Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomater Adv ; 133: 112642, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35034821

RESUMEN

Organ decellularization is one of the most promising approaches of tissue engineering to overcome the shortage of organs available for transplantation. However, there are key hurdles that still hinder its clinical application, and the lack of hemocompatibility of decellularized materials is a central one. In this work, we demonstrate that Custodiol (HTK solution), a common solution used in organ transplantation, increased the hemocompatibility of acellular scaffolds obtained from rat livers. We showed that Custodiol inhibited ex vivo, in vitro, and in vivo blood coagulation to such extent that allowed successful transplantation of whole-liver scaffolds into recipient animals. Scaffolds previously perfused with Custodiol showed no signs of platelet aggregation and maintained in vitro and in vivo cellular compatibility. Proteomic analysis revealed that proteins related to platelet aggregation were reduced in Custodiol samples while control samples were enriched with thrombogenicity-related proteins. We also identified distinct components that could potentially be involved with this anti-thrombogenic effect and thus require further investigation. Therefore, Custodiol perfusion emerge as a promising strategy to reduce the thrombogenicity of decellularized biomaterials and could benefit several applications of whole-organ tissue engineering.


Asunto(s)
Proteómica , Ingeniería de Tejidos , Animales , Glucosa , Hígado , Manitol , Perfusión , Cloruro de Potasio , Procaína , Ratas
2.
J Steroid Biochem Mol Biol ; 183: 39-50, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29920416

RESUMEN

Aging is a complex process that increases the risk of chronic disease development. Hormonal and metabolic alterations occur with aging, such as androgen activity decrease. Studies aim to understand the role of testosterone replacement therapy (TRT) in males, however biomarkers and the metabolic responses to TRT are not well characterized. Therefore, the present study investigated TRT effect in young adult and aged rats by metabolomics. Male Wistar rats were divided into four groups: adult and adult + testo (6months), old and old + testo (25-27months). TRT animals received daily testosterone propionate (1 mg/kg/subcutaneous). TRT changed the testicular weight index decrease induced by aging but did not change the body weight and liver weight index. Sera were analyzed by liquid chromatograph high resolution mass spectrometry (LCMS/MS). Testosterone was quantified by target LCMS/MS. A total of 126 metabolites were detected with known identification altered by TRT by non-target metabolomics analysis. Multivariate statistics shows that all groups segregated individually after principal component analysis. The treatment with testosterone induced several metabolic alterations in adult and old rats that were summarized by variable importance on projection score, metabolite interaction and pathway analysis. Aging-related hypogonadism induces a pattern of systemic metabolic alterations that can be partially reversed by TRT, however, this treatment in aged rats induces novel alterations in some metabolites that are possible new targets for monitoring in patients submitted to TRT.


Asunto(s)
Envejecimiento , Andrógenos/farmacología , Terapia de Reemplazo de Hormonas , Hipogonadismo/metabolismo , Metabolómica/métodos , Testosterona/farmacología , Animales , Hipogonadismo/tratamiento farmacológico , Hipogonadismo/fisiopatología , Masculino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA