Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Genet ; 17(8): e1009710, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34411103

RESUMEN

DNA methylation plays crucial roles in transposon silencing and genome integrity. CHROMOMETHYLASE3 (CMT3) is a plant-specific DNA methyltransferase responsible for catalyzing DNA methylation at the CHG (H = A, T, C) context. Here, we identified a positive role of CMT3 in heat-induced activation of retrotransposon ONSEN. We found that the full transcription of ONSEN under heat stress requires CMT3. Interestingly, loss-of-function CMT3 mutation led to increased CHH methylation at ONSEN. The CHH methylation is mediated by CMT2, as evidenced by greatly reduced CHH methylation in cmt2 and cmt2 cmt3 mutants coupled with increased ONSEN transcription. Furthermore, we found more CMT2 binding at ONSEN chromatin in cmt3 compared to wild-type accompanied with an ectopic accumulation of H3K9me2 under heat stress, suggesting a collaborative role of H3K9me2 and CHH methylation in preventing heat-induced ONSEN activation. In summary, this study identifies a non-canonical role of CMT3 in preventing transposon silencing and provides new insights into how DNA methyltransferases regulate transcription under stress conditions.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Elementos Transponibles de ADN/ética , ADN-Citosina Metilasas/genética , Arabidopsis/genética , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Respuesta al Choque Térmico , Análisis de Secuencia de ADN , Transcripción Genética
2.
Breed Sci ; 68(2): 168-176, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29875600

RESUMEN

In plants, several transposable elements are conserved across species. We found a homolog of ONSEN, which is a heat-activated retrotransposon originally isolated from Arabidopsis thaliana, in Vigna. The ONSEN-like elements (VaONS) were detected in all the analyzed Japanese accessions of Vigna angularis (adzuki bean) by Southern blot analysis. However, VaONS sequences were observed to be polymorphic in the different accessions. Interestingly, extrachromosomal DNA (ecDNA) was detected in some accessions of adzuki bean, indicating the conserved heat-activation of VaONS. Furthermore, we successfully induced retrotransposition of VaONS in adzuki plant regenerated through callus. Findings of our study should provide a new tool for molecular breeding of adzuki bean.

3.
Plant Cell Physiol ; 58(2): 375-384, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28013279

RESUMEN

A transposition of a heat-activated retrotransposon named ONSEN required compromise of a small RNA-mediated epigenetic regulation that includes RNA-directed DNA methylation (RdDM) machinery after heat treatment. In the current study, we analyzed the transcriptional and transpositional activation of ONSEN to better understand the underlying molecular mechanism involved in the maintenance and/or induction of transposon activation in plant tissue culture. We found the transposition of heat-primed ONSEN during tissue culture independently of RdDM mutation. The heat activation of ONSEN transcripts was not significantly up-regulated in tissue culture compared with that in heat-stressed seedlings, indicating that the transposition of ONSEN was regulated independently of the transcript level. RdDM-related genes were up-regulated by heat stress in both tissue culture and seedlings. The level of DNA methylation of ONSEN did not show any change in tissue culture, and the amount of ONSEN-derived small RNAs was not affected by heat stress. The results indicated that the transposition of ONSEN was regulated by an alternative mechanism in addition to the RdDM-mediated epigenetic regulation in tissue culture. We applied the tissue culture-induced transposition of ONSEN to Japanese radish, an important breeding species of the family Brassicaceae. Several new insertions were detected in a regenerated plant derived from heat-stressed tissues and its self-fertilized progeny, revealing the possibility of molecular breeding without genetic modification.


Asunto(s)
Retroelementos/genética , Brassicaceae/genética , Brassicaceae/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Calor , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Técnicas de Cultivo de Tejidos
4.
Front Plant Sci ; 13: 899105, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35923888

RESUMEN

Transposable elements are present in a wide variety of organisms; however, our understanding of the diversity of mechanisms involved in their activation is incomplete. In this study, we analyzed the transcriptional activation of the ONSEN retrotransposon, which is activated by high-temperature stress in Arabidopsis thaliana. We found that its transcription is significantly higher in the Japanese ecotype Kyoto. Considering that transposons are epigenetically regulated, DNA methylation levels were analyzed, revealing that CHH methylation was reduced in Kyoto compared to the standard ecotype, Col-0. A mutation was also detected in the Kyoto CMT2 gene, encoding a CHH methyltransferase, suggesting that it may be responsible for increased expression of ONSEN. CHH methylation is controlled by histone modifications through a self-reinforcing loop between DNA methyltransferase and histone methyltransferase. Analysis of these modifications revealed that the level of H3K9me2, a repressive histone marker for gene expression, was lower in Kyoto than in Col-0. The level of another repressive histone marker, H3K27me1, was decreased in Kyoto; however, it was not impacted in a Col-0 cmt2 mutant. Therefore, in addition to the CMT2 mutation, other factors may reduce repressive histone modifications in Kyoto.

5.
Genes Genet Syst ; 96(3): 151-158, 2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34373369

RESUMEN

ONSEN is a heat-activated LTR retrotransposon in Arabidopsis thaliana. Screens to identify transcriptional regulatory factors of ONSEN revealed a SWI/SNF-like chromatin remodeling protein, DRD1, which cooperates with plant-specific RNA polymerase and is involved in RNA-directed DNA methylation. ONSEN transcript level was increased in the drd1 mutant relative to wild-type under heat stress, indicating that DRD1 plays a significant role in the silencing of activated ONSEN under the stress condition. The transcript level of HsfA2, which is directly involved in transcriptional activation of ONSEN, was not higher in the drd1 mutant than in the wild-type. Interestingly, no transgenerational transposition of ONSEN was observed in the drd1 mutant, even though DNA methylation levels were significantly reduced and expression levels were increased compared to the wild-type. These results suggest that other factors are involved in the regulation of ONSEN transposition in addition to the transcript level of ONSEN.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina , Ensamble y Desensamble de Cromatina , Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico/genética , Retroelementos/genética
6.
Genes Genet Syst ; 95(4): 165-172, 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-32741853

RESUMEN

The Ty1/copia-like retrotransposon ONSEN is conserved among Brassica species, as well as in beans, including adzuki bean (Vigna angularis (Willd.) Ohwi & Ohashi), which is one of the economically important crops in Japan. ONSEN has acquired a heat-responsive element that is recognized by plant heat stress defense factors, resulting in its transcription and the production of full-length extrachromosomal DNA under conditions with elevated temperatures. DNA methylation plays an important role in regulating the activation of this transposon in plants. Therefore, chemical inhibition of DNA methyltransferases has been utilized to study the effect of DNA methylation on transposon activation. To understand the effect of DNA methylation on ONSEN activation, Arabidopsis thaliana and adzuki bean seedlings were treated with zebularine, which is known to be an effective chemical demethylation agent. The results showed that ONSEN transcription levels were upregulated in zebularine-treated plants. Extrachromosomal DNA of ONSEN also accumulated in the treated plants.


Asunto(s)
Citidina/análogos & derivados , Elementos Transponibles de ADN , Respuesta al Choque Térmico , Arabidopsis , Citidina/farmacología , Metilación de ADN , Vigna/efectos de los fármacos , Vigna/genética
7.
Genes Genet Syst ; 95(4): 183-190, 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-32893196

RESUMEN

Most transposable elements (TEs) are tightly regulated by epigenetic mechanisms such as DNA methylation. RNA-directed DNA methylation (RdDM) is a major control mechanism of TE silencing in plants. We analyzed the transposition activity of a heat-responsive retrotransposon, ONSEN, in Arabidopsis thaliana. Transgenerational transposition was observed in RdDM pathway-deficient mutants upon heat stress. The transposition frequency was higher in the mutants of the upstream processes, but lower in the mutants of the downstream steps, of RdDM. The transposition frequency was not associated with the number of extrachromosomal ONSEN copies. Constitutive heterochromatin of interphase nuclei was dispersed upon heat stress. The degree of decondensation was higher in the RdDM mutants than in wild-type plants subjected to heat stress. We discuss the possible role of RdDM in the regulation of ONSEN transposition upon heat stress.


Asunto(s)
Proteínas de Arabidopsis/genética , Metilación de ADN , Elementos Transponibles de ADN , Arabidopsis , Ensamble y Desensamble de Cromatina , Respuesta al Choque Térmico , Heterocromatina/genética , Mutación
8.
Genes Genet Syst ; 91(6): 293-299, 2017 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-27980240

RESUMEN

Natural accessions are used for studying intraspecies genetic variation in the model plant Arabidopsis thaliana in order to address fundamental questions of evolution. Transposable elements are responsible for a wide range of mutations and play significant roles in shaping a genome over evolutionary time. In the present study, we aimed to characterize ONSEN, a heat-activated long terminal repeat (LTR) retrotransposon, in natural A. thaliana accessions. Southern blot analysis demonstrated that ONSEN was present in all the studied accessions, but the copy number was diverse. Olympia-1 contained a single ONSEN copy, located in the centromere of Chromosome 3. A premature stop codon in Olympia-1 ONSEN presumably abolishes integrase activity, which in turn presumably renders the retrotransposon non-functional. Hybridization of Col-0 with Olympia-1 showed that several ONSEN copies in Col-0 were activated by heat stress and maintained their transpositional activity in the progeny.


Asunto(s)
Arabidopsis/genética , Variaciones en el Número de Copia de ADN , Respuesta al Choque Térmico , Retroelementos , Arabidopsis/fisiología , Cromosomas de las Plantas/genética , Codón de Terminación , Evolución Molecular , Secuencias Repetidas Terminales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA