Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 242
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 55(3): 423-441.e9, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35139355

RESUMEN

Cell death plays an important role during pathogen infections. Here, we report that interferon-γ (IFNγ) sensitizes macrophages to Toll-like receptor (TLR)-induced death that requires macrophage-intrinsic death ligands and caspase-8 enzymatic activity, which trigger the mitochondrial apoptotic effectors, BAX and BAK. The pro-apoptotic caspase-8 substrate BID was dispensable for BAX and BAK activation. Instead, caspase-8 reduced pro-survival BCL-2 transcription and increased inducible nitric oxide synthase (iNOS), thus facilitating BAX and BAK signaling. IFNγ-primed, TLR-induced macrophage killing required iNOS, which licensed apoptotic caspase-8 activity and reduced the BAX and BAK inhibitors, A1 and MCL-1. The deletion of iNOS or caspase-8 limited SARS-CoV-2-induced disease in mice, while caspase-8 caused lethality independent of iNOS in a model of hemophagocytic lymphohistiocytosis. These findings reveal that iNOS selectively licenses programmed cell death, which may explain how nitric oxide impacts disease severity in SARS-CoV-2 infection and other iNOS-associated inflammatory conditions.


Asunto(s)
COVID-19/inmunología , Caspasa 8/metabolismo , Interferón gamma/metabolismo , Linfohistiocitosis Hemofagocítica/inmunología , Macrófagos/inmunología , Mitocondrias/metabolismo , SARS-CoV-2/fisiología , Animales , Caspasa 8/genética , Células Cultivadas , Citotoxicidad Inmunológica , Humanos , Interferón gamma/genética , Activación de Macrófagos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo II/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Transducción de Señal , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35131940

RESUMEN

Venoms are excellent model systems for studying evolutionary processes associated with predator-prey interactions. Here, we present the discovery of a peptide toxin, MIITX2-Mg1a, which is a major component of the venom of the Australian giant red bull ant Myrmecia gulosa and has evolved to mimic, both structurally and functionally, vertebrate epidermal growth factor (EGF) peptide hormones. We show that Mg1a is a potent agonist of the mammalian EGF receptor ErbB1, and that intraplantar injection in mice causes long-lasting hypersensitivity of the injected paw. These data reveal a previously undescribed venom mode of action, highlight a role for ErbB receptors in mammalian pain signaling, and provide an example of molecular mimicry driven by defensive selection pressure.


Asunto(s)
Venenos de Hormiga/química , Hormigas/fisiología , Hipersensibilidad a las Drogas , Factor de Crecimiento Epidérmico/química , Toxinas Biológicas/química , Secuencia de Aminoácidos , Animales , Mordeduras y Picaduras de Insectos , Ratones , Imitación Molecular
3.
Proteins ; 92(2): 192-205, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37794633

RESUMEN

Diverse structural scaffolds have been described in peptides from sea anemones, with the ShKT domain being a common scaffold first identified in ShK toxin from Stichodactyla helianthus. ShK is a potent blocker of voltage-gated potassium channels (KV 1.x), and an analog, ShK-186 (dalazatide), has completed Phase 1 clinical trials in plaque psoriasis. The ShKT domain has been found in numerous other species, but only a tiny fraction of ShKT domains has been characterized functionally. Despite adopting the canonical ShK fold, some ShKT peptides from sea anemones inhibit KV 1.x, while others do not. Mutagenesis studies have shown that a Lys-Tyr (KY) dyad plays a key role in KV 1.x blockade, although a cationic residue followed by a hydrophobic residue may also suffice. Nevertheless, ShKT peptides displaying an ShK-like fold and containing a KY dyad do not necessarily block potassium channels, so additional criteria are needed to determine whether new ShKT peptides might show activity against potassium channels. In this study, we used a combination of NMR and molecular dynamics (MD) simulations to assess the potential activity of a new ShKT peptide. We determined the structure of ShKT-Ts1, from the sea anemone Telmatactis stephensoni, examined its tissue localization, and investigated its activity against a range of ion channels. As ShKT-Ts1 showed no activity against KV 1.x channels, we used MD simulations to investigate whether solvent exposure of the dyad residues may be informative in rationalizing and potentially predicting the ability of ShKT peptides to block KV 1.x channels. We show that either a buried dyad that does not become exposed during MD simulations, or a partially exposed dyad that becomes buried during MD simulations, correlates with weak or absent activity against KV 1.x channels. Therefore, structure determination coupled with MD simulations, may be used to predict whether new sequences belonging to the ShKT family may act as potassium channel blockers.


Asunto(s)
Anémonas de Mar , Animales , Anémonas de Mar/química , Péptidos/farmacología , Péptidos/química , Canales de Potasio/metabolismo , Simulación de Dinámica Molecular , Relación Estructura-Actividad
4.
BMC Biol ; 21(1): 121, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37226201

RESUMEN

BACKGROUND: The ShK toxin from Stichodactyla helianthus has established the therapeutic potential of sea anemone venom peptides, but many lineage-specific toxin families in Actiniarians remain uncharacterised. One such peptide family, sea anemone 8 (SA8), is present in all five sea anemone superfamilies. We explored the genomic arrangement and evolution of the SA8 gene family in Actinia tenebrosa and Telmatactis stephensoni, characterised the expression patterns of SA8 sequences, and examined the structure and function of SA8 from the venom of T. stephensoni. RESULTS: We identified ten SA8-family genes in two clusters and six SA8-family genes in five clusters for T. stephensoni and A. tenebrosa, respectively. Nine SA8 T. stephensoni genes were found in a single cluster, and an SA8 peptide encoded by an inverted SA8 gene from this cluster was recruited to venom. We show that SA8 genes in both species are expressed in a tissue-specific manner and the inverted SA8 gene has a unique tissue distribution. While the functional activity of the SA8 putative toxin encoded by the inverted gene was inconclusive, its tissue localisation is similar to toxins used for predator deterrence. We demonstrate that, although mature SA8 putative toxins have similar cysteine spacing to ShK, SA8 peptides are distinct from ShK peptides based on structure and disulfide connectivity. CONCLUSIONS: Our results provide the first demonstration that SA8 is a unique gene family in Actiniarians, evolving through a variety of structural changes including tandem and proximal gene duplication and an inversion event that together allowed SA8 to be recruited into the venom of T. stephensoni.


Asunto(s)
Anémonas de Mar , Animales , Anémonas de Mar/genética , Genómica , Inversión Cromosómica , Cisteína , Disulfuros
5.
Mol Pharm ; 20(1): 255-266, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36331024

RESUMEN

The voltage-gated potassium channel Kv1.3 regulates the pro-inflammatory function of microglia and is highly expressed in the post-mortem brains of individuals with Alzheimer's and Parkinson's diseases. HsTX1[R14A] is a selective and potent peptide inhibitor of the Kv1.3 channel (IC50 ∼ 45 pM) that has been shown to decrease cytokine levels in a lipopolysaccharide (LPS)-induced mouse model of inflammation. Central nervous system exposure to HsTX1[R14A] was previously detected in this mouse model using liquid chromatography with tandem mass spectrometry, but this technique does not report on the spatial distribution of the peptide in the different brain regions or peripheral organs. Herein, the in vivo distribution of a [64Cu]Cu-labeled DOTA conjugate of HsTX1[R14A] was observed for up to 48 h by positron emission tomography (PET) in mice. After subcutaneous administration to untreated C57BL/6J mice, considerable uptake of the radiolabeled peptide was observed in the kidney, but it was undetectable in the brain. Biodistribution of a [68Ga]Ga-DOTA conjugate of HsTX1[R14A] was then investigated in the LPS-induced mouse model of neuroinflammation to assess the effects of inflammation on uptake of the peptide in the brain. A control peptide with very weak Kv1.3 binding, [68Ga]Ga-DOTA-HsTX1[R14A,Y21A,K23A] (IC50 ∼ 6 µM), was also tested. Significantly increased uptake of [68Ga]Ga-DOTA-HsTX1[R14A] was observed in the brains of LPS-treated mice compared to mice treated with control peptide, implying that the enhanced uptake was due to increased Kv1.3 expression rather than simply increased blood-brain barrier disruption. PET imaging also showed accumulation of [68Ga]Ga-DOTA-HsTX1[R14A] in inflamed joints and decreased clearance from the kidneys in LPS-treated mice. These biodistribution data highlight the potential of HsTX1[R14A] as a therapeutic for the treatment of neuroinflammatory diseases mediated by overexpression of Kv1.3.


Asunto(s)
Lipopolisacáridos , Enfermedades Neuroinflamatorias , Ratones , Animales , Distribución Tisular , Radioisótopos de Galio/metabolismo , Ratones Endogámicos C57BL , Péptidos/química , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Inflamación/metabolismo , Tomografía de Emisión de Positrones
6.
J Chem Inf Model ; 63(10): 3043-3053, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37143234

RESUMEN

Peptide toxins that adopt the ShK fold can inhibit the voltage-gated potassium channel KV1.3 with IC50 values in the pM range and are therefore potential leads for drugs targeting autoimmune and neuroinflammatory diseases. Nuclear magnetic resonance (NMR) relaxation measurements and pressure-dependent NMR have shown that, despite being cross-linked by disulfide bonds, ShK itself is flexible in solution. This flexibility affects the local structure around the pharmacophore for the KV1.3 channel blockade and, in particular, the relative orientation of the key Lys and Tyr side chains (Lys22 and Tyr23 in ShK) and has implications for the design of KV1.3 inhibitors. In this study, we have performed molecular dynamics (MD) simulations on ShK and a close homologue, HmK, to probe the conformational space occupied by the Lys and Tyr residues, and docked the different conformations with a recently determined cryo-EM structure of the KV1.3 channel. Although ShK and HmK have 60% sequence identity, their dynamic behaviors are quite different, with ShK sampling a broad range of conformations over the course of a 5 µs MD simulation, while HmK is relatively rigid. We also investigated the importance of conformational dynamics, in particular the distance between the side chains of the key dyad Lys22 and Tyr23, for binding to KV1.3. Although these peptides have quite different dynamics, the dyad in both adopts a similar configuration upon binding, revealing a conformational selection upon binding to KV1.3 in the case of ShK. Both peptides bind to KV1.3 with Lys22 occupying the pore of the channel. Intriguingly, the more flexible peptide, ShK, binds with significantly higher affinity than HmK.


Asunto(s)
Venenos de Cnidarios , Anémonas de Mar , Animales , Canal de Potasio Kv1.3/química , Canal de Potasio Kv1.3/metabolismo , Venenos de Cnidarios/química , Venenos de Cnidarios/metabolismo , Venenos de Cnidarios/farmacología , Anémonas de Mar/química , Anémonas de Mar/metabolismo , Péptidos/química , Conformación Molecular , Bloqueadores de los Canales de Potasio/farmacología , Bloqueadores de los Canales de Potasio/química , Canal de Potasio Kv.1.2/metabolismo
7.
Mar Drugs ; 21(2)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36827123

RESUMEN

Elevenins are peptides found in a range of organisms, including arthropods, annelids, nematodes, and molluscs. They consist of 17 to 19 amino acid residues with a single conserved disulfide bond. The subject of this study, elevenin-Vc1, was first identified in the venom of the cone snail Conus victoriae (Gen. Comp. Endocrinol. 2017, 244, 11-18). Although numerous elevenin sequences have been reported, their physiological function is unclear, and no structural information is available. Upon intracranial injection in mice, elevenin-Vc1 induced hyperactivity at doses of 5 or 10 nmol. The structure of elevenin-Vc1, determined using nuclear magnetic resonance spectroscopy, consists of a short helix and a bend region stabilised by the single disulfide bond. The elevenin-Vc1 structural fold is similar to that of α-conotoxins such as α-RgIA and α-ImI, which are also found in the venoms of cone snails and are antagonists at specific subtypes of nicotinic acetylcholine receptors (nAChRs). In an attempt to mimic the functional motif, Asp-Pro-Arg, of α-RgIA and α-ImI, we synthesised an analogue, designated elevenin-Vc1-DPR. However, neither elevenin-Vc1 nor the analogue was active at six different human nAChR subtypes (α1ß1εδ, α3ß2, α3ß4, α4ß2, α7, and α9α10) at 1 µM concentrations.


Asunto(s)
Conotoxinas , Caracol Conus , Receptores Nicotínicos , Ratones , Humanos , Animales , Conotoxinas/farmacología , Caracol Conus/metabolismo , Ponzoñas , Receptores Nicotínicos/metabolismo , Péptidos/metabolismo , Antagonistas Nicotínicos/farmacología
8.
Proteins ; 90(9): 1732-1743, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35443068

RESUMEN

Functional regulation via conformational dynamics is well known in structured proteins but less well characterized in intrinsically disordered proteins and their complexes. Using NMR spectroscopy, we have identified a dynamic regulatory mechanism in the human insulin-like growth factor (IGF) system involving the central, intrinsically disordered linker domain of human IGF-binding protein-2 (hIGFBP2). The bioavailability of IGFs is regulated by the proteolysis of IGF-binding proteins. In the case of hIGFBP2, the linker domain (L-hIGFBP2) retains its intrinsic disorder upon binding IGF-1, but its dynamics are significantly altered, both in the IGF binding region and distantly located protease cleavage sites. The increase in flexibility of the linker domain upon IGF-1 binding may explain the IGF-dependent modulation of proteolysis of IGFBP2 in this domain. As IGF homeostasis is important for cell growth and function, and its dysregulation is a key contributor to several cancers, our findings open up new avenues for the design of IGFBP analogs inhibiting IGF-dependent tumors.


Asunto(s)
Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina , Factor I del Crecimiento Similar a la Insulina , Proteínas Intrínsecamente Desordenadas , Humanos , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Péptido Hidrolasas/metabolismo , Unión Proteica
9.
Bioconjug Chem ; 33(11): 2197-2212, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36330854

RESUMEN

Upregulation of the voltage-gated potassium channel KV1.3 is implicated in a range of autoimmune and neuroinflammatory diseases, including rheumatoid arthritis, psoriasis, multiple sclerosis, and type I diabetes. Understanding the expression, localization, and trafficking of KV1.3 in normal and disease states is key to developing targeted immunomodulatory therapies. HsTX1[R14A], an analogue of a 34-residue peptide toxin from the scorpion Heterometrus spinifer, binds KV1.3 with high affinity (IC50 of 45 pM) and selectivity (2000-fold for KV1.3 over KV1.1). We have synthesized a fluorescent analogue of HsTX1[R14A] by N-terminal conjugation of a Cy5 tag. Electrophysiology assays show that Cy5-HsTX1[R14A] retains activity against KV1.3 (IC50 ∼ 0.9 nM) and selectivity over a range of other potassium channels (KV1.2, KV1.4, KV1.5, KV1.6, KCa1.1 and KCa3.1), as well as selectivity against heteromeric channels assembled from KV1.3/KV1.5 tandem dimers. Live imaging of CHO cells expressing green fluorescent protein-tagged KV1.3 shows co-localization of Cy5-HsTX1[R14A] and KV1.3 fluorescence signals at the cell membrane. Moreover, flow cytometry demonstrated that Cy5-HsTX1[R14A] can detect KV1.3-expressing CHO cells. Stimulation of mouse microglia by lipopolysaccharide, which enhances membrane expression of KV1.3, was associated with increased staining by Cy5-HsTX1[R14A], demonstrating that it can be used to identify KV1.3 in disease-relevant models of inflammation. Furthermore, the biodistribution of Cy5-HsTX1[R14A] could be monitored using ex vivo fluorescence imaging of organs in mice dosed subcutaneously with the peptide. These results illustrate the utility of Cy5-HsTX1[R14A] as a tool for visualizing KV1.3, with broad applicability in fundamental investigations of KV1.3 biology, and the validation of novel disease indications where KV1.3 inhibition may be of therapeutic value.


Asunto(s)
Canal de Potasio Kv1.3 , Venenos de Escorpión , Ratones , Animales , Cricetinae , Canal de Potasio Kv1.3/química , Canal de Potasio Kv1.3/metabolismo , Venenos de Escorpión/química , Venenos de Escorpión/metabolismo , Venenos de Escorpión/farmacología , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/farmacología , Cricetulus , Distribución Tisular , Péptidos/química
10.
J Chem Inf Model ; 62(19): 4605-4619, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36178379

RESUMEN

The ability to predict cell-permeable candidate molecules has great potential to assist drug discovery projects. Large molecules that lie beyond the Rule of Five (bRo5) are increasingly important as drug candidates and tool molecules for chemical biology. However, such large molecules usually do not cross cell membranes and cannot access intracellular targets or be developed as orally bioavailable drugs. Here, we describe a random forest (RF) machine learning model for the prediction of passive membrane permeation rates developed using a set of over 1000 bRo5 macrocyclic compounds. The model is based on easily calculated chemical features/descriptors as independent variables. Our random forest (RF) model substantially outperforms a multiple linear regression model based on the same features and achieves better performance metrics than previously reported models using the same underlying data. These features include: (1) polar surface area in water, (2) the octanol-water partitioning coefficient, (3) the number of hydrogen-bond donors, (4) the sum of the topological distances between nitrogen atoms, (5) the sum of the topological distances between nitrogen and oxygen atoms, and (6) the multiple molecular path count of order 2. The last three features represent molecular flexibility, the ability of the molecule to adopt different conformations in the aqueous and membrane interior phases, and the molecular "chameleonicity." Guided by the model, we propose design guidelines for membrane-permeating macrocycles. It is anticipated that this model will be useful in guiding the design of large, bioactive molecules for medicinal chemistry and chemical biology applications.


Asunto(s)
Compuestos Macrocíclicos , Hidrógeno , Aprendizaje Automático , Nitrógeno , Octanoles , Oxígeno , Agua
11.
Bioorg Chem ; 123: 105763, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35366581

RESUMEN

The SPRY domain-containing SOCS box protein-2 (SPSB2) plays a critical role in the degradation of inducible nitric oxide synthase (iNOS) in macrophages. In this study, we have conjugated a peptide inhibitor of the iNOS-SPSB2 interaction with a cell-penetrating peptide (CPP) for delivery into macrophages, and confirmed its binding to SPSB2. We have assessed the uptake of a fluorophore-tagged analogue by RAW 264.7 and immortalised bone marrow derived macrophage (iBMDM) cell lines, and shown that the CPP-peptide conjugate enhanced NO production. The findings of this study will be useful in further refinement of CPP-peptide conjugates as leads in the development of new antibiotics that target the host innate immune response.


Asunto(s)
Péptidos de Penetración Celular , Óxido Nítrico , Péptidos de Penetración Celular/farmacología , Macrófagos/metabolismo , Modelos Moleculares , Óxido Nítrico Sintasa de Tipo II/metabolismo
12.
J Struct Biol ; 213(2): 107692, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33387653

RESUMEN

Acrorhagin I (U-AITX-Aeq5a) is a disulfide-rich peptide identified in the aggressive organs (acrorhagi) of the sea anemone Actinia equina. Previous studies (Toxicon 2005, 46:768-74) found that the peptide is toxic in crabs, although the structural and functional properties of acrorhagin I have not been reported. In this work, an Escherichia coli (BL21 strain) expression system was established for the preparation of 13C,15N-labelled acrorhagin I, and the solution structure was determined using NMR spectroscopy. Structurally, acrorhagin I is similar to B-IV toxin from the marine worm Cerebratulus lacteus (PDB id 1VIB), with a well-defined helical hairpin structure stabilised by four intramolecular disulfide bonds. The recombinant peptide was tested in patch-clamp electrophysiology assays against voltage-gated potassium and sodium channels, and in bacterial and fungal growth inhibitory assays and haemolytic assays. Acrorhagin I was not active against any of the ion channels tested and showed no activity in functional assays, indicating that this peptide may possess a different biological function. Metal ion interaction studies using NMR spectroscopy showed that acrorhagin I bound zinc and nickel, suggesting that its function might be modulated by metal ions or that it may be involved in regulating metal ion levels and their transport. The similarity between the structure of acrorhagin I and that of B-IV toxin from a marine worm suggests that this fold may prove to be a recurring motif in disulfide-rich peptides from marine organisms.


Asunto(s)
Venenos de Cnidarios/química , Péptidos/química , Péptidos/farmacología , Animales , Células CHO , Células Cultivadas , Cricetulus , Disulfuros/química , Evolución Molecular , Hemólisis/efectos de los fármacos , Humanos , Espectroscopía de Resonancia Magnética , Metales/química , Metales/metabolismo , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Técnicas de Placa-Clamp , Péptidos/genética , Péptidos/metabolismo , Pliegue de Proteína , Anémonas de Mar/química , Homología Estructural de Proteína , Linfocitos T/efectos de los fármacos
13.
Immunity ; 36(2): 239-50, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22342841

RESUMEN

Janus kinases (JAKs) are key effectors in controlling immune responses and maintaining hematopoiesis. SOCS3 (suppressor of cytokine signaling-3) is a major regulator of JAK signaling and here we investigate the molecular basis of its mechanism of action. We found that SOCS3 bound and directly inhibited the catalytic domains of JAK1, JAK2, and TYK2 but not JAK3 via an evolutionarily conserved motif unique to JAKs. Mutation of this motif led to the formation of an active kinase that could not be inhibited by SOCS3. Surprisingly, we found that SOCS3 simultaneously bound JAK and the cytokine receptor to which it is attached, revealing how specificity is generated in SOCS action and explaining why SOCS3 inhibits only a subset of cytokines. Importantly, SOCS3 inhibited JAKs via a noncompetitive mechanism, making it a template for the development of specific and effective inhibitors to treat JAK-based immune and proliferative diseases.


Asunto(s)
Citocinas/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Secuencia Conservada , Humanos , Interleucina-6/metabolismo , Quinasas Janus/antagonistas & inhibidores , Quinasas Janus/química , Quinasas Janus/genética , Quinasas Janus/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal , Proteína 1 Supresora de la Señalización de Citocinas , Proteína 3 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas/química , Proteínas Supresoras de la Señalización de Citocinas/genética
14.
Bioorg Med Chem ; 29: 115906, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33310547

RESUMEN

Inhibitors of protein-protein interactions can be developed through a number of technologies to provide leads that include cell-impermeable molecules. Redesign of these impermeable leads to provide cell-permeable derivatives can be challenging and costly. We hypothesised that intracellular toxicity of leads could be assessed by microinjection prior to investing in the redesign process. We demonstrate this approach for our development of inhibitors of the protein-protein interaction between inducible nitric-oxide synthase (iNOS) and SPRY domain-containing SOCS box proteins (SPSBs). We microinjected a lead molecule into AD-293 cells and were able to perform an intracellular toxicity assessment. We also investigated the intracellular distribution and localisation of injected inhibitor using a fluorescently-labelled analogue. Our findings show that a lead peptide inhibitor, CP2, had no toxicity even at intracellular concentrations four orders of magnitude higher than its Kd for binding to SPSB2. This early toxicity assessment justifies further development of this cell-impermeable lead to confer cell permeability. Our investigation highlights the utility of microinjection as a tool for assessing toxicity during development of drugs targeting protein-protein interactions.


Asunto(s)
Citoplasma/metabolismo , Inhibidores Enzimáticos/química , Óxido Nítrico Sintasa de Tipo II/metabolismo , Péptidos/química , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Secuencia de Aminoácidos , Línea Celular , Permeabilidad de la Membrana Celular , Citoplasma/ultraestructura , Desarrollo de Medicamentos , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/efectos adversos , Humanos , Microinyecciones , Modelos Moleculares , Imagen Óptica , Péptidos/administración & dosificación , Péptidos/efectos adversos , Unión Proteica , Relación Estructura-Actividad
15.
J Biol Chem ; 294(22): 8745-8759, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-30975904

RESUMEN

Venomous marine cone snails produce peptide toxins (conotoxins) that bind ion channels and receptors with high specificity and therefore are important pharmacological tools. Conotoxins contain conserved cysteine residues that form disulfide bonds that stabilize their structures. To gain structural insight into the large, yet poorly characterized conotoxin H-superfamily, we used NMR and CD spectroscopy along with MS-based analyses to investigate H-Vc7.2 from Conus victoriae, a peptide with a VI/VII cysteine framework. This framework has CysI-CysIV/CysII-CysV/CysIII-CysVI connectivities, which have invariably been associated with the inhibitor cystine knot (ICK) fold. However, the solution structure of recombinantly expressed and purified H-Vc7.2 revealed that although it displays the expected cysteine connectivities, H-Vc7.2 adopts a different fold consisting of two stacked ß-hairpins with opposing ß-strands connected by two parallel disulfide bonds, a structure homologous to the N-terminal region of the human granulin protein. Using structural comparisons, we subsequently identified several toxins and nontoxin proteins with this "mini-granulin" fold. These findings raise fundamental questions concerning sequence-structure relationships within peptides and proteins and the key determinants that specify a given fold.


Asunto(s)
Conotoxinas/química , Caracol Conus/metabolismo , Cisteína/química , Granulinas/química , Secuencia de Aminoácidos , Animales , Conotoxinas/genética , Conotoxinas/metabolismo , Disulfuros/química , Granulinas/metabolismo , Espectroscopía de Resonancia Magnética , Venenos de Moluscos/metabolismo , Conformación Proteica en Lámina beta , Pliegue de Proteína , Estabilidad Proteica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
16.
Proteins ; 88(1): 175-186, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31325337

RESUMEN

The spread of multidrug resistant bacteria owing to the intensive use of antibiotics is challenging current antibiotic therapies, and making the discovery and evaluation of new antimicrobial agents a high priority. The evaluation of novel peptide sequences of predicted antimicrobial peptides from different sources is valuable approach to identify alternative antibiotic leads. Two strategies were pursued in this study to evaluate novel antimicrobial peptides from the human ß-defensin family (hBD). In the first, a 32-residue peptide was designed based on the alignment of all available hBD primary structures, while in the second a putative 35-residue peptide, hBD10, was mined from the gene DEFB110. Both hBDconsensus and hBD10 were chemically synthesized, folded and purified. They showed antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Mycobacterium tuberculosis, but were not hemolytic on human red blood cells. The NMR-based solution structure of hBDconsensus revealed that it adopts a classical ß-defensin fold and disulfide connectivities. Even though the mass spectrum of hBD10 confirmed the formation of three disulfide bonds, it showed limited dispersion in 1 H NMR spectra and structural studies were not pursued. The evaluation of different ß-defensin structures may identify new antimicrobial agents effective against multidrug-resistant bacterial strains.


Asunto(s)
Antiinfecciosos/química , beta-Defensinas/química , Secuencia de Aminoácidos , Antiinfecciosos/farmacología , Infecciones Bacterianas/tratamiento farmacológico , Descubrimiento de Drogas , Escherichia coli/efectos de los fármacos , Humanos , Modelos Moleculares , Mycobacterium tuberculosis/efectos de los fármacos , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Pliegue de Proteína , Staphylococcus aureus/efectos de los fármacos , beta-Defensinas/farmacología
17.
J Biomol NMR ; 74(10-11): 477, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33185771

RESUMEN

The article "Boeszoermenyi A, Ogórek B, Jain A, Arthanari H, Wagner G (2020) The precious fluorine on the ring: fluorine NMR for biological systems. J Biomol NMR. https ://doi.org/10.1007/s10858-020-00331-z" was written for the "Special Issue: NMR in Pharmaceutical Discovery and Development". However, unfortunately, it was published in an earlier issue of this journal owing to a publisher error. Further, the ORCID ID of author Wolfgang Jahnke is updated in the article. The original article has been corrected.

18.
Mar Drugs ; 18(4)2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-32283847

RESUMEN

This review examines the current state of knowledge regarding toxins from anthozoans (sea anemones, coral, zoanthids, corallimorphs, sea pens and tube anemones). We provide an overview of venom from phylum Cnidaria and review the diversity of venom composition between the two major clades (Medusozoa and Anthozoa). We highlight that the functional and ecological context of venom has implications for the temporal and spatial expression of protein and peptide toxins within class Anthozoa. Understanding the nuances in the regulation of venom arsenals has been made possible by recent advances in analytical technologies that allow characterisation of the spatial distributions of toxins. Furthermore, anthozoans are unique in that ecological roles can be assigned using tissue expression data, thereby circumventing some of the challenges related to pharmacological screening.


Asunto(s)
Venenos de Cnidarios/fisiología , Toxinas Marinas/metabolismo , Anatomía , Animales , Antozoos/clasificación , Cnidarios/clasificación , Humanos , Biología Marina , Toxinas Marinas/química , Toxinas Marinas/toxicidad , Filogenia
19.
J Biol Chem ; 293(30): 11928-11943, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-29899115

RESUMEN

The development of fast-acting and highly stable insulin analogues is challenging. Insulin undergoes structural transitions essential for binding and activation of the insulin receptor (IR), but these conformational changes can also affect insulin stability. Previously, we substituted the insulin A6-A11 cystine with a rigid, non-reducible C=C linkage ("dicarba" linkage). A cis-alkene permitted the conformational flexibility of the A-chain N-terminal helix necessary for high-affinity IR binding, resulting in surprisingly rapid activity in vivo Here, we show that, unlike the rapidly acting LysB28ProB29 insulin analogue (KP insulin), cis-dicarba insulin is not inherently monomeric. We also show that cis-dicarba KP insulin lowers blood glucose levels even more rapidly than KP insulin, suggesting that an inability to oligomerize is not responsible for the observed rapid activity onset of cis-dicarba analogues. Although rapid-acting, neither dicarba species is stable, as assessed by fibrillation and thermodynamics assays. MALDI analyses and molecular dynamics simulations of cis-dicarba insulin revealed a previously unidentified role of the A6-A11 linkage in insulin conformational dynamics. By controlling the conformational flexibility of the insulin B-chain helix, this linkage affects overall insulin structural stability. This effect is independent of its regulation of the A-chain N-terminal helix flexibility necessary for IR engagement. We conclude that high-affinity IR binding, rapid in vivo activity, and insulin stability can be regulated by the specific conformational arrangement of the A6-A11 linkage. This detailed understanding of insulin's structural dynamics may aid in the future design of rapid-acting insulin analogues with improved stability.


Asunto(s)
Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Insulina/análogos & derivados , Insulina/farmacología , Animales , Glucemia/metabolismo , Línea Celular , Cristalografía por Rayos X , Cisteína/química , Cisteína/farmacología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Simulación de Dinámica Molecular , Células 3T3 NIH , Conformación Proteica , Estabilidad Proteica , Receptor de Insulina/metabolismo , Termodinámica
20.
Proteins ; 87(7): 551-560, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30811678

RESUMEN

Many of the small, cysteine-rich ion-channel modulatory peptides found in Cnidaria are distantly related to vertebrate defensins (of the trans-defensin superfamily). Transcriptomic and proteomic studies of the endemic Australian speckled sea anemone (Oulactis sp.) yielded homologous peptides to known defensin sequences. We extended these data using existing and custom-built hidden Markov models to extract defensin-like families from the transcriptomes of seven endemic Australian cnidarian species. Newly sequenced transcriptomes include three species of Actiniaria (true sea anemones); the speckled anemone (Oulactis sp.), Oulactis muscosa, Dofleinia cf. armata and a species of Corallimorpharia, Rhodactis sp. We analyzed these novel defensin-like sequences along with published homologues to study the evolution of their physico-chemical properties in vertebrate and invertebrate fauna. The cnidarian trans-defensins form a distinct cluster within the chemical space of the superfamily, with a unique set of motifs and biophysical properties. This cluster contains identifiable subgroups, whose distribution in chemical space also correlates with the divergent evolution of their structures. These sequences, currently restricted to cnidarians, form an evolutionarily distinct clade within the trans-defensin superfamily.


Asunto(s)
Defensinas/genética , Anémonas de Mar/genética , Transcriptoma , Animales , Cisteína/química , Cisteína/genética , Defensinas/química , Evolución Molecular , Modelos Moleculares , Filogenia , Conformación Proteica , Anémonas de Mar/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA