Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Kidney Int ; 103(6): 1056-1062, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36750145

RESUMEN

Transient receptor potential canonical channels (TRPCs) are non-selective cationic channels that play a role in signal transduction, especially in G -protein-mediated signaling cascades. TRPC5 is expressed predominantly in the brain but also in the kidney. However, its role in kidney physiology and pathophysiology is controversial. Some studies have suggested that TRPC5 drives podocyte injury and proteinuria, particularly after small GTPase Rac1 activation to induce the trafficking of TRPC5 to the plasma membrane. Other studies using TRPC5 gain-of-function transgenic mice have questioned the pathogenic role of TRPC5 in podocytes. Here, we show that TRPC5 over-expression or inhibition does not ameliorate proteinuria induced by the expression of constitutively active Rac1 in podocytes. Additionally, single-cell patch-clamp studies did not detect functional TRPC5 channels in primary cultures of podocytes. Thus, we conclude that TRPC5 plays a role redundant to that of TRPC6 in podocytes and is unlikely to be a useful therapeutic target for podocytopathies.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Proteínas de Unión al GTP Monoméricas , Podocitos , Ratones , Animales , Podocitos/patología , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Proteínas de Unión al GTP Monoméricas/metabolismo , Canal Catiónico TRPC6/genética , Canal Catiónico TRPC6/metabolismo , Proteinuria/patología , Ratones Transgénicos , Factores de Transcripción/metabolismo
2.
Development ; 144(10): 1775-1786, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28442471

RESUMEN

The endometrium, which is of crucial importance for reproduction, undergoes dynamic cyclic tissue remodeling. Knowledge of its molecular and cellular regulation is poor, primarily owing to a lack of study models. Here, we have established a novel and promising organoid model from both mouse and human endometrium. Dissociated endometrial tissue, embedded in Matrigel under WNT-activating conditions, swiftly formed organoid structures that showed long-term expansion capacity, and reproduced the molecular and histological phenotype of the tissue's epithelium. The supplemented WNT level determined the type of mouse endometrial organoids obtained: high WNT yielded cystic organoids displaying a more differentiated phenotype than the dense organoids obtained in low WNT. The organoids phenocopied physiological responses of endometrial epithelium to hormones, including increased cell proliferation under estrogen and maturation upon progesterone. Moreover, the human endometrial organoids replicated the menstrual cycle under hormonal treatment at both the morpho-histological and molecular levels. Together, we established an organoid culture system for endometrium, reproducing tissue epithelium physiology and allowing long-term expansion. This novel model provides a powerful tool for studying mechanisms underlying the biology as well as the pathology of this key reproductive organ.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Proliferación Celular , Endometrio/citología , Endometrio/fisiología , Epitelio/fisiología , Organoides/citología , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Células Cultivadas , Células Epiteliales/citología , Células Epiteliales/fisiología , Femenino , Humanos , Ratones , Organoides/metabolismo , Fenotipo , Trombospondinas/genética , Trombospondinas/metabolismo , Proteína Wnt3A/genética , Proteína Wnt3A/metabolismo
3.
Proc Natl Acad Sci U S A ; 110(8): 3047-52, 2013 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-23382221

RESUMEN

Infection with the gastric bacterial pathogen Helicobacter pylori is typically contracted in early childhood and often persists for decades. The immunomodulatory properties of H. pylori that allow it to colonize humans persistently are believed to also account for H. pylori's protective effects against allergic and chronic inflammatory diseases. H. pylori infection efficiently reprograms dendritic cells (DCs) toward a tolerogenic phenotype and induces regulatory T cells (Tregs) with highly suppressive activity in models of allergen-induced asthma. We show here that two H. pylori virulence determinants, the γ-glutamyl transpeptidase GGT and the vacuolating cytotoxin VacA, contribute critically and nonredundantly to H. pylori's tolerizing effects on murine DCs in vitro and in vivo. The tolerance-promoting effects of both factors are independent of their described suppressive activity on T cells. Isogenic H. pylori mutants lacking either GGT or VacA are incapable of preventing LPS-induced DC maturation and fail to drive DC tolerization as assessed by induction of Treg properties in cocultured naive T cells. The Δggt and ΔvacA mutants colonize mice at significantly reduced levels, induce stronger T-helper 1 (Th1) and T-helper 17 (Th17) responses, and/or trigger more severe gastric pathology. Both factors promote the efficient induction of Tregs in vivo, and VacA is required to prevent allergen-induced asthma. The defects of the Δggt mutant in vitro and in vivo are phenocopied by pharmacological inhibition of the transpeptidase activity of GGT in all readouts. In conclusion, our results reveal the molecular players and mechanistic basis for H. pylori-induced immunomodulation, promoting persistent infection and conferring protection against allergic asthma.


Asunto(s)
Proteínas Bacterianas/metabolismo , Helicobacter pylori/metabolismo , Tolerancia Inmunológica , Estómago/microbiología , gamma-Glutamiltransferasa/metabolismo , Animales , Técnicas de Cocultivo , Helicobacter pylori/enzimología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
5.
J Crohns Colitis ; 12(2): 178-187, 2018 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-29029005

RESUMEN

BACKGROUND: Endoplasmic reticulum [ER] stress was shown to be pivotal in the pathogenesis of inflammatory bowel disease. Despite progress in inflammatory bowel disease [IBD] drug development, not more than one-third of patients achieve steroid-free remission and mucosal healing with current therapies. Furthermore, patient stratification tools for therapy selection are lacking. We aimed to identify and quantify epithelial ER stress in a patient-specific manner in an attempt towards personalised therapy. METHODS: A biopsy-derived intestinal epithelial cell culture system was developed and characterised. ER stress was induced by thapsigargin and quantified with a BiP enzyme-linked immunosorbent assay [ELISA] of cell lysates from 35 patients with known genotypes, who were grouped based on the number of IBD-associated ER stress and autophagy risk alleles. RESULTS: The epithelial character of the cells was confirmed by E-cadherin, ZO-1, and MUC2 staining and CK-18, CK-20, and LGR5 gene expression. Patients with three risk alleles had higher median epithelial BiP-induction [vs untreated] levels compared with patients with one or two risk alleles [p = 0.026 and 0.043, respectively]. When autophagy risk alleles were included and patients were stratified in genetic risk quartiles, patients in Q2, Q3, and Q4 had significantly higher ER stress [BiP] when compared with Q1 [p = 0.034, 0.040, and 0.034, respectively]. CONCLUSIONS: We developed and validated an ex vivo intestinal epithelial cell culture system and showed that patients with more ER stress and autophagy risk alleles have augmented epithelial ER stress responses. We thus presented a personalised approach whereby patient-specific defects can be identified, which in turn could help in selecting tailored therapies.


Asunto(s)
Autofagia/genética , Estrés del Retículo Endoplásmico/genética , Células Epiteliales/fisiología , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/patología , Adulto , Alelos , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/genética , Biopsia , Células Cultivadas , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Células Epiteliales/metabolismo , Femenino , Proteínas de Unión al GTP/genética , Genotipo , Proteínas de Choque Térmico/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Queratina-18/genética , Queratina-20/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Selección de Paciente , Medicina de Precisión , Proteínas Tirosina Fosfatasas no Receptoras/genética , ARN Mensajero/metabolismo , Receptores Acoplados a Proteínas G/genética , Tapsigargina/farmacología , Proteína 1 de Unión a la X-Box/genética
6.
United European Gastroenterol J ; 5(8): 1073-1081, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29238585

RESUMEN

Determining the exact pathogenesis of chronic gastrointestinal diseases remains difficult due to the complex in vivo environment. In this review we give an overview of the available epithelial cell culture systems developed to investigate pathophysiology of gastrointestinal diseases. Traditionally used two-dimensional (2D) immortalised (tumour) cell lines survive long-term, but are not genetically stable nor represent any human in particular. In contrast, primary cultures are patient unique, but short-lived. Three-dimensional (3D) organoid cultures resemble the crypt-villus domain and contain all cell lineages, are long-lived and genetically stable. Unfortunately, manipulation of the 3D organoid system is more challenging. Combining the 3D and 2D technologies may overcome limitations and offer the formation of monolayers on permeable membranes or flow-chambers. Determining the right model to use will depend on the pathology of interest and the focus of the research, defining which cell types need to be included in the model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA