Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Infect Dis ; 16: 217, 2016 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-27207560

RESUMEN

BACKGROUND: The effectiveness of Long-Lasting Insecticidal Nets and Indoor Residual Spraying in malaria vector control is threatened by vector resistance to insecticides. Knowledge of mosquito habitats and patterns of insecticide resistance would facilitate the development of appropriate vector control strategies. Therefore, we investigated An. coluzzii larval habitats and resistance to insecticides in the Manoka rural island area compared with the Youpwe suburban inland area, in Douala VI and II districts respectively. METHODS: Anopheline larvae and pupae were collected from open water bodies in December 2013 and April 2014 and reared until adult emergence. Two to four day old emerging females were morphologically identified as belonging to the An. gambiae complex and used for WHO susceptibility tests with 4 % DDT, 0.75 % permethrin, and 0.05 % deltamethrin, with or without piperonyl butoxide (PBO) synergist. Control and surviving specimens were identified down to the species using a PCR-RFLP method. Survivors were genotyped for kdr L1014 mutations using Hot Oligonucleotide Ligation Assay. RESULTS: In both study sites, ponds, residual puddles, boats, and drains were identified as the major An. gambiae s.l. larval habitats. A total of 1397 females, including 784 specimens from Manoka and 613 from Youpwe, were used for resistance testing. The two mosquito populations displayed resistance to DDT, permethrin and deltamethrin, with variable mortality rates from 1 % to 90 %. The knock-down times were also significantly increased (at least 2.8 fold). Pre-exposure of mosquitoes to PBO did not impact on their mortality to DDT, conversely the mortality rates to permethrin and deltamethrin were significantly increased (7.56 ≤ X(2) ≤ 48.63, df = 1, p < 0.01), suggesting involvement of P450 oxidases in pyrethroid resistance. A subsample of 400 An. gambiae s.l. specimens including 280 control and 120 survivors from bioassays were all found to be An. coluzzii species. Only the kdr 1014 F mutation was found in survivors, with 88.5 % (N = 76) and 75 % (N = 44) frequencies in Youpwe and Manoka respectively. CONCLUSION: This is the first report of An. coluzzii resistance to insecticides in an insular area in Cameroon. Since permanent larval habitats have been identified, larval source management strategies may be trialed in this area as complementary vector control interventions.


Asunto(s)
Anopheles/efectos de los fármacos , Anopheles/genética , Resistencia a los Insecticidas/efectos de los fármacos , Insecticidas/farmacología , Animales , Camerún , Ecosistema , Femenino , Frecuencia de los Genes , Genotipo , Resistencia a los Insecticidas/genética , Islas , Larva/efectos de los fármacos , Mutación , Nitrilos/farmacología , Permetrina/farmacología , Polimorfismo de Longitud del Fragmento de Restricción , Pupa/efectos de los fármacos , Piretrinas/farmacología
2.
Med Trop Sante Int ; 2(4)2022 12 31.
Artículo en Francés | MEDLINE | ID: mdl-36815176

RESUMEN

Background: The effectiveness of Long-Lasting Insecticidal Nets (LLINs) and indoor residual spraying (IRS) in controlling malaria vectors is hampered by the resistance of anopheles to insecticides. A good knowledge of the breeding sites and of the resistance profile of the vectors could facilitate the development of an appropriate control strategy. This study looks at the larval ecology and the susceptibility profile of An. gambiae s.l. to insecticides in urban and rural areas in Kribi, South Region of Cameroon. Methods: Mosquito breeding sites were categorized and geo-referenced. For each site, larvae were collected and reared and physicochemical parameters were measured in situ. The susceptibility of anopheles to dichlorodiphenyltrichloroethane (DDT), deltamethrin and permethrin, after pre-exposure to piperonyl butoxide (PBO) or not, was evaluated on the reared larvae. The Kdr mutation was detected using the Hot Oligonucleotide Ligation Assay (HOLA). Results: Natural breeding sites of An. gambiae s.l. were tyre tracks (12%, n=10), unbuilt wells (5%, n=4), pools of residual water (57%, n=48), foot and hoof prints, gullies, streams and the banks of the Kienké River (15%, n=13). Artificial breeding sites were abandoned dugouts (11%, n=9). Breeding sites in urban areas were characterized by higher mean values of temperature, conductivity, salinity and turbidity compared to the breeding sites in the rural area. The breeding sites of An. gambiae s.l. in urban Kribi were found to be sunnier than those in rural Kribi. A total of 4320 adults were used for testing, 1 440 mosquitoes from rural Kribi, 1 440 from urban Kribi and 1 440 specimens from the laboratory Kisumu strain. For DDT and deltamethrin, susceptibility tests showed that mortality was lower in a situation of no pre-exposure to PBO than in a situation of pre-exposure to PBO in the two study areas. The frequency of the resistant allele (R) was high for the Kdr West mutation in both urban (0.94) and rural areas in Kribi (0.93). Conclusion: An. gambiae s.l. colonizes a wide range of breeding sites and develops metabolic and mutation resistance to recommended insecticides. The search of alternative molecules for vector control is a necessity.


Asunto(s)
Anopheles , Insecticidas , Animales , Insecticidas/farmacología , DDT , Larva , Camerún , Resistencia a los Insecticidas , Mosquitos Vectores , Ecosistema
3.
Parasit Vectors ; 14(1): 2, 2021 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-33388082

RESUMEN

BACKGROUND: In Mvoua, a village situated in a forested area of Cameroon, recent studies have reported high prevalence of Plasmodium falciparum infection among the population. In order to understand factors that can sustain such a high malaria transmission, we investigated the biology of Anopheles vectors and its susceptibility to insecticides, as well as long-lasting insecticidal net (LLIN) coverage, use and bio-efficacy. METHODS: A longitudinal entomological survey was conducted from July 2018 to April 2019. Adult mosquitoes were collected using the human landing catch (HLC) method and identified using morphological and molecular techniques. Anopheles gambiae (s.l.) larvae were sampled from several stagnant water pools throughout the village and reared to generate F1 adults. The presence of P. falciparum circumsporozoite antigen was detected in the heads and thoraces of mosquitoes collected as adults using an enzyme-linked immunosorbent assay. The insecticide susceptibility status of the local An. gambiae (s.l.) F1 population to the pyrethroid insecticides deltamethrin 0.5% and permethrin 0.75% was determined using World Health Organization-tube bioassays, while the frequency of the knockdown resistance (kdr) mutation was determined by PCR. Coverage, use and physical integrity of LLINs were assessed in households, then cone assays were used to test for their bio-efficacy on both the reference insecticide-susceptible Kisumu strain and on field F1 An. gambiae (s.l.) RESULTS: In total, 110 Anopheles mosquitoes were collected, of which 59.1% were identified as Anopheles funestus (s.l.), 38.18% as An. gambiae (s.l.) and 2.72% as An. ziemanii. Anopheles funestus was the most abundant species except in the long rainy season, when An. gambiae (s.l.) predominated (65.8%). In the dry seasons, vectors were principally endophagous (76% of those collected indoors) while they tended to be exophagous (66% of those collected outdoors) in rainy seasons. High Plasmodium infection was observed in An. gambiae (s.l.) and An. funestus, with a circumsporozoitic rate of 14.29 and 10.77%, respectively. Anopheles gambiae (s.l.) was highly resistant to pyrethroid insecticides (mortality rates: 32% for permethrin and 5% for deltamethrin) and harbored the kdr-L1014F mutation at a high frequency (89.74%). Of the 80 households surveyed, only 47.69% had achieved universal coverage with LLNs. Around 70% of the LLINs sampled were in poor physical condition, with a proportionate hole index > 300. Of the ten LLNs tested, eight were effective against the An. gambiae reference insecticide-susceptible Kisumu strain, showing mortality rate of > 80%, while none of these LLINs were efficient against local An. gamabie (s.l.) populations (mortality rates < 11.5%). CONCLUSION: A combination of elevated P. falciparum infection in Anopheles vector populations, insufficient coverage and loss of effectiveness of LLINs due to physical degradation, as well as high resistance to pyrethroid insecticides is responsible for the persistence of high malaria transmission in forested rural area of Mvoua, Cameroon.


Asunto(s)
Anopheles/fisiología , Bosques , Malaria/transmisión , Mosquitos Vectores/fisiología , Animales , Anopheles/clasificación , Anopheles/efectos de los fármacos , Anopheles/genética , Bioensayo , Camerún/epidemiología , Femenino , Humanos , Mosquiteros Tratados con Insecticida/estadística & datos numéricos , Insecticidas/farmacología , Larva/efectos de los fármacos , Larva/genética , Larva/fisiología , Estudios Longitudinales , Malaria Falciparum , Control de Mosquitos , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA