Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Chem Rev ; 124(6): 3590-3607, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38478849

RESUMEN

Carbon dioxide (CO2) has long been recognized as an ideal C1 feedstock comonomer for producing sustainable materials because it is renewable, abundant, and cost-effective. However, activating CO2 presents a significant challenge because it is highly oxidized and stable. A CO2/butadiene-derived δ-valerolactone (EVP), generated via palladium-catalyzed telomerization between CO2 and butadiene, has emerged as an attractive intermediate for producing sustainable copolymers from CO2 and butadiene. Owing to the presence of two active carbon-carbon double bonds and a lactone unit, EVP serves as a versatile intermediate for creating sustainable copolymers with a CO2 content of up to 29 wt % (33 mol %). In this Review, advances in the synthesis of copolymers from CO2 and butadiene with divergent structures through various polymerization protocols have been summarized. Achievements made in homo- and copolymerization of EVP or its derivatives are comprehensively reviewed, while the postmodification of the obtained copolymers to access new polymers are also discussed. Meanwhile, potential applications of the obtained copolymers are also discussed. The literature references were sorted into sections based on polymerization strategies and mechanisms, facilitating readers in gaining a comprehensive view of the present chemistry landscape and inspiring innovative approaches to synthesizing novel CO2-derived copolymers.

2.
J Am Chem Soc ; 146(4): 2419-2425, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38060439

RESUMEN

In this work, we developed a nickel-catalyzed transfer hydrogenolysis of 1-aryloxy-3-amino-2-propanols, which is a model compound of an amine-cured bisphenol A (BPA)-based epoxy resin. Mechanistic investigation revealed that the hydroxy group acts as the hydrogen donor to generate α-aryloxy ketone, which undergoes an unprecedented remote-concerted oxidative addition of the C(sp3)-O bond as suggested by DFT calculation. Successful application of this method was demonstrated by the degradation of a diamine-cured BPA-based epoxy resin, in which BPA was directly recovered from the resin.

3.
J Am Chem Soc ; 146(20): 14086-14094, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38634713

RESUMEN

Chemoselective hydrogenation of aldehydes to alcohols is of importance in synthetic chemistry. Here, we report a reusable CeO2-supported Au nanoparticle catalyst for the selective hydrogenation of aldehydes using syngas as the hydrogen source for which CO in syngas works as a site blocker to prevent side reactions. In particular, the hydrogenation of aldehydes with an easily reducible alkene, alkyne, or halogen moiety under syngas gave the corresponding alcohols with high selectivity, while the hydrogenation under pure hydrogen resulted in overreduction or dehalogenation. Of particular interest is that CO works as a site blocker but does not affect the hydrogenation rate significantly. A potential application of the present catalyst system was demonstrated by the conversion of terminal alkenes to alcohols via a one-pot hydroformylation/hydrogenation sequence.

4.
J Am Chem Soc ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38952064

RESUMEN

Crystalline polyethylenes bearing carboxylic acid groups in the main chain were successfully degraded with a Ce catalyst and visible light. The reaction proceeds in a crystalline solid state without swelling in acetonitrile or water at a reaction temperature as low as 60 or 80 °C, employing dioxygen in air as the only stoichiometric reactant with nearly quantitative recovery of carbon atoms. Heterogeneous features of the reaction allowed us to reveal a dynamic morphological change of polymer crystals during the degradation.

5.
J Am Chem Soc ; 146(19): 13658-13665, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38710172

RESUMEN

Although the use of biodegradable plastics is suitable for unrecoverable, single-use plastic, their high production cost and much lower variety compared to commodity plastics limit their application. In this study, we developed a new polymer with potential biodegradability, poly(ketone/ester), synthesized from propylene and carbon monoxide. Propylene and carbon monoxide are easily available at low costs from fossil resources, and they can also be derived from biomass. Using an atom insertion reaction to the main chain of the polymer, the main-chain editing of the polymer molecule proceeded with up to 89% selectivity for atom insertion over main-chain cleavage.

6.
Chemistry ; 30(15): e202303575, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38095099

RESUMEN

Hexakis(4-trimethylsilylpyrazol-1-yl)ethane was synthesized by the oxidative dimerization of tris(4-trimethylsilylpyrazol-1-yl)methane. Single-crystal X-ray structural analysis of hexakis(4-trimethylsilylpyrazol-1-yl)ethane showed that the ethane C-C bond (1.623(4) Å) is shorter than that in hexaphenylethane (1.67(3) Å). In solution, hexakis(4-trimethylsilylpyrazol-1-yl)ethane existed as a single species, contrastive that conventional hexaphenylethanes can keep the central C-C bond only by the aid of additional bridges between the two triarylmethyl units. Theoretical calculations indicated that the tris(pyrazol-1-yl)methyl radical, which is anticipated to be under equilibrium with hexakis(pyrazol-1-yl)ethane, is less stable than trityl radicals due to lack of delocalization of the radicals. Furthermore, introduction of pyrazole groups allowed additional bridging between the two triarylmethyl moieties through metal coordination to the adjacent N atoms: hexakis(4-trimethylsilylpyrazol-1-yl)ethane exhibited unique coordination to three Ag atoms affording a hexaarylethane analog bearing three N-Ag-N bridges.

7.
Chemistry ; 30(33): e202400586, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38597595

RESUMEN

Zinc carboxylate complexes are widely utilized as artificial models of metalloenzymes and as secondary building units of PCPs/MOFs. However, the relationship between the structure of the monodentate carboxylato ligand and the molecular arrangement of multinuclear zinc carboxylate complexes is not fully understood because of the coordination flexibility of the Zn ion and carboxylato ligands. Herein, we report the structural analysis of a series of complexes derived from zinc (meth)acrylate which has a linear infinite chain structure. The molecular structure of µ4-oxido-bridged tetranuclear complexes [Zn4(µ4-O)(OCOR)6] revealed a distorted Zn4O core. Crystallization of zinc acrylate under aqueous conditions afforded a µ3-hydroxido-containing pentanuclear complex [Zn5(µ3-OH)2(OCOR)8] as the repeating unit of an infinite sheet-like structure in the solid state. It was also obtained by the hydrolysis of the µ4-oxido-bridged tetranuclear complex. In sharp contrast, the methacrylate analog retained the methacrylato ligands under aqueous crystallization conditions to form a macrocyclic dodecanuclear complex with methacrylato as the sole ligand.

8.
J Org Chem ; 89(10): 7156-7162, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38695511

RESUMEN

Tetrakispyrazolylethene (1) was synthesized from pyrazole and hexachloroethane through a one-step substitution reaction. The increase of emission was detected both in solid and aqueous THF solution, compared with that in anhydrous THF. While the former originates from the crystal packing, the latter is attributed to the protonation-induced emission, independent of aggregation, based on the optical measurement under varying concentrations and particle-size distribution analysis.

9.
Angew Chem Int Ed Engl ; 63(20): e202403092, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38415808

RESUMEN

The hydrogenolysis of oxygenates such as alcohols and ethers is central to the biomass valorization and also a valuable transformation in organic synthesis. However, a mild and efficient catalyst system for the hydrogenolysis of a large variety of alcohols and ethers with various functional groups is still underdeveloped. Here, we report an aluminum metaphosphate-supported Pt nanoparticles (Pt/Al(PO3)3) for the hydrogenolysis of a wide variety of primary, secondary, and tertiary alkyl and benzylic alcohols, and dialkyl, aryl alkyl, and diaryl ethers, including biomass-derived furanic compounds, under mild conditions (0.1-1 atm of H2, as low as 70 °C). Mechanistic studies suggested that H2 induces formation of the surface Brønsted acid sites via its cleavage by supported Pt nanoparticles. Accordingly, the high efficiency and the wide applicability of the catalyst system are attributed to the activation and cleavage of C-O bonds by the hydrogen-induced Brønsted acid sites with the assistance of Lewis acidic Al sites on the catalyst surface. The high efficiency of the catalyst implies its potential application in energy-efficient biomass valorization or fine chemical synthesis.

10.
J Am Chem Soc ; 145(29): 16186-16192, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37354094

RESUMEN

A carbene bearing two geminal boryl substituents, called diborylcarbene (DBC), has been predicted to be highly Lewis acidic in sharp contrast to the well-studied persistent carbenes stabilized by π-donating substituents. Studies on DBC have been limited to either the base-trapping or theoretical calculations. Herein, we developed chemical equivalents for DBC, namely, K/X-diborylcarbenoids 2X (X = F or Cl). Treatment of 2F with Al(C6F5)3 yielded [AlF(C6F5)3]--stabilized DBC 1-FAl, which showed a significant low-field shift of the carbenoid carbon from 169 ppm (doublet, coupling with 19F) to 242 ppm (singlet). The loss of halogen was also detected through electrospray ionization time-of-flight mass spectrometry analysis of 2X only in the presence of Al(C6F5)3. Generated DBC 1 from 1-FAl or 2Cl was successfully trapped with excess amounts of trialkylphosphines (PR3, R = Me or Et), which afforded the corresponding DBC-PR3 adducts. In addition, the Lewis acidity of DBC 1 was evaluated both experimentally and theoretically to reveal that 1 is one of the most Lewis acidic species among neutral molecules.

11.
J Am Chem Soc ; 145(6): 3454-3461, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36657125

RESUMEN

The hydrogenolysis of esters to alkanes is a key protocol for the synthesis of high-quality hydrocarbon fuels from renewable plant oils or fats. However, performing this process under mild energy-efficient conditions is challenging. Herein, we report a robust tungsten- and zirconium-oxide-supported platinum catalyst (Pt/WO3-ZrO2) for the hydrogenolysis of esters to alkanes at low temperatures (as low as 70 °C) and under ambient pressure (1 atm) of H2. For example, tristearin undergoes a complete conversion at 130 °C with more than 95% selectivity for the corresponding alkanes without carbon loss. In addition, the heterogeneous nature of the catalyst system reported herein permits multiple reuse of the catalyst without any significant loss of its high activity and selectivity. Mechanistic studies suggest that the multifunctional nature (acid and redox properties) of the WO3-ZrO2 support plays an important role in the high activity of the catalyst.

12.
Acc Chem Res ; 55(11): 1524-1532, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35612595

RESUMEN

Carbon dioxide (CO2) has long been considered a sustainable comonomer for polymer synthesis due to its abundance, easy availability, and low toxicity. Polymer synthesis from CO2 is highly attractive and has received continuous interest from synthetic chemists. In this regard, alternating copolymerization of CO2 and epoxides is one of the most well-established methods to synthesize aliphatic polycarbonates. Moreover, binucleophiles including diols, diamines, amino alcohols, and diynes have been reported to copolymerize with CO2 to give polycarbonates, polyureas, polyurethanes, and polyesters, respectively. Nevertheless, little success has been made for incorporating CO2 into the most widely used polyolefin materials.Although extensive studies have been focused on the copolymerization of olefins and CO2, most of the attempted reactions resulted in olefin homopolymerization owing to the endothermic property and high energy barriers of CO2 insertion during the chain propagation process. In this Account, we show how this challenge is addressed by taking advantage of a metastable lactone intermediate, 3-ethylidene-6-vinyltetrahydro-2H-pyran-2-one (EVP), which is produced from CO2 and butadiene via palladium catalysis. Homopolymerization of EVP furnishes CO2/butadiene copolymers with up to 29 wt % of CO2 content. This reaction strategy represents a breakthrough for the long-standing challenge of inherent kinetic and thermodynamically unfavorable CO2/olefin copolymerization. A new class of polymeric materials bearing repeating bicyclic lactone and unsaturated lactone units can be obtained. Importantly, one-pot copolymerization of CO2/butadiene or terpolymerization of CO2/butadiene/diene can be achieved to afford copolymers through a two-step reaction protocol. Interestingly, the bicyclic lactone units in the polymer chain can undergo ring-opening through hydrolysis and aminolysis, while reversible ring-closing of the hydrolyzed or aminolyzed units was also achieved simply by heating.Over the past few years, more and more studies have utilized EVP as an intermediate to synthesize copolymers from olefins, butadiene, and CO2. Recently, we successfully incorporated CO2 into the most widely used polyethylene materials via the direct copolymerization of EVP and ethylene. Taking advantage of the bifunctional reactivity of EVP, we were able to access two types of main-chain-functionalized polyethylenes through palladium-catalyzed coordination/insertion copolymerization and radical copolymerization. Besides polyethylenes, CO2 was also incorporated into poly(methyl methacrylate), poly(methyl acrylate), polystyrene, polymethyl acrylate, polyvinylchloroacetate, and poly(vinyl acetate) materials via radical copolymerization of EVP and olefin monomers. The EVP/olefin copolymerization strategy provides a novel avenue for the synthesis of highly versatile copolymers from an olefin, CO2, and butadiene.


Asunto(s)
Alquenos , Dióxido de Carbono , Butadienos , Lactonas , Paladio , Polietilenos , Polímeros
13.
Chemistry ; 29(60): e202302060, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37534571

RESUMEN

A novel cyclic bis(carbodiphosphorane) ligand was prepared and investigated in coordination with group 13 elements, B, Al, and Ga. Al and Ga afforded dinuclear adduct where two metal centers were bridged by the bis(carbodiphosphorane) ligand. In contrast, the reaction with boron trichloride afforded a monomeric dicationic three-coordinate boron species composed of one boron moieties and one ligand. The structures of these products were determined by X-ray crystallography. In the dicationic boron compound, the sterically constrained cyclic structure enforced the boron center to acquire strained trigonal geometry with wide C-B-C angle of 140°. Furthermore, theoretical investigation with DFT and NBO suggested a significant contribution of tricationic two-coordinate boron resonance structure supported by two CDP ligands.

14.
Acc Chem Res ; 54(2): 344-355, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33242953

RESUMEN

Polyolefins are produced in vast amounts and are found in so many consumer products that the two most commonly produced forms, polyethylene (PE) and polypropylene (PP), fall into the rather sparse category of molecules that are likely to be known by people worldwide, regardless of their occupation. Although widespread, the further upgrading of their properties (mechanical, physical, aesthetic, etc.) through the formation of composites with other materials, such as polar polymers, fibers, or talc, is of huge interest to manufacturers. To improve the affinity of polyolefins toward these materials, the inclusion of polar functionalities into the polymer chain is essential. The incorporation of a functional group to trigger controlled polymer degradation is also an emerging area of interest. Currently practiced methods for the incorporation of polar functionalities, such as post-polymerization functionalization, are limited by the number of compatible polar monomers: for example, grafting maleic anhydride is currently the sole method for practical functionalization of PP. In contrast, the incorporation of fundamental polar comonomers into PE and PP chains via coordination insertion polymerization offers good control, making it a highly sought-after process. Early transition metal catalysts (which are commonly used for the production of PE and PP) display poor tolerance toward the functional groups within polar comonomers, limiting their use to less-practical derivatives. As late transition metal catalysts are less-oxophilic and thus more tolerant to polar functionalities, they are ideal candidates for these reactions. This Account focuses on the copolymerization of propylene with polar comonomers, which remains underdeveloped as compared to the corresponding reaction using ethylene. We begin with the challenges associated with the regio- and stereoselective insertion of propylene, which is a particular problem for late transition metal systems because of their propensity to undergo chain walking processes. To overcome this issue, we have investigated a range of metal/ligand combinations. We first discuss attempts with group 4 and 8 metal catalysts and their limitations as background, and then focus on the copolymerization of propylene with methyl acrylate (MA) using Pd/imidazolidine-quinolinolate (IzQO) and Pd/phosphine-sulfonate (PS) precatalysts. Each generated regioregular polymer, but while the system featuring an IzQO ligand did not display any stereocontrol, that using the chiral PS ligand did. A further difference was found in the insertion mode of MA: the Pd/IzQO system inserted in a 1,2 fashion, while in the Pd/PS system a 2,1 insertion was observed. We then move onto recent results from our lab using Pd/PS and Pd/bisphosphine monoxide (BPMO) precatalysts for the copolymerization of propylene with allyl comonomers. These P-stereogeneic precatalysts generated the highest isotacticity values reported to date using late transition metal catalysts. This section closes with our work using Earth-abundant nickel catalysts for the reaction, which would be especially desired for industrial applications: a Ni/phosphine phenolate (PO) precatalyst yielded regioregular polypropylene with the incorporation of some allyl monomers into the main polymer chain. The installation of a chiral menthyl substituent on the phosphine allowed for moderate stereoselectivity to be achieved, though the applicable polar monomers currently remain limited. The Account concludes with a discussion of the factors that affect the insertion mode of propylene and polar comonomers in copolymerization reactions, beginning with our recent computational study, and finishing with work from ourselves and others covering both comonomer and precatalyst steric and electronic profiles with reference to the observed regioselectivity.

15.
J Org Chem ; 87(2): 1502-1506, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-34817180

RESUMEN

Triptycenetribenzoquinone (BQ)3, where the three benzene rings of triptycene are replaced by 1,4-benzoquinone (BQ) rings, is known to be reduced to triptycenetrihydroquinone (HQ)3. In contrast, a molecule where both BQ and HQ moieties coexist in a triptycene framework has never been reported. In this study, triptycenemonohydroquinonedibenzoquinone ((HQ)1(BQ)2) in which one HQ unit and two BQ units coexist was generated by comproportionation between (BQ)3 and (HQ)3 and isolated by recrystallization. We obtained two types of crystals with different hydrogen-bonding structures by changing the cosolvents.


Asunto(s)
Benzoquinonas , Hidroquinonas
16.
J Org Chem ; 87(19): 12733-12740, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36073788

RESUMEN

2,2,6,6-Tetramethylpiperidine-N-oxyl (TEMPO) has been extensively utilized as a radical scavenger or an oxidation catalyst. In contrast, TEMPO as a hydrogen atom transfer (HAT) catalyst has rarely been studied. Here, we report that TEMPO, as the HAT catalyst, homolytically cleaves benzylic or allylic C-H bonds to give the corresponding alkyl radicals. Benefiting from the dual roles played by TEMPO as the HAT catalyst and the radical scavenger, the highly challenging aerobic dehydrogenation of activated alkanes to alkenes is successfully developed.


Asunto(s)
Alquenos , Hidrógeno , Alcanos , Alquenos/química , Óxidos N-Cíclicos , Hidrógeno/química , Estructura Molecular
17.
Macromol Rapid Commun ; 43(9): e2200038, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35257433

RESUMEN

The synthesis of a CF3 -rich perfluoropolyether (PFPE) is achieved via the fluoride-catalyzed reaction of hexafluoropropylene oxide (HFPO) with (trifluoromethyl)trimethylsilane (TMSCF3 , so-called Ruppert-Prakash reagent). Nucleophilic addition of a CF3 anion to HFPO affords an acyl fluoride via the ring-opening of HFPO, followed by fluoride elimination. Further addition of CF3 anions to the acyl fluoride gives tertiary perfluoroalkoxide, which attacks HFPO to regenerate an acyl fluoride. Repetition of the sequence via substitution-polymerization affords a new PFPE as a solid, whose structure was confirmed using 19 F NMR spectroscopy, GC-MS, and MALDI-TOF MS analysis. Thermal and X-ray diffraction analyses revealed a crystalline character. To the best of our knowledge, this is the first example of crystalline PFPE. Based on contact-angle measurements, the critical surface tension of this solid PFPE (13.4 mN m-1 ) suggests a water- and oil-repellency of this CF3 -rich PFPE that is higher than that of polytetrafluoroethylene (PTFE; 18.5 mN m-1 ).


Asunto(s)
Fluoruros , Óxidos , Aniones , Éteres , Fluorocarburos , Hidrocarburos Fluorados/química , Compuestos de Trimetilsililo
18.
Proc Jpn Acad Ser B Phys Biol Sci ; 98(5): 222-226, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35545528

RESUMEN

Introduction of functional groups on polyethylene endows it with a higher surface property and thus various catalysts have been developed for the copolymerization of ethylene with polar vinyl monomers. Aside from vinyl monomers, however, other classes of polar monomers have not found application in the copolymerization with ethylene. Here, in this short review article, our latest studies on catalyst development aiming at the use of non-vinyl polar monomers and the properties of the resulting copolymers are summarized.


Asunto(s)
Etilenos , Polímeros , Catálisis , Polimerizacion
19.
Angew Chem Int Ed Engl ; 61(6): e202111691, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34854528

RESUMEN

While of interest, synthetically feasible access to boryl ligands and complexes remains limited, meaning such complexes remain underexploited in catalysis. For bidentate boryl ligands, oxidative addition of boranes to low-valent IrI or Pt0 are the only examples yet reported. As part of our interest in developing improved group 10 ethylene polymerization catalysts, we present here an optimized synthesis of a novel, rigid borane/phosphine ligand and its Ni0 σ-borane complex. From the latter, an unprecedented oxidative dehydrochloroborylation, to give a NiII boryl complex, was achieved. Furthermore, this new B/P ligand allowed the nickel-catalyzed polymerization of ethylene, which suggests that Ni0 σ-hydroborane complexes act as masked NiII boryl hydride reagents.

20.
Angew Chem Int Ed Engl ; 61(21): e202117096, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35191160

RESUMEN

Herein, we report a novel method for the synthesis of metallabenzenes by swapping the phosphorus atom in an aromatic phosphinine ring with transition metal fragments. The oxidation of a phosphine-phosphinine-phosphine pincer iridium complex by O2 triggered the replacement of the phosphorus atom of the phosphinine ring by an iridium fragment to afford iridabenzene. Dianionic rhodabenzene was also synthesized from a phosphinine rhodium complex by oxidation of the phosphorus atom, followed by subsequent reduction using metallic potassium. The aromaticity of the newly synthesized irida- and rhoda-benzenes was evaluated both experimentally and theoretically.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA