Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(14): e2320442121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38536748

RESUMEN

The ability to selectively bind to antigenic peptides and secrete effector molecules can define rare and low-affinity populations of cells with therapeutic potential in emerging T cell receptor (TCR) immunotherapies. We leverage cavity-containing hydrogel microparticles, called nanovials, each coated with peptide-major histocompatibility complex (pMHC) monomers to isolate antigen-reactive T cells. T cells are captured and activated by pMHCs inducing the secretion of effector molecules including IFN-γ and granzyme B that are accumulated on nanovials, allowing sorting based on both binding and function. The TCRs of sorted cells on nanovials are sequenced, recovering paired αß-chains using microfluidic emulsion-based single-cell sequencing. By labeling nanovials having different pMHCs with unique oligonucleotide-barcodes and secretions with oligo-barcoded detection antibodies, we could accurately link TCR sequences to specific targets and rank each TCR based on the corresponding cell's secretion level. Using the technique, we identified an expanded repertoire of functional TCRs targeting viral antigens with high specificity and found rare TCRs with activity against cancer-specific splicing-enhanced epitopes.


Asunto(s)
Receptores de Antígenos de Linfocitos T , Linfocitos T , Péptidos/química , Antígenos de Histocompatibilidad/química , Antígenos
2.
Proc Natl Acad Sci U S A ; 120(47): e2312374120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37963244

RESUMEN

CAR (chimeric antigen receptor) T cell therapy has shown clinical success in treating hematological malignancies, but its treatment of solid tumors has been limited. One major challenge is on-target, off-tumor toxicity, where CAR T cells also damage normal tissues that express the targeted antigen. To reduce this detrimental side-effect, Boolean-logic gates like AND-NOT gates have utilized an inhibitory CAR (iCAR) to specifically curb CAR T cell activity at selected nonmalignant tissue sites. However, the strategy seems inefficient, requiring high levels of iCAR and its target antigen for inhibition. Using a TROP2-targeting iCAR with a single PD1 inhibitory domain to inhibit a CEACAM5-targeting CAR (CEACAR), we observed that the inefficiency was due to a kinetic delay in iCAR inhibition of cytotoxicity. To improve iCAR efficiency, we modified three features of the iCAR-the avidity, the affinity, and the intracellular signaling domains. Increasing the avidity but not the affinity of the iCAR led to significant reductions in the delay. iCARs containing twelve different inhibitory signaling domains were screened for improved inhibition, and three domains (BTLA, LAIR-1, and SIGLEC-9) each suppressed CAR T function but did not enhance inhibitory kinetics. When inhibitory domains of LAIR-1 or SIGLEC-9 were combined with PD-1 into a single dual-inhibitory domain iCAR (DiCARs) and tested with the CEACAR, inhibition efficiency improved as evidenced by a significant reduction in the inhibitory delay. These data indicate that a delicate balance between CAR and iCAR signaling strength and kinetics must be achieved to regulate AND-NOT gate CAR T cell selectivity.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/genética , Linfocitos T , Complejo Hierro-Dextran , Inmunoterapia Adoptiva , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico
3.
Proc Natl Acad Sci U S A ; 120(21): e2221116120, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37192158

RESUMEN

Alternative splicing (AS) is prevalent in cancer, generating an extensive but largely unexplored repertoire of novel immunotherapy targets. We describe Isoform peptides from RNA splicing for Immunotherapy target Screening (IRIS), a computational platform capable of discovering AS-derived tumor antigens (TAs) for T cell receptor (TCR) and chimeric antigen receptor T cell (CAR-T) therapies. IRIS leverages large-scale tumor and normal transcriptome data and incorporates multiple screening approaches to discover AS-derived TAs with tumor-associated or tumor-specific expression. In a proof-of-concept analysis integrating transcriptomics and immunopeptidomics data, we showed that hundreds of IRIS-predicted TCR targets are presented by human leukocyte antigen (HLA) molecules. We applied IRIS to RNA-seq data of neuroendocrine prostate cancer (NEPC). From 2,939 NEPC-associated AS events, IRIS predicted 1,651 epitopes from 808 events as potential TCR targets for two common HLA types (A*02:01 and A*03:01). A more stringent screening test prioritized 48 epitopes from 20 events with "neoantigen-like" NEPC-specific expression. Predicted epitopes are often encoded by microexons of ≤30 nucleotides. To validate the immunogenicity and T cell recognition of IRIS-predicted TCR epitopes, we performed in vitro T cell priming in combination with single-cell TCR sequencing. Seven TCRs transduced into human peripheral blood mononuclear cells (PBMCs) showed high activity against individual IRIS-predicted epitopes, providing strong evidence of isolated TCRs reactive to AS-derived peptides. One selected TCR showed efficient cytotoxicity against target cells expressing the target peptide. Our study illustrates the contribution of AS to the TA repertoire of cancer cells and demonstrates the utility of IRIS for discovering AS-derived TAs and expanding cancer immunotherapies.


Asunto(s)
Neoplasias , Precursores del ARN , Masculino , Humanos , Precursores del ARN/metabolismo , Empalme Alternativo , Leucocitos Mononucleares/metabolismo , Receptores de Antígenos de Linfocitos T , Epítopos de Linfocito T , Inmunoterapia , Antígenos de Neoplasias , Péptidos/metabolismo , Neoplasias/genética , Neoplasias/terapia
4.
Proc Natl Acad Sci U S A ; 119(31): e2203410119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35878026

RESUMEN

Tissue-specific antigens can serve as targets for adoptive T cell transfer-based cancer immunotherapy. Recognition of tumor by T cells is mediated by interaction between peptide-major histocompatibility complexes (pMHCs) and T cell receptors (TCRs). Revealing the identity of peptides bound to MHC is critical in discovering cognate TCRs and predicting potential toxicity. We performed multimodal immunopeptidomic analyses for human prostatic acid phosphatase (PAP), a well-recognized tissue antigen. Three physical methods, including mild acid elution, coimmunoprecipitation, and secreted MHC precipitation, were used to capture a thorough signature of PAP on HLA-A*02:01. Eleven PAP peptides that are potentially A*02:01-restricted were identified, including five predicted strong binders by NetMHCpan 4.0. Peripheral blood mononuclear cells (PBMCs) from more than 20 healthy donors were screened with the PAP peptides. Seven cognate TCRs were isolated which can recognize three distinct epitopes when expressed in PBMCs. One TCR shows reactivity toward cell lines expressing both full-length PAP and HLA-A*02:01. Our results show that a combined multimodal immunopeptidomic approach is productive in revealing target peptides and defining the cloned TCR sequences reactive with prostatic acid phosphatase epitopes.


Asunto(s)
Fosfatasa Ácida , Antígenos de Neoplasias , Receptores de Antígenos de Linfocitos T , Fosfatasa Ácida/metabolismo , Antígenos de Neoplasias/metabolismo , Epítopos , Antígenos HLA-A/metabolismo , Antígeno HLA-A2 , Humanos , Leucocitos Mononucleares , Neoplasias/inmunología , Péptidos , Receptores de Antígenos de Linfocitos T/metabolismo
5.
bioRxiv ; 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36711524

RESUMEN

The ability to selectively bind to antigenic peptides and secrete cytokines can define populations of cells with therapeutic potential in emerging T cell receptor (TCR) immunotherapies. We leverage cavity-containing hydrogel microparticles, called nanovials, each coated with millions of peptide-major histocompatibility complex (pMHC) monomers to isolate antigen-reactive T cells. T cells are captured and activated by pMHCs and secrete cytokines on nanovials, allowing sorting based on both affinity and function. The TCRs of sorted cells on nanovials are sequenced, recovering paired αß-chains using microfluidic emulsion-based single-cell sequencing. By labeling nanovials having different pMHCs with unique oligonucleotide-barcodes we could link TCR sequence to targets with 100% accuracy. We identified with high specificity an expanded repertoire of functional TCRs targeting viral antigens compared to standard techniques.

6.
Cancer Cell ; 41(12): 2066-2082.e9, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-37995683

RESUMEN

Trans-differentiation from an adenocarcinoma to a small cell neuroendocrine state is associated with therapy resistance in multiple cancer types. To gain insight into the underlying molecular events of the trans-differentiation, we perform a multi-omics time course analysis of a pan-small cell neuroendocrine cancer model (termed PARCB), a forward genetic transformation using human prostate basal cells and identify a shared developmental, arc-like, and entropy-high trajectory among all transformation model replicates. Further mapping with single cell resolution reveals two distinct lineages defined by mutually exclusive expression of ASCL1 or ASCL2. Temporal regulation by groups of transcription factors across developmental stages reveals that cellular reprogramming precedes the induction of neuronal programs. TFAP4 and ASCL1/2 feedback are identified as potential regulators of ASCL1 and ASCL2 expression. Our study provides temporal transcriptional patterns and uncovers pan-tissue parallels between prostate and lung cancers, as well as connections to normal neuroendocrine cell states.


Asunto(s)
Carcinoma de Células Pequeñas , Neoplasias Pulmonares , Neoplasias de la Próstata , Carcinoma Pulmonar de Células Pequeñas , Masculino , Humanos , Neoplasias Pulmonares/genética , Carcinoma de Células Pequeñas/genética , Factores de Transcripción/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Transdiferenciación Celular/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Carcinoma Pulmonar de Células Pequeñas/genética
7.
Cell Rep ; 37(13): 110167, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34919800

RESUMEN

Cross-reactivity and direct killing of target cells remain underexplored for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-specific CD8+ T cells. Isolation of T cell receptors (TCRs) and overexpression in allogeneic cells allows for extensive T cell reactivity profiling. We identify SARS-CoV-2 RNA-dependent RNA polymerase (RdRp/NSP12) as highly conserved, likely due to its critical role in the virus life cycle. We perform single-cell TCRαß sequencing in human leukocyte antigen (HLA)-A∗02:01-restricted, RdRp-specific T cells from SARS-CoV-2-unexposed individuals. Human T cells expressing these TCRαß constructs kill target cell lines engineered to express full-length RdRp. Three TCR constructs recognize homologous epitopes from common cold coronaviruses, indicating CD8+ T cells can recognize evolutionarily diverse coronaviruses. Analysis of individual TCR clones may help define vaccine epitopes that can induce long-term immunity against SARS-CoV-2 and other coronaviruses.


Asunto(s)
ARN Polimerasa Dependiente de ARN de Coronavirus/inmunología , Antígeno HLA-A2/inmunología , SARS-CoV-2/inmunología , Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , COVID-19/terapia , Técnicas de Cultivo de Célula , Reacciones Cruzadas/inmunología , Epítopos de Linfocito T/inmunología , Antígenos HLA-A/inmunología , Antígeno HLA-A2/genética , Humanos , Epítopos Inmunodominantes/inmunología , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/virología , ARN Viral/genética , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/inmunología
8.
Eur J Pharm Sci ; 137: 104973, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31254644

RESUMEN

Strict microbial control is required in pharmaceutical manufacturing facilities, for which environmental microbial monitoring is fundamental. Appropriate microbial control is based on understanding the abundance and community structure of the microbes in the target environment, but most microbes are not culturable by conventional methods. Here, we determined the bacterial abundance and assessed the environmental microbiome in a pharmaceutical manufacturing facility using rRNA gene-targeted quantitative PCR (qPCR) and high-throughput sequencing of rRNA gene fragments. A commercially available microbial particle counter was also used for real-time measurements. In the air of the first gowning room and the passageway of the facility, the microbial particle number determined by both the particle counter and qPCR was ca. 104/m3; the number of microbial particles was about 100 times the number of culturable bacteria. Thus, the measurement of microbes using the particle counter was accurate. In the second gowning room of the facility, managed by a HEPA filter, the number of particles in the air was dependent on human movement, and was below the detection limit around 10 min after movement. Bacteria of the phyla Proteobacteria, Firmicutes, and Actinobacteria were frequently detected in samples from the facility; these bacteria are constituents of the human microbiota. Among fungi, Aspergillus and Cladosporium were detected in the air, and Malassezia was dominant on the walls. Our results provide fundamental data for the evaluation and control of microbes in pharmaceutical and food industry facilities.


Asunto(s)
Contaminantes Atmosféricos/aislamiento & purificación , Bacterias/aislamiento & purificación , Industria Farmacéutica , Hongos/aislamiento & purificación , Instalaciones Industriales y de Fabricación , Bacterias/genética , Monitoreo del Ambiente , Hongos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA