cicatrización de Heridas/fisiología , Colágeno Tipo XVII
13.
Dev Cell ; 56(24): 3309-3320.e5, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34932948

RESUMEN

Maintaining genomic integrity and stability is crucial for life; yet, no tissue-driven mechanism that robustly safeguards the epithelial genome has been discovered. Epidermal stem cells (EpiSCs) continuously replenish the stratified layers of keratinocytes that protect organisms against various environmental stresses. To study the dynamics of DNA-damaged cells in tissues, we devised an in vivo fate tracing system for EpiSCs with DNA double-strand breaks (DSBs) and demonstrated that those cells exit from their niches. The clearance of EpiSCs with DSBs is caused by selective differentiation and delamination through the DNA damage response (DDR)-p53-Notch/p21 axis, with the downregulation of ITGB1. Moreover, concomitant enhancement of symmetric cell divisions of surrounding stem cells indicates that the selective elimination of cells with DSBs is coupled with the augmented clonal expansion of intact stem cells. These data collectively demonstrate that tissue autonomy through the dynamic coupling of cell-autonomous and non-cell-autonomous mechanisms coordinately maintains the genomic quality of the epidermis.


Asunto(s)
Epidermis/metabolismo , Genoma , Células Madre/citología , Animales , Apoptosis/genética , Diferenciación Celular/genética , División Celular/genética , Proliferación Celular/genética , Células Clonales , Roturas del ADN de Doble Cadena , Daño del ADN/genética , Reparación del ADN/genética , Humanos , Integrina beta1/metabolismo , Ratones Endogámicos C57BL , Modelos Biológicos , Receptores Notch/metabolismo , Transducción de Señal/genética , Nicho de Células Madre , Células Madre/metabolismo
14.
Cell Rep ; 36(5): 109492, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34348144

RESUMEN

Early differential diagnosis between malignant and benign tumors and their underlying intrinsic differences are the most critical issues for life-threatening cancers. To study whether human acral melanomas, deadly cancers that occur on non-hair-bearing skin, have distinct origins that underlie their invasive capability, we develop fate-tracing technologies of melanocyte stem cells in sweat glands (glandular McSCs) and in melanoma models in mice and compare the cellular dynamics with human melanoma. Herein, we report that glandular McSCs self-renew to expand their migratory progeny in response to genotoxic stress and trauma to generate invasive melanomas in mice that mimic human acral melanomas. The analysis of melanocytic lesions in human volar skin reveals that genetically unstable McSCs expand in sweat glands and in the surrounding epidermis in melanomas but not in nevi. The detection of such cell spreading dynamics provides an innovative method for an early differential diagnosis of acral melanomas from nevi.


Asunto(s)
Movimiento Celular , Melanoma/patología , Nevo/patología , Células Madre/patología , Animales , Movimiento Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Ciclina D1/metabolismo , Modelos Animales de Enfermedad , Epidermis/patología , Epidermis/efectos de la radiación , Amplificación de Genes , Inestabilidad Genómica/efectos de la radiación , Melanocitos/patología , Melanocitos/efectos de la radiación , Melanoma/diagnóstico , Ratones Endogámicos C57BL , Factores de Riesgo , Piel/patología , Piel/efectos de la radiación , Pigmentación de la Piel/efectos de la radiación , Glándulas Sudoríparas/efectos de la radiación , Rayos Ultravioleta
15.
Nat Aging ; 1(2): 190-204, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-37118636

RESUMEN

Hair follicles, mammalian mini-organs that grow hair, miniaturize during aging, leading to hair thinning and loss. Here we report that hair follicle stem cells (HFSCs) lose their regenerative capabilities during aging owing to the adoption of an atypical cell division program. Cell fate tracing and cell division axis analyses revealed that while HFSCs in young mice undergo typical symmetric and asymmetric cell divisions to regenerate hair follicles, upon aging or stress, they adopt an atypical 'stress-responsive' type of asymmetric cell division. This type of division is accompanied by the destabilization of hemidesmosomal protein COL17A1 and cell polarity protein aPKCλ and generates terminally differentiating epidermal cells instead of regenerating the hair follicle niche. With the repetition of these atypical divisions, HFSCs detach from the basal membrane causing their exhaustion, elimination and organ aging. The experimentally induced stabilization of COL17A1 rescued organ homeostasis through aPKCλ stabilization. These results demonstrate that distinct stem cell division programs may govern tissue and organ aging.


Asunto(s)
Folículo Piloso , Células Madre , Animales , Ratones , División Celular , Cabello , Mamíferos , Regeneración , Envejecimiento
16.
Nat Commun ; 12(1): 1826, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33758188

RESUMEN

Somatic mutations of ASXL1 are frequently detected in age-related clonal hematopoiesis (CH). However, how ASXL1 mutations drive CH remains elusive. Using knockin (KI) mice expressing a C-terminally truncated form of ASXL1-mutant (ASXL1-MT), we examined the influence of ASXL1-MT on physiological aging in hematopoietic stem cells (HSCs). HSCs expressing ASXL1-MT display competitive disadvantage after transplantation. Nevertheless, in genetic mosaic mouse model, they acquire clonal advantage during aging, recapitulating CH in humans. Mechanistically, ASXL1-MT cooperates with BAP1 to deubiquitinate and activate AKT. Overactive Akt/mTOR signaling induced by ASXL1-MT results in aberrant proliferation and dysfunction of HSCs associated with age-related accumulation of DNA damage. Treatment with an mTOR inhibitor rapamycin ameliorates aberrant expansion of the HSC compartment as well as dysregulated hematopoiesis in aged ASXL1-MT KI mice. Our findings suggest that ASXL1-MT provokes dysfunction of HSCs, whereas it confers clonal advantage on HSCs over time, leading to the development of CH.


Asunto(s)
Envejecimiento/genética , Hematopoyesis Clonal/genética , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Proteínas Represoras/genética , Serina-Treonina Quinasas TOR/metabolismo , Anciano , Envejecimiento/metabolismo , Envejecimiento/fisiología , Animales , Apoptosis/genética , Ciclo Celular/genética , Proliferación Celular/genética , Células Cultivadas , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , Técnicas de Sustitución del Gen , Hematopoyesis/fisiología , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/fisiología , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/genética , Ratones , Ratones Transgénicos , Mutación , Proteínas Proto-Oncogénicas c-akt/metabolismo , RNA-Seq , Especies Reactivas de Oxígeno/farmacología , Proteínas Represoras/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Sirolimus/farmacología , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación/efectos de los fármacos , Ubiquitinación/genética
17.
Regen Ther ; 14: 222-226, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32435674

RESUMEN

Impaired wound healing in critical limb ischemia (CLI) results from multiple factors that affect many cell types and their behavior. Epidermal keratinocytes and dermal fibroblasts play crucial roles in wound healing. However, it remains unclear whether these cell types irreversibly convert into a non-proliferative phenotype and are involved in impaired wound healing in CLI. Here, we demonstrate that skin keratinocytes and fibroblasts isolated from CLI patients maintain their proliferative potentials. Epidermal keratinocytes and dermal fibroblasts were isolated from the surrounding skin of foot wounds in CLI patients with diabetic nephropathy on hemodialysis, and their growth potentials were evaluated. It was found that keratinocytes from lower limbs and trunk of patients can give rise to proliferative growing colonies and can be serially passaged. Fibroblasts can also form colonies with a proliferative phenotype. These results indicate that skin keratinocytes and fibroblasts maintain their proliferative capacity even in diabetic and ischemic microenvironments and can be reactivated under appropriate conditions. This study provides strong evidence that the improvement of the cellular microenvironments is a promising therapeutic approach for CLI and these cells can also be used for potential sources of skin reconstruction.

18.
J Dermatol Sci ; 97(2): 143-151, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32001115

RESUMEN

BACKGROUND: NUAK2 is a critical gene that participates in the carcinogenesis of various types of cancers including melanomas. However, the expression patterns of NUAK2 in normal skin and in various types of skin tumors have not been fully elucidated to date. OBJECTIVES: To elucidate the distribution and localization of NUAK2 expression in normal skin, and characterize the expression patterns of NUAK2 and YAP in various types of skin tumors. METHODS: In this study, we characterized the expression of NUAK2 in tissues by developing a novel NUAK2-specific monoclonal antibody and using that to determine NUAK2 expression patterns in normal skin and in 155 cases of various types of skin tumors, including extramammary Paget's disease (EMPD), squamous cell carcinoma (SCC), Bowen's disease (BD), actinic keratosis (AK), basal cell carcinoma (BCC) and angiosarcoma (AS). Further, we analyzed the expression patterns of YAP and p-Akt in those tumors. RESULTS: Our analyses revealed that NUAK2 is expressed at high frequencies in EMPD, SCC, BD, AK, BCC and AS. The expression of p-Akt was positively correlated with tumor size in EMPD (P = 0.001). Importantly, the expression of NUAK2 was significantly correlated with YAP in SCC (P = 0.012) and in BD (P = 0.009). CONCLUSIONS: Our results suggest that the YAP-NUAK2 axis has critical importance in the tumorigenesis of SCC and BD, and that therapeutic modalities targeting the YAP-NUAK2 axis may be an effective approach against skin tumors including SCC and BD.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Carcinogénesis/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Neoplasias Cutáneas/patología , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/análisis , Adulto , Anciano , Anciano de 80 o más Años , Enfermedad de Bowen/patología , Carcinogénesis/genética , Carcinoma de Células Escamosas/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Proteínas Serina-Treonina Quinasas/análisis , Estudios Retrospectivos , Transducción de Señal/genética , Piel/metabolismo , Piel/patología , Factores de Transcripción/análisis , Proteínas Señalizadoras YAP
19.
FASEB J ; 22(4): 1155-68, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18039926

RESUMEN

Waardenburg syndrome (WS) is an inherited sensorineural deafness condition in humans caused by melanocyte deficiencies in the inner ear and forelock. Mutation of microphthalmia-associated transcription factor (MITF) is known to produce WS type IIA whereas mutations of either endothelin (EDN) or its receptor endothelin receptor B (EDNRB) produce WS type IV. However, a link between MITF haploinsufficiency and EDN signaling has not yet been established. Here we demonstrate mechanistic connections between EDN and MITF and their functional importance in melanocytes. Addition of EDN to cultured human melanocytes stimulated the phosphorylation of MITF in an EDNRB-dependent manner, which was completely abolished by mitogen-activated protein kinase kinase inhibition. The expression of melanocyte-specific MITF mRNA transcripts was markedly augmented after incubation with EDN1 and was followed by increased expression of MITF protein. Up-regulated expression of MITF was found to be mediated via both the mitogen-activated protein kinase-p90 ribosomal S6 kinase-cAMP response element-binding protein (CREB) and cAMP-protein kinase A-CREB pathways. In addition, EDNRB expression itself was seen to be dependent on MITF. The functional importance of these connections is illustrated by the ability of EDN to stimulate expression of melanocytic pigmentation and proliferation markers in an MITF-dependent fashion. Collectively these data provide mechanistic and epistatic links between MITF and EDN/EDNRB, critical melanocytic survival factors and WS genes.


Asunto(s)
Endotelinas/metabolismo , Factor de Transcripción Asociado a Microftalmía/metabolismo , Trastornos de la Pigmentación/metabolismo , Transducción de Señal , Síndrome de Waardenburg/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Epistasis Genética , Humanos , Melanocitos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación , Trastornos de la Pigmentación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA