Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Comput Biol ; 20(8): e1012358, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39146377

RESUMEN

Reducing spillover of zoonotic pathogens is an appealing approach to preventing human disease and minimizing the risk of future epidemics and pandemics. Although the immediate human health benefit of reducing spillover is clear, over time, spillover reduction could lead to counterintuitive negative consequences for human health. Here, we use mathematical models and computer simulations to explore the conditions under which unanticipated consequences of spillover reduction can occur in systems where the severity of disease increases with age at infection. Our results demonstrate that, because the average age at infection increases as spillover is reduced, programs that reduce spillover can actually increase population-level disease burden if the clinical severity of infection increases sufficiently rapidly with age. If, however, immunity wanes over time and reinfection is possible, our results reveal that negative health impacts of spillover reduction become substantially less likely. When our model is parameterized using published data on Lassa virus in West Africa, it predicts that negative health outcomes are possible, but likely to be restricted to a small subset of populations where spillover is unusually intense. Together, our results suggest that adverse consequences of spillover reduction programs are unlikely but that the public health gains observed immediately after spillover reduction may fade over time as the age structure of immunity gradually re-equilibrates to a reduced force of infection.

2.
Expert Rev Vaccines ; 23(1): 294-302, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38372241

RESUMEN

INTRODUCTION: Transmissible vaccines offer a novel approach to suppressing viruses in wildlife populations, with possible applications against viruses that infect humans as zoonoses - Lassa, Ebola, rabies. To ensure safety, current designs propose a recombinant vector platform in which the vector is isolated from the target wildlife population. Because using an endemic vector creates the potential for preexisting immunity to block vaccine transmission, these designs focus on vector viruses capable of superinfection, spreading throughout the host population following vaccination of few individuals. AREAS COVERED: We present original theoretical arguments that, regardless of its R0 value, a recombinant vaccine using a superinfecting vector is not expected to expand its active infection coverage when released into a wildlife population that already carries the vector. However, if superinfection occurs at a high rate such that individuals are repeatedly infected throughout their lives, the immunity footprint in the population can be high despite a low incidence of active vaccine infections. Yet we provide reasons that the above expectation is optimistic. EXPERT OPINION: High vaccine coverage will typically require repeated releases or release into a population lacking the vector, but careful attention to vector choice and vaccine engineering should also help improve transmissible vaccine utility.


Asunto(s)
Vacunas Antirrábicas , Rabia , Sobreinfección , Virus , Humanos , Animales , Rabia/prevención & control , Zoonosis/prevención & control , Vacunas Antirrábicas/genética , Vacunas Sintéticas/genética
3.
Nat Commun ; 15(1): 3589, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678025

RESUMEN

The black rat (Rattus rattus) is a globally invasive species that has been widely introduced across Africa. Within its invasive range in West Africa, R. rattus may compete with the native rodent Mastomys natalensis, the primary reservoir host of Lassa virus, a zoonotic pathogen that kills thousands annually. Here, we use rodent trapping data from Sierra Leone and Guinea to show that R. rattus presence reduces M. natalensis density within the human dwellings where Lassa virus exposure is most likely to occur. Further, we integrate infection data from M. natalensis to demonstrate that Lassa virus zoonotic spillover risk is lower at sites with R. rattus. While non-native species can have numerous negative effects on ecosystems, our results suggest that R. rattus invasion has the indirect benefit of decreasing zoonotic spillover of an endemic pathogen, with important implications for invasive species control across West Africa.


Asunto(s)
Reservorios de Enfermedades , Especies Introducidas , Fiebre de Lassa , Virus Lassa , Murinae , Zoonosis , Animales , Virus Lassa/patogenicidad , Virus Lassa/fisiología , Fiebre de Lassa/transmisión , Fiebre de Lassa/epidemiología , Fiebre de Lassa/virología , Fiebre de Lassa/veterinaria , Reservorios de Enfermedades/virología , Humanos , Ratas , Murinae/virología , Zoonosis/virología , Zoonosis/transmisión , Zoonosis/epidemiología , Sierra Leona/epidemiología , Guinea/epidemiología , Ecosistema , Enfermedades de los Roedores/virología , Enfermedades de los Roedores/epidemiología , Enfermedades de los Roedores/transmisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA