Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Toxicol Appl Pharmacol ; 459: 116340, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36509231

RESUMEN

Several crops of agronomic interest depend on bees' pollination, and Apis mellifera L (Hymanoptera: Apidae) is the most studied direct pollinator. Nevertheless, the use of pesticides in agricultural environments is common, including fungicides. Studies that seek to evaluate the effects of fungicides on the hypopharyngeal glands of bees, the site of royal jelly synthesis, are lacking. Thus, this work aimed to evaluate the effect of field doses of fungicides (Captan SC® and Zignal®), alone or in mixture, on the hypopharyngeal glands and their subsequent effect on the strength of hives. The evaluations were carried out under field conditions in three hives per treatment. For a period of one month, bee hives received feed containing sugar syrup, pollen and 1.2 mL of Zignal® and 3 mL of Captan SC® in the isolated treatments and 4.2 mL in the mixture. The action of fungicides on the hypopharyngeal glands was determined by transmission electron microscopy analysis in bees 7 and 15 days old, collected in the hives one month after exposure to fungicides. The strength of the hives was evaluated for six months based on the number of frames with adult bees, open and closed brood, and stored food. The results indicate that fungicides promote early degeneration of the rough endoplasmic reticulum and morphological and structural changes in mitochondria. In addition, a reduction in adult population, open and closed breeding and food stock was observed. More pronounced damage occurred when bees were exposed to the mixture of fungicides. Overall, it can be concluded that the presence of fungicides in bee diets promotes harm accentuated over time and compromises the survival of hives. It will be worth estimating the fungicide effects of the queen development and on the colony heath.


Asunto(s)
Fungicidas Industriales , Himenópteros , Plaguicidas , Abejas , Animales , Fungicidas Industriales/toxicidad , Captano , Agricultura
2.
Genet Mol Biol ; 45(1): e20210193, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35103747

RESUMEN

Plinia phitrantha and P. cauliflora are Myrtaceae species with recognized horticultural and pharmacological potential. Nevertheless, studies on molecular genetics and the evolution of these species are absent in the literature. In this study, we report the complete plastid genome sequence of these species and an analysis of structural and evolutive features of the plastid genome within the tribe Myrteae. The two plastid genomes present the conserved quadripartite structure and are similar to already reported plastid genomes of Myrteae species concerning the size, number, and order of the genes. A total of 69-70 SSR loci, 353 single nucleotide polymorphisms, and 574 indels were identified in P. phitrantha and P. caulifora. Observed evolutive features of the plastid genomes support the development of programs for the conservation and breeding of Plinia. The phylogenomic analysis based on the complete plastid genome sequence of 15 Myrteae species presented a robust phylogenetic signal and evolutive traits of the tribe. Ten hotspots of nucleotide diversity were identified, evidence of purifying selection was observed in 27 genes, and relative conservation of the plastid genomes was confirmed for Myrteae. Altogether, the outcomes of the present study provide support for planning conservation, breeding, and biotechnological programs for Plinia species.

3.
Mycorrhiza ; 30(5): 611-621, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32556837

RESUMEN

The use of genetically modified (GM) plants has increased in recent decades, but there are uncertainties about their effects on soil microbial communities. Aiming to quantify root colonization and characterize arbuscular mycorrhizal fungi (AMF) communities associated with roots and rhizosphere soil of different maize genotypes, a field trial was carried out in Southern Brazil with three maize genotypes as follows: a GM hybrid (DKB 240 VTPRO), its non-modified isoline (DKB 240), and a landrace (Pixurum). Soil samples were collected to evaluate the occurrence of AMF during the growth of corn genotypes at sowing and V3 (vegetative), R1 (flowering), and R3 (grain formation) stages of the crop. The occurrence of AMF was determined by the morphological identification of spores, and by analyzing AMF community composition in soil and roots of maize, using PCR-DGGE. The GM genotype of maize promoted lower mycorrhizal colonization in the vegetative stage and had lower sporulation at grain development than the conventional hybrid and the landrace maize. Twenty AMF morphotypes were identified and 13 were associated with all maize genotypes. The genera Acaulospora, Glomus, and Dentiscutata had the largest numbers of species. There were no differences in AMF community composition due to maize genotypes or genetic modification, but crop phenological stages affected AMF communities associated with maize roots.


Asunto(s)
Micobioma , Micorrizas , Brasil , Raíces de Plantas , Microbiología del Suelo , Esporas Fúngicas , Zea mays
4.
Genet Mol Biol ; 43(2): e20180377, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32555941

RESUMEN

Plastomes are very informative structures for comparative phylogenetic and evolutionary analyses. We sequenced and analyzed the complete plastome of Campomanesia xanthocarpa and compared its gene order, structure, and evolutionary characteristics within Myrtaceae. Analyzing 48 species of Myrtaceae, we identified six genes representing 'hotspots' of variability within the plastomes (ycf2, atpA, rpoC2, pcbE, ndhH and rps16), and performed phylogenetic analyses based on: (i) the ycf2 gene, (ii) all the six genes identified as 'hotspots' of variability, and (iii) the genes identified as 'hotspots' of variability, except the ycf2 gene. The structure, gene order, and gene content of the C. xanthocarpa plastome are similar to other Myrtaceae species. Phylogenetic analyses revealed the ycf2 gene as a promissing region for barcoding within this family, having also a robust phylogenetic signal. The synonymous and nonsynonymous substitution rates and the Ka/Ks ratio revealed low values for the ycf2 gene among C. xanthocarpa and the other 47 analyzed species of Myrtaceae, with moderate purifying selection acting on this gene. The average nucleotide identity (ANI) analysis of the whole plastomes produced phylogenetic trees supporting the monophyly of three Myrtaceae tribes. The findings of this study provide support for planning conservation, breeding, and biotechnological programs for this species.

5.
Planta ; 249(2): 563-582, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30310983

RESUMEN

MAIN CONCLUSION: The plastome of B. orellana reveals specific evolutionary features, unique RNA editing sites, molecular markers and the position of Bixaceae within Malvales. Annatto (Bixa orellana L.) is a native species of tropical Americas with center of origin in Brazilian Amazonia. Its seeds accumulate the apocarotenoids, bixin and norbixin, which are only found in high content in this species. The seeds of B. orellana are commercially valued by the food industry because its dyes replace synthetic ones from the market due to potential carcinogenic risks. The increasing consumption of B. orellana seeds for dye extraction makes necessary the increase of productivity, which is possible accessing the genetic basis and searching for elite genotypes. The identification and characterization of molecular markers are essential to analyse the genetic diversity of natural populations and to establish suitable strategies for conservation, domestication, germplasm characterization and genetic breeding. Therefore, we sequenced and characterized in detail the plastome of B. orellana. The plastome of B. orellana is a circular DNA molecule of 159,708 bp with a typical quadripartite structure and 112 unique genes. Additionally, a total of 312 SSR loci were identified in the plastome of B. orellana. Moreover, we predicted in 23 genes a total of 57 RNA-editing sites of which 11 are unique for B. orellana. Furthermore, our plastid phylogenomic analyses, using the plastome sequences available in the plastid database belonging to species of order Malvales, indicate a closed relationship between Bixaceae and Malvaceae, which formed a sister group to Thymelaeaceae. Finally, our study provided useful data to be employed in several genetic and biotechnological approaches in B. orellana and related species of the family Bixaceae.


Asunto(s)
Bixaceae/genética , Plastidios/genética , Bixaceae/metabolismo , Colorantes/metabolismo , Genes de Plantas/genética , Malvaceae/genética , Filogenia , Edición de ARN/genética , Análisis de Secuencia de ADN , Thymelaeaceae/genética
6.
Plant Cell Rep ; 37(2): 307-328, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29086003

RESUMEN

KEY MESSAGE: The plastome of Linum usitatissimum was completely sequenced allowing analyses of evolution of genome structure, RNA editing sites, molecular markers, and indicating the position of Linaceae within Malpighiales. Flax (Linum usitatissimum L.) is an economically important crop used as food, feed, and industrial feedstock. It belongs to the Linaceae family, which is noted by high morphological and ecological diversity. Here, we reported the complete sequence of flax plastome, the first species within Linaceae family to have the plastome sequenced, assembled and characterized in detail. The plastome of flax is a circular DNA molecule of 156,721 bp with a typical quadripartite structure including two IRs of 31,990 bp separating the LSC of 81,767 bp and the SSC of 10,974 bp. It shows two expansion events from IRB to LSC and from IRB to SSC, and a contraction event in the IRA-LSC junction, which changed significantly the size and the gene content of LSC, SSC and IRs. We identified 109 unique genes and 2 pseudogenes (rpl23 and ndhF). The plastome lost the conserved introns of clpP gene and the complete sequence of rps16 gene. The clpP, ycf1, and ycf2 genes show high nucleotide and aminoacid divergence, but they still possibly retain the functionality. Moreover, we also identified 176 SSRs, 20 tandem repeats, and 39 dispersed repeats. We predicted in 18 genes a total of 53 RNA editing sites of which 32 were not found before in other species. The phylogenetic inference based on 63 plastid protein-coding genes of 38 taxa supports three major clades within Malpighiales order. One of these clades has flax (Linaceae) sister to Chrysobalanaceae family, differing from earlier studies that included Linaceae into the euphorbioid clade.


Asunto(s)
Lino/genética , Genoma de Plastidios/genética , Linaceae/genética , Plastidios/genética , Edición de ARN , Sitios de Unión/genética , Proteínas de Cloroplastos/genética , ADN de Cloroplastos/química , ADN de Cloroplastos/genética , Evolución Molecular , Genes del Cloroplasto/genética , Linaceae/clasificación , Filogenia , Análisis de Secuencia de ADN
7.
Genetica ; 145(2): 163-174, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28185042

RESUMEN

Given their distribution, importance, and richness, Myrtaceae species comprise a model system for studying the evolution of tropical plant diversity. In addition, chloroplast (cp) genome sequencing is an efficient tool for phylogenetic relationship studies. Feijoa [Acca sellowiana (O. Berg) Burret; CN: pineapple-guava] is a Myrtaceae species that occurs naturally in southern Brazil and northern Uruguay. Feijoa is known for its exquisite perfume and flavorful fruits, pharmacological properties, ornamental value and increasing economic relevance. In the present work, we reported the complete cp genome of feijoa. The feijoa cp genome is a circular molecule of 159,370 bp with a quadripartite structure containing two single copy regions, a Large Single Copy region (LSC 88,028 bp) and a Small Single Copy region (SSC 18,598 bp) separated by Inverted Repeat regions (IRs 26,372 bp). The genome structure, gene order, GC content and codon usage are similar to those of typical angiosperm cp genomes. When compared to other cp genome sequences of Myrtaceae, feijoa showed closest relationship with pitanga (Eugenia uniflora L.). Furthermore, a comparison of pitanga synonymous (Ks) and nonsynonymous (Ka) substitution rates revealed extremely low values. Maximum Likelihood and Bayesian Inference analyses produced phylogenomic trees identical in topology. These trees supported monophyly of three Myrtoideae clades.


Asunto(s)
ADN Circular/genética , Feijoa/genética , Genoma del Cloroplasto/genética , Myrtaceae/genética , Composición de Base/genética , Teorema de Bayes , Brasil , Codón/genética , ADN Circular/química , Feijoa/clasificación , Orden Génico , Genes del Cloroplasto/genética , Cadenas de Markov , Método de Montecarlo , Mutación , Myrtaceae/clasificación , Filogenia , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
9.
J Toxicol Environ Health A ; 78(15): 993-1007, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26262442

RESUMEN

Insect resistance is the second most common trait globally in cultivated genetically modified (GM) plants. Resistance is usually obtained by introducing into the plant's genome genes from the bacterium Bacillus thuringiensis (Bt) coding for insecticidal proteins (Cry proteins or toxins) that target insect pests. The aim of this study was to examine the hypothesis that a chronic, high-dose dietary exposure to leaves of a Bt-maize hybrid (GM event MON810, expressing a transgenic or recombinant Cry1Ab toxin), exerted no adverse effects on fitness parameters of the aquatic nontarget organism Daphnia magna (water flea) when compared to an identical control diet based on leaves of the non-GM near-isoline. Cry1Ab was immunologically detected and quantified in GM maize leaf material used for Daphnia feed. A 69-kD protein near Bt's active core-toxin size and a 34-kD protein were identified. The D. magna bioassay showed a resource allocation to production of resting eggs and early fecundity in D. magna fed GM maize, with adverse effects for body size and fecundity later in life. This is the first study to examine GM-plant leaf material in the D. magna model, and provides of negative fitness effects of a MON810 maize hybrid in a nontarget model organism under chronic, high dietary exposure. Based upon these results, it is postulated that the observed transgenic proteins exert a nontarget effect in D. magna and/or unintended changes were produced in the maize genome/metabolome by the transformation process, producing a nutritional difference between GM-maize and non-GM near-isoline.


Asunto(s)
Daphnia/efectos de los fármacos , Insecticidas/toxicidad , Plantas Modificadas Genéticamente/toxicidad , Zea mays/toxicidad , Animales , Bacillus thuringiensis/fisiología , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/genética , Proteínas Bacterianas/toxicidad , Dieta/efectos adversos , Endotoxinas/genética , Endotoxinas/toxicidad , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/toxicidad , Hojas de la Planta/química , Plantas Modificadas Genéticamente/química , Plantas Modificadas Genéticamente/genética , Zea mays/química , Zea mays/genética
10.
BMC Plant Biol ; 14: 346, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25490888

RESUMEN

BACKGROUND: The safe use of stacked transgenic crops in agriculture requires their environmental and health risk assessment, through which unintended adverse effects are examined prior to their release in the environment. Molecular profiling techniques can be considered useful tools to address emerging biosafety gaps. Here we report the first results of a proteomic profiling coupled to transgene transcript expression analysis of a stacked commercial maize hybrid containing insecticidal and herbicide tolerant traits in comparison to the single event hybrids in the same genetic background. RESULTS: Our results show that stacked genetically modified (GM) genotypes were clustered together and distant from other genotypes analyzed by PCA. Twenty-two proteins were shown to be differentially modulated in stacked and single GM events versus non-GM isogenic maize and a landrace variety with Brazilian genetic background. Enrichment analysis of these proteins provided insight into two major metabolic pathway alterations: energy/carbohydrate and detoxification metabolism. Furthermore, stacked transgene transcript levels had a significant reduction of about 34% when compared to single event hybrid varieties. CONCLUSIONS: Stacking two transgenic inserts into the genome of one GM maize hybrid variety may impact the overall expression of endogenous genes. Observed protein changes differ significantly from those of single event lines and a conventional counterpart. Some of the protein modulation did not fall within the range of the natural variability for the landrace used in this study. Higher expression levels of proteins related to the energy/carbohydrate metabolism suggest that the energetic homeostasis in stacked versus single event hybrid varieties also differ. Upcoming global databases on outputs from "omics" analyses could provide a highly desirable benchmark for the safety assessment of stacked transgenic crop events. Accordingly, further studies should be conducted in order to address the biological relevance and implications of such changes.


Asunto(s)
Proteínas Bacterianas/genética , Regulación de la Expresión Génica de las Plantas , Resistencia a los Herbicidas , Resistencia a los Insecticidas , Proteínas de Plantas/genética , Proteoma , Zea mays/genética , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/metabolismo , Electroforesis en Gel Bidimensional , Endotoxinas/genética , Endotoxinas/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Herbicidas/metabolismo , Insecticidas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transgenes , Zea mays/metabolismo
11.
Proteome Sci ; 11(1): 46, 2013 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-24304660

RESUMEN

BACKGROUND: Profiling technologies allow the simultaneous measurement and comparison of thousands of cell components without prior knowledge of their identity. In the present study, we used two-dimensional gel electrophoresis combined with mass spectrometry to evaluate protein expression of Brazilian genetically modified maize hybrid grown under different agroecosystems conditions. To this effect, leaf samples were subjected to comparative analysis using the near-isogenic non-GM hybrid as the comparator. RESULTS: In the first stage of the analysis, the main sources of variation in the dataset were identified by using Principal Components Analysis which correlated most of the variation to the different agroecosystems conditions. Comparative analysis within each field revealed a total of thirty two differentially expressed proteins between GM and non-GM samples that were identified and their molecular functions were mainly assigned to carbohydrate and energy metabolism, genetic information processing and stress response. CONCLUSIONS: To the best of our knowledge this study represents the first evidence of protein identities with differentially expressed isoforms in Brazilian MON810 genetic background hybrid grown under field conditions. As global databases on outputs from "omics" analysis become available, these could provide a highly desirable benchmark for safety assessments.

12.
Foods ; 12(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38231759

RESUMEN

The term new genomic techniques (NGTs) is an umbrella term used to describe a variety of techniques that can alter the genetic material of an organism and that have emerged or have been developed since 2001, when the existing genetically modified organism (GMO) legislation was adopted. The analytical framework used to detect GMOs in Europe is an established single harmonized procedure that is mandatory for the authorization of GM food and feed, thus generating a reliable, transparent, and effective labeling scheme for GMO products. However, NGT products can challenge the implementation and enforcement of the current regulatory system in the EU, relating in particular to the detection of NGT products that contain no foreign genetic material. Consequently, the current detection methods might fail to meet the minimum performance requirements. Although existing detection methods may be able to detect and quantify even small alterations in the genome, this does not necessarily confirm the distinction between products resulting from NGTs subject to the GMO legislation and other products. Therefore, this study provides a stepwise approach for the in silico prediction of PCR systems' specificity by testing a bioinformatics pipeline for amplicon and primer set searches in current genomic databases. In addition, it also empirically tested the PCR system evaluated during the in silico analysis. Two mutant genotypes produced by CRISPR-Cas9 in Arabidopsis thaliana were used as a case study. Overall, our results demonstrate that the single PCR system developed for identifying a nucleotide insertion in the grf1-3 genotype has multiple matches in the databases, which do not enable the discrimination of this mutated event. Empirical assays further support this demonstration. In contrast, the second mutated genotype, grf8-61, which contains a -3 bp deletion, did not yield any matches in the sequence variant database. However, the primer sequences were not efficient during the empirical assay. Our approach represents a first step in decision making for analytical methods for NGT detection, identification, and quantification in light of the European labeling regulations.

14.
Chemosphere ; 292: 133334, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34958784

RESUMEN

Royal jelly (RJ) is rich in protective elements associated with collective immune defenses in the hive of Apis mellifera. Exposure of bees to glyphosate-based herbicides causes ultrastructural changes in the hypopharyngeal glands and a reduction in the production of RJ. However, the effects of glyphosate-based herbicides on the protein composition of RJ and consequences for the hive are unknown. Thus, we performed proteomic profiling of royal jelly produced in hives of A. mellifera exposed to food containing 1,5 µL of Roundup® (2.16 mg. g-1 of glyphosate). The production of RJ was carried out in six hives, following the method of artificial production of queens. The combs containing 80 grafting cells were introduced into the hives, and the collection of royal jelly was performed after 72 h. Two treatments were determined based on hive feeding and the hive as the experimental unit: Control and "Roundup®". Royal jelly from the Roundup® treatment hives was compared to the Control hives. Proteins with differences in expression were identified by mass spectrometry. Only the proteins present in all three biological replicates were considered in the differential abundance analysis, using Student's t-test (p-value < 0.05, two-tailed). Hives that received food containing Roundup®, analysis showed alterations in protein profile in the RJ produced therein. In total, 24 proteins were identified, and the accumulation of Major royal jelly protein 3 (MRJP3) was downregulated, showing a significant reduction in hives exposed to food containing Roundup® in relation to control hives (t = 0.0017). MRJP3 acts analogously to polyclonal antigen-antibody reactions, performing functions related to immunity in bees of different ages and castes. To the best of our knowledge, this is the first study to demonstrate changes in the proteomic profile of RJ caused by glyphosate-based herbicides, indicating its negative effects on the nutrition and social immunity of bees.


Asunto(s)
Herbicidas , Animales , Abejas , Ácidos Grasos , Glicina/análogos & derivados , Herbicidas/toxicidad , Proteínas de Insectos , Proteómica , Glifosato
15.
Front Plant Sci ; 13: 939997, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35903231

RESUMEN

CRISPR/Cas9-based ribonucleoprotein (RNP)-mediated system has the property of minimizing the effects related to the unwanted introduction of vector DNA and random integration of recombinant DNA. Here, we describe a platform based on the direct delivery of Cas9 RNPs to soybean protoplasts for genetic screens in knockout gene-edited soybean lines without the transfection of DNA vectors. The platform is based on the isolation of soybean protoplasts and delivery of Cas RNP complex. To empirically test our platform, we have chosen a model gene from the soybean genetic toolbox. We have used five different guide RNA (gRNA) sequences that targeted the constitutive pathogen response 5 (CPR5) gene associated with the growth of trichomes in soybean. In addition, efficient protoplast transformation, concentration, and ratio of Cas9 and gRNAs were optimized for soybean for the first time. Targeted mutagenesis insertion and deletion frequency and sequences were analyzed using both Sanger and targeted deep sequencing strategies. We were able to identify different mutation patterns within insertions and deletions (InDels) between + 5 nt and -30 bp and mutation frequency ranging from 4.2 to 18.1% in the GmCPR5 locus. Our results showed that DNA-free delivery of Cas9 complexes to protoplasts is a useful approach to perform early-stage genetic screens and anticipated analysis of Cas9 activity in soybeans.

16.
Front Toxicol ; 3: 655968, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35295118

RESUMEN

Profiling technologies, such as proteomics, allow the simultaneous measurement and comparison of thousands of plant components without prior knowledge of their identity. The combination of these non-targeted methods facilitates a more comprehensive approach than targeted methods and thus provides additional opportunities to identify genotypic changes resulting from genetic modification, including new allergens or toxins. The purpose of this study was to investigate unintended changes in GM Bt maize grown in South Africa. In the present study, we used bi-dimensional gel electrophoresis based on fluorescence staining, coupled with mass spectrometry in order to compare the proteome of the field-grown transgenic hybrid (MON810) and its near-isogenic counterpart. Proteomic data showed that energy metabolism and redox homeostasis were unequally modulated in GM Bt and non-GM maize variety samples. In addition, a potential allergenic protein-pathogenesis related protein -1 has been identified in our sample set. Our data shows that the GM variety is not substantially equivalent to its non-transgenic near-isogenic variety and further studies should be conducted in order to address the biological relevance and the potential risks of such changes. These finding highlight the suitability of unbiased profiling approaches to complement current GMO risk assessment practices worldwide.

17.
Cien Saude Colet ; 26(12): 6235-6246, 2021 Dec.
Artículo en Portugués, Inglés | MEDLINE | ID: mdl-34910013

RESUMEN

Given the uncertainty surrounding the safety of genetically modified organisms (GMOs), the precautionary principle and constitution provide that consumers should have the right to access adequate information on the presence of transgenics through food labelling. This article discusses the implications of proposed modifications to GM food labelling in Brazil. Current labelling legislation and the government agencies involved in labelling do not guarantee that food products not bearing GMO labels are free of transgenics. The approval of Chamber of Deputies Bill No. 34/2015 goes against the Consumer Protection Code by undermining consumer autonomy and choice. In addition, it is likely to weaken the country's biosurveillance capabilities to identify and seize products that have a harmful effect on the health of humans, animals and the environment. The proposed changes constitute a retrograde step in the regulation of food labelling in Brazil and violate the individual and collective rights enshrined in the Federal Constitution, Consumer Protection Code, and international agreements signed by Brazil.


Diante da existência de incertezas científicas em relação à segurança dos transgênicos para a saúde humana e considerando o Princípio da Precaução e preceitos constitucionais em vigor, o consumidor deve ter o direito de ser informado de maneira adequada sobre a presença de transgênicos nos alimentos, por meio da rotulagem. Este ensaio tem por objetivo apresentar as implicações acerca da nova proposta de rotulagem de transgênicos no Brasil. A atual legislação brasileira de rotulagem de alimentos transgênicos e agências governamentais envolvidas não garantem que os produtos não identificados como tal sejam livres de transgênicos. A aprovação do PLC nº 34/2015 contraria dispositivos do Código de Defesa do Consumidor, indo na contramão da escolha e autonomia do consumidor. Além disso, a biovigilância será mais ainda inepta a executar uma atividade de identificação e apreensão de produtos que venham causar danos à saúde humana, animal e ao meio ambiente. A mudança proposta representa um retrocesso na regulamentação de rotulagem de transgênicos vigente no Brasil e um desrespeito aos direitos individuais e coletivos previstos na Constituição Federal, no Código de Defesa do Consumidor e em acordos internacionais assinados pelo Brasil.


Asunto(s)
Alimentos Modificados Genéticamente , Animales , Brasil , Etiquetado de Alimentos , Humanos
18.
Plants (Basel) ; 10(11)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34834744

RESUMEN

While some genetically modified (GM) plants have been targeted to confer tolerance to abiotic stressors, transgenes are impacted by abiotic stressors, causing adverse effects on plant physiology and yield. However, routine safety analyses do not assess the response of GM plants under different environmental stress conditions. In the context of climate change, the combination of abiotic stressors is a reality in agroecosystems. Therefore, the aim of this study was to analyze the metabolic cost by assessing the proteomic profiles of GM soybean varieties under glyphosate spraying and water deficit conditions compared to their non-transgenic conventional counterparts. We found evidence of cumulative adverse effects that resulted in the reduction of enzymes involved in carbohydrate metabolism, along with the expression of amino acids and nitrogen metabolic enzymes. Ribosomal metabolism was significantly enriched, particularly the protein families associated with ribosomal complexes L5 and L18. The interaction network map showed that the affected module representing the ribosome pathway interacts strongly with other important proteins, such as the chloro-plastic gamma ATP synthase subunit. Combined, these findings provide clear evidence for increasing the metabolic costs of GM soybean plants in response to the accumulation of stress factors. First, alterations in the ribosome pathway indicate that the GM plant itself carries a metabolic burden associated with the biosynthesis of proteins as effects of genetic transformation. GM plants also showed an imbalance in energy demand and production under controlled conditions, which was increased under drought conditions. Identifying the consequences of altered metabolism related to the interaction between plant transgene stress responses allows us to understand the possible effects on the ecology and evolution of plants in the medium and long term and the potential interactions with other organisms when these organisms are released in the environment.

19.
Genes (Basel) ; 11(9)2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32887261

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology allows the modification of DNA sequences in vivo at the location of interest. Although CRISPR-Cas9 can produce genomic changes that do not require DNA vector carriers, the use of transgenesis for the stable integration of DNA coding for gene-editing tools into plant genomes is still the most used approach. However, it can generate unintended transgenic integrations, while Cas9 prolonged-expression can increase cleavage at off-target sites. In addition, the selection of genetically modified cells from millions of treated ones, especially plant cells, is still challenging. In a protoplast system, previous studies claimed that such pitfalls would be averted by delivering pre-assembled ribonucleoprotein complexes (RNPs) composed of purified recombinant Cas9 enzyme and in vitro transcribed guide RNA (gRNA) molecules. We, therefore, aimed to develop the first DNA-free protocol for gene-editing in maize and introduced RNPs into their protoplasts with polyethylene glycol (PEG) 4000. We performed an effective transformation of maize protoplasts using different gRNAs sequences targeting the inositol phosphate kinase gene, and by applying two different exposure times to RNPs. Using a low-cost Sanger sequencing protocol, we observed an efficiency rate of 0.85 up to 5.85%, which is equivalent to DNA-free protocols used in other plant species. A positive correlation was displayed between the exposure time and mutation frequency. The mutation frequency was gRNA sequence- and exposure time-dependent. In the present study, we demonstrated that the suitability of RNP transfection was proven as an effective screening platform for gene-editing in maize. This efficient and relatively easy assay method for the selection of gRNA suitable for the editing of the gene of interest will be highly useful for genome editing in maize, since the genome size and GC-content are large and high in the maize genome, respectively. Nevertheless, the large amplitude of mutations at the target site require scrutiny when checking mutations at off-target sites and potential safety concerns.


Asunto(s)
Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Polietilenglicoles/química , Ribonucleoproteínas/genética , Zea mays/genética , Edición Génica/métodos , Genoma de Planta/genética , Células Vegetales/fisiología , Protoplastos/fisiología , ARN Guía de Kinetoplastida/genética , Zea mays/fisiología
20.
Hist Cienc Saude Manguinhos ; 16(3): 669-81, 2009.
Artículo en Portugués | MEDLINE | ID: mdl-20614670

RESUMEN

Based on a bibliographic review, the article identifies and offers a critical analysis of scientific production by the public health field in Brazil on genetically modified organisms and food (in)security. Of the 716 articles found on the portals of the Scientific Electronic Library Online (SciELO) and the Coordinating Agency for the Development of Higher Education (Capes), only 8 address the food security of transgenic products, primarily in terms of risk exposure and the uncertainties about how these products impact health and the environment. The main conclusion involves the fact that the eight analyzed articles do not speak to the question of the security but rather the insecurity of genetically modified foods.


Asunto(s)
Alimentos , Plantas Modificadas Genéticamente , Seguridad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA