Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Trends Genet ; 40(2): 187-202, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37949722

RESUMEN

Neurodevelopmental disorders (NDDs) are associated with a wide range of clinical features, affecting multiple pathways involved in brain development and function. Recent advances in high-throughput sequencing have unveiled numerous genetic variants associated with NDDs, which further contribute to disease complexity and make it challenging to infer disease causation and underlying mechanisms. Herein, we review current strategies for dissecting the complexity of NDDs using model organisms, induced pluripotent stem cells, single-cell sequencing technologies, and massively parallel reporter assays. We further highlight single-cell CRISPR-based screening techniques that allow genomic investigation of cellular transcriptomes with high efficiency, accuracy, and throughput. Overall, we provide an integrated review of experimental approaches that can be applicable for investigating a broad range of complex disorders.


Asunto(s)
Trastornos del Neurodesarrollo , Humanos , Trastornos del Neurodesarrollo/genética , Genómica , Genoma
2.
Mol Psychiatry ; 27(3): 1599-1610, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35001075

RESUMEN

Serotonin 2A receptors (5-HT2ARs) mediate the hallucinogenic effects of psychedelic drugs and are a key target of the leading class of medications used to treat psychotic disorders. These findings suggest that dysfunction of 5-HT2ARs may contribute to the symptoms of schizophrenia, a mental illness characterized by perceptual and cognitive disturbances. Indeed, numerous studies have found that 5-HT2ARs are reduced in the brains of individuals with schizophrenia. However, the mechanisms that regulate 5-HT2AR expression remain poorly understood. Here, we show that a physiologic environmental stimulus, sleep deprivation, significantly upregulates 5-HT2AR levels in the mouse frontal cortex in as little as 6-8 h (for mRNA and protein, respectively). This induction requires the activity-dependent immediate early gene transcription factor early growth response 3 (Egr3) as it does not occur in Egr3 deficient (-/-) mice. Using chromatin immunoprecipitation, we show that EGR3 protein binds to the promoter of Htr2a, the gene that encodes the 5-HT2AR, in the frontal cortex in vivo, and drives expression of in vitro reporter constructs via two EGR3 binding sites in the Htr2a promoter. These results suggest that EGR3 directly regulates Htr2a expression, and 5-HT2AR levels, in the frontal cortex in response to physiologic stimuli. Analysis of publicly available post-mortem gene expression data revealed that both EGR3 and HTR2A mRNA are reduced in the prefrontal cortex of schizophrenia patients compared to controls. Together these findings suggest a mechanism by which environmental stimuli alter levels of a brain receptor that may mediate the symptoms, and treatment, of mental illness.


Asunto(s)
Proteína 3 de la Respuesta de Crecimiento Precoz , Receptor de Serotonina 5-HT2A , Privación de Sueño , Animales , Proteína 3 de la Respuesta de Crecimiento Precoz/metabolismo , Lóbulo Frontal , Genes Inmediatos-Precoces , Ratones , ARN Mensajero , Receptor de Serotonina 5-HT2A/genética , Serotonina , Privación de Sueño/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA