RESUMEN
The mammalian inflammatory response is a rapid and complex physiological reaction to noxious stimuli including microbial pathogens. Although inflammation plays a valuable role in combating infection, its dysregulation often occurs in people and can cause a variety of pathologies, ranging from chronic inflammation, to autoimmunity, to cancer. In recent years, our understanding of both the cellular and molecular networks that regulate inflammation has improved dramatically. Although much of the focus has been on the study of protein regulators of inflammation, recent evidence also points to a critical role for a specific class of noncoding RNAs, called microRNAs (miRNAs), in managing certain features of the inflammatory process. In this review, we discuss recent advances in our understanding of miRNAs and their connection to inflammatory responses. Additionally, we consider the link between perturbations in miRNA levels and the onset of human inflammatory diseases.
Asunto(s)
Inflamación/genética , MicroARNs/genética , Inmunidad Adaptativa/genética , Animales , Autoinmunidad/genética , Enfermedades Transmisibles/genética , Enfermedades Transmisibles/inmunología , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/inmunología , Humanos , Inmunidad Innata/genética , Inflamación/inmunologíaRESUMEN
Despite being a staple of our science, the process of pre-publication peer review has few agreed-upon standards defining its goals or ideal execution. As a community of reviewers and authors, we assembled an evaluation format and associated specific standards for the process as we think it should be practiced. We propose that we apply, debate, and ultimately extend these to improve the transparency of our criticism and the speed with which quality data and ideas become public.
Asunto(s)
Revisión por Pares/normas , Investigación Biomédica/normas , Revisión por Pares/métodos , Publicaciones Periódicas como Asunto/normas , Mejoramiento de la CalidadRESUMEN
Pathogenic fungi reside in the intestinal microbiota but rarely cause disease. Little is known about the interactions between fungi and the immune system that promote commensalism. Here we investigate the role of adaptive immunity in promoting mutual interactions between fungi and host. We find that potentially pathogenic Candida species induce and are targeted by intestinal immunoglobulin A (IgA) responses. Focused studies on Candida albicans reveal that the pathogenic hyphal morphotype, which is specialized for adhesion and invasion, is preferentially targeted and suppressed by intestinal IgA responses. IgA from mice and humans directly targets hyphal-enriched cell-surface adhesins. Although typically required for pathogenesis, C. albicans hyphae are less fit for gut colonization1,2 and we show that immune selection against hyphae improves the competitive fitness of C. albicans. C. albicans exacerbates intestinal colitis3 and we demonstrate that hyphae and an IgA-targeted adhesin exacerbate intestinal damage. Finally, using a clinically relevant vaccine to induce an adhesin-specific immune response protects mice from C. albicans-associated damage during colitis. Together, our findings show that adaptive immunity suppresses harmful fungal effectors, with benefits to both C. albicans and its host. Thus, IgA uniquely uncouples colonization from pathogenesis in commensal fungi to promote homeostasis.
Asunto(s)
Inmunidad Adaptativa , Candida albicans/inmunología , Candida albicans/fisiología , Interacciones Huésped-Patógeno/inmunología , Simbiosis/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Antígenos Fúngicos/inmunología , Candida albicans/patogenicidad , Colitis/inmunología , Colitis/microbiología , Colitis/patología , Femenino , Vacunas Fúngicas/inmunología , Microbioma Gastrointestinal/inmunología , Humanos , Hifa/inmunología , Inmunoglobulina A/inmunología , Masculino , Ratones , Persona de Mediana Edad , Adulto JovenRESUMEN
BACKGROUND: HCC incidence is increasing worldwide due to the obesity epidemic, which drives metabolic dysfunction-associated steatohepatitis (MASH) that can lead to HCC. However, the molecular pathways driving MASH-HCC are poorly understood. We have previously reported that male mice with haploinsufficiency of hypoxia-associated factor, HAF (SART1+/-) spontaneously develop MASH-HCC. However, the cell type(s) responsible for HCC associated with HAF loss are unclear. RESULTS: We generated SART1-floxed mice, which were crossed with mice expressing Cre-recombinase within hepatocytes (Alb-Cre; hepS-/-) or myeloid cells (LysM-Cre, macS-/-). HepS-/- mice (both male and female) developed HCC associated with profound inflammatory and lipid dysregulation suggesting that HAF protects against HCC primarily within hepatocytes. HAF-deficient hepatocytes showed decreased P-p65 and P-p50 and in many components of the NF-κB pathway, which was recapitulated using HAF siRNA in vitro. HAF depletion also triggered apoptosis, suggesting that HAF protects against HCC by suppressing hepatocyte apoptosis. We show that HAF regulates NF-κB activity by regulating transcription of TRADD and RIPK1. Mice fed a high-fat diet (HFD) showed marked suppression of HAF, P-p65 and TRADD within their livers after 26 weeks, but showed profound upregulation of these proteins after 40 weeks, implicating deregulation of the HAF-NF-κB axis in the progression to MASH. In humans, HAF was significantly decreased in livers with simple steatosis but significantly increased in HCC compared with normal liver. CONCLUSIONS: HAF is novel transcriptional regulator of the NF-κB pathway and is a key determinant of cell fate during progression to MASH and MASH-HCC.
RESUMEN
The proinflammatory microRNA-155 (miR-155) is highly expressed in the serum and CNS lesions of patients with multiple sclerosis (MS). Global knockout (KO) of miR-155 in mice confers resistance to a mouse model of MS, experimental autoimmune encephalomyelitis (EAE), by reducing the encephalogenic potential of CNS-infiltrating Th17 T cells. However, cell-intrinsic roles for miR-155 during EAE have not been formally determined. In this study, we use single-cell RNA sequencing and cell-specific conditional miR-155 KOs to determine the importance of miR-155 expression in distinct immune cell populations. Time-course single-cell sequencing revealed reductions in T cells, macrophages, and dendritic cells (DCs) in global miR-155 KO mice compared with wild-type controls at day 21 after EAE induction. Deletion of miR-155 in T cells, driven by CD4 Cre, significantly reduced disease severity similar to global miR-155 KOs. CD11c Cre-mediated deletion of miR-155 in DCs also resulted in a modest yet significant reduction in the development of EAE, with both T cell- and DC-specific KOs showing a reduction in Th17 T cell infiltration into the CNS. Although miR-155 is highly expressed in infiltrating macrophages during EAE, deletion of miR-155 using LysM Cre did not impact disease severity. Taken together, these data show that although miR-155 is highly expressed in most infiltrating immune cells, miR-155 has distinct roles and requirements depending on the cell type, and we have demonstrated this using the gold standard conditional KO approach. This provides insights into which functionally relevant cell types should be targeted by the next generation of miRNA therapeutics.
Asunto(s)
Encefalomielitis Autoinmune Experimental , MicroARNs , Esclerosis Múltiple , Animales , Ratones , Enfermedades Neuroinflamatorias , Células Th17/metabolismo , Encéfalo/patología , Ratones Endogámicos C57BL , Ratones NoqueadosRESUMEN
GM-CSF has been employed as an adjuvant to cancer immunotherapy with mixed results based on dosage. We previously showed that GM-CSF regulated tumor angiogenesis by stimulating soluble vascular endothelial growth factor (VEGF) receptor-1 from monocytes/macrophages in a dose-dependent manner that neutralized free VEGF, and intratumoral injections of high-dose GM-CSF ablated blood vessels and worsened hypoxia in orthotopic polyoma middle T Ag (PyMT) triple-negative breast cancer (TNBC). In this study, we assessed both immunoregulatory and oxygen-regulatory components of low-dose versus high-dose GM-CSF to compare effects on tumor oxygen, vasculature, and antitumor immunity. We performed intratumoral injections of low-dose GM-CSF or saline controls for 3 wk in FVB/N PyMT TNBC. Low-dose GM-CSF uniquely reduced tumor hypoxia and normalized tumor vasculature by increasing NG2+ pericyte coverage on CD31+ endothelial cells. Priming of "cold," anti-PD1-resistant PyMT tumors with low-dose GM-CSF (hypoxia reduced) sensitized tumors to anti-PD1, whereas high-dose GM-CSF (hypoxia exacerbated) did not. Low-dose GM-CSF reduced hypoxic and inflammatory tumor-associated macrophage (TAM) transcriptional profiles; however, no phenotypic modulation of TAMs or tumor-infiltrating lymphocytes were observed by flow cytometry. In contrast, high-dose GM-CSF priming increased infiltration of TAMs lacking the MHC class IIhi phenotype or immunostimulatory marker expression, indicating an immunosuppressive phenotype under hypoxia. However, in anti-PD1 (programmed cell death 1)-susceptible BALB/c 4T1 tumors (considered hot versus PyMT), high-dose GM-CSF increased MHC class IIhi TAMs and immunostimulatory molecules, suggesting disparate effects of high-dose GM-CSF across PyMT versus 4T1 TNBC models. Our data demonstrate a (to our knowledge) novel role for low-dose GM-CSF in reducing tumor hypoxia for synergy with anti-PD1 and highlight why dosage and setting of GM-CSF in cancer immunotherapy regimens require careful consideration.
Asunto(s)
Neoplasias Mamarias Animales , Neoplasias de la Mama Triple Negativas , Animales , Humanos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Macrófagos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Endoteliales/metabolismo , Hipoxia/patología , Oxígeno/metabolismoRESUMEN
Life table response experiments (LTREs) decompose differences in population growth rate between environments into separate contributions from each underlying demographic rate. However, most LTRE analyses make the unrealistic assumption that the relationships between demographic rates and environmental drivers are linear and independent, which may result in diminished accuracy when these assumptions are violated. We extend regression LTREs to incorporate nonlinear (second-order) terms and compare the accuracy of both approaches for three previously published demographic datasets. We show that the second-order approach equals or outperforms the linear approach for all three case studies, even when all of the underlying vital rate functions are linear. Nonlinear vital rate responses to driver changes contributed most to population growth rate responses, but life history changes also made substantial contributions. Our results suggest that moving from linear to second-order LTRE analyses could improve our understanding of population responses to changing environments.
Asunto(s)
Crecimiento Demográfico , Tablas de Vida , Dinámica PoblacionalRESUMEN
The importance of individual target genes for miRNA activity has been difficult to establish. In this issue of Immunity, Lu et al. (2015) disrupt the miR-155 binding site in the SOCS1 3' UTR in the mouse germline and show that this axis is important for T and NK cell function.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Células Asesinas Naturales/inmunología , MicroARNs/genética , Proteínas Supresoras de la Señalización de Citocinas/genética , Linfocitos T Reguladores/inmunología , AnimalesRESUMEN
African savannas are the last stronghold of diverse large-mammal communities, and a major focus of savanna ecology is to understand how these animals affect the relative abundance of trees and grasses. However, savannas support diverse plant life-forms, and human-induced changes in large-herbivore assemblages-declining wildlife populations and their displacement by livestock-may cause unexpected shifts in plant community composition. We investigated how herbivory affects the prevalence of lianas (woody vines) and their impact on trees in an East African savanna. Although scarce (<2% of tree canopy area) and defended by toxic latex, the dominant liana, Cynanchum viminale (Apocynaceae), was eaten by 15 wild large-herbivore species and was consumed in bulk by native browsers during experimental cafeteria trials. In contrast, domesticated ungulates rarely ate lianas. When we experimentally excluded all large herbivores for periods of 8 to 17 y (simulating extirpation), liana abundance increased dramatically, with up to 75% of trees infested. Piecewise exclusion of different-sized herbivores revealed functional complementarity among size classes in suppressing lianas. Liana infestation reduced tree growth and reproduction, but herbivores quickly cleared lianas from trees after the removal of 18-y-old exclosure fences (simulating rewilding). A simple model of liana contagion showed that, without herbivores, the long-term equilibrium could be either endemic (liana-tree coexistence) or an all-liana alternative stable state. We conclude that ongoing declines of wild large-herbivore populations will disrupt the structure and functioning of many African savannas in ways that have received little attention and that may not be mitigated by replacing wildlife with livestock.
Asunto(s)
Cynanchum/crecimiento & desarrollo , Ecosistema , Preferencias Alimentarias , Herbivoria/fisiología , Árboles/crecimiento & desarrollo , África , Animales , Animales Salvajes , Elefantes , Restauración y Remediación Ambiental , Jirafas , Humanos , GanadoRESUMEN
Epidemiological studies have identified a correlation between maternal helminth infections and reduced immunity to some early childhood vaccinations, but the cellular basis for this is poorly understood. Here, we investigated the effects of maternal Schistosoma mansoni infection on steady-state offspring immunity, as well as immunity induced by a commercial tetanus/diphtheria vaccine using a dual IL-4 reporter mouse model of maternal schistosomiasis. We demonstrate that offspring born to S. mansoni infected mothers have reduced circulating plasma cells and peripheral lymph node follicular dendritic cells at steady state. These reductions correlate with reduced production of IL-4 by iNKT cells, the cellular source of IL-4 in the peripheral lymph node during early life. These defects in follicular dendritic cells and IL-4 production were maintained long-term with reduced secretion of IL-4 in the germinal center and reduced generation of TFH, memory B, and memory T cells in response to immunization with tetanus/diphtheria. Using single-cell RNASeq following tetanus/diphtheria immunization of offspring, we identified a defect in cell-cycle and cell-proliferation pathways in addition to a reduction in Ebf-1, a key B-cell transcription factor, in the majority of follicular B cells. These reductions are dependent on the presence of egg antigens in the mother, as offspring born to single-sex infected mothers do not have these transcriptional defects. These data indicate that maternal schistosomiasis leads to long-term defects in antigen-induced cellular immunity, and for the first time provide key mechanistic insight into the factors regulating reduced immunity in offspring born to S. mansoni infected mothers.
Asunto(s)
Linfocitos B/inmunología , Interleucina-4/inmunología , Complicaciones Parasitarias del Embarazo/inmunología , Esquistosomiasis mansoni/inmunología , Animales , Animales Recién Nacidos/inmunología , Vacuna contra Difteria y Tétanos/inmunología , Femenino , Memoria Inmunológica , Ganglios Linfáticos/inmunología , Masculino , Ratones , Células T Asesinas Naturales/inmunología , Embarazo , Efectos Tardíos de la Exposición Prenatal/inmunología , Efectos Tardíos de la Exposición Prenatal/parasitología , RNA-Seq , Células del Estroma/inmunologíaRESUMEN
Chronic inflammation is a contributing factor to most life-shortening human diseases. However, the molecular and cellular mechanisms that sustain chronic inflammatory responses remain poorly understood, making it difficult to treat this deleterious condition. Using a mouse model of age-dependent inflammation that results from a deficiency in miR-146a, we demonstrate that miR-155 contributed to the progressive inflammatory disease that emerged as Mir146a(-/-) mice grew older. Upon analyzing lymphocytes from inflamed versus healthy middle-aged mice, we found elevated numbers of T follicular helper (Tfh) cells, germinal center (GC) B cells, and autoantibodies, all occurring in a miR-155-dependent manner. Further, Cd4-cre Mir155(fl/fl) mice were generated and demonstrated that miR-155 functions in T cells, in addition to its established role in B cells, to promote humoral immunity in a variety of contexts. Taken together, our study discovers that miR-146a and miR-155 counterregulate Tfh cell development that drives aberrant GC reactions during chronic inflammation.
Asunto(s)
Centro Germinal/inmunología , Inflamación/inmunología , MicroARNs/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Traslado Adoptivo , Animales , Autoanticuerpos/biosíntesis , Autoanticuerpos/inmunología , Linfocitos B/inmunología , Antígenos CD4/biosíntesis , Diferenciación Celular/inmunología , Modelos Animales de Enfermedad , Antígeno 2 Relacionado con Fos/genética , Centro Germinal/citología , Inmunidad Humoral , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Interferencia de ARN , ARN Interferente PequeñoRESUMEN
There is heritability to interindividual variation in platelet count, and better understanding of the regulating genetic factors may provide insights for thrombopoiesis. MicroRNAs (miRs) regulate gene expression in health and disease, and megakaryocytes (MKs) deficient in miRs have lower platelet counts, but information about the role of miRs in normal human MK and platelet production is limited. Using genome-wide miR profiling, we observed strong correlations among human bone marrow MKs, platelets, and differentiating cord blood-derived MK cultures, and identified MK miR-125a-5p as associated with human platelet number but not leukocyte or hemoglobin levels. Overexpression and knockdown studies showed that miR-125a-5p positively regulated human MK proplatelet (PP) formation in vitro. Inhibition of miR-125a-5p in vivo lowered murine platelet counts. Analyses of MK and platelet transcriptomes identified LCP1 as a miR-125a-5p target. LCP1 encodes the actin-bundling protein, L-plastin, not previously studied in MKs. We show that miR-125a-5p directly targets and reduces expression of MK L-plastin. Overexpression and knockdown studies show that L-plastin promotes MK progenitor migration, but negatively correlates with human platelet count and inhibits MK PP formation (PPF). This work provides the first evidence for the actin-bundling protein, L-plastin, as a regulator of human MK PPF via inhibition of the late-stage MK invagination system, podosome and PPF, and PP branching. We also provide resources of primary and differentiating MK transcriptomes and miRs associated with platelet counts. miR-125a-5p and L-plastin may be relevant targets for increasing in vitro platelet manufacturing and for managing quantitative platelet disorders.
Asunto(s)
Plaquetas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Megacariocitos/citología , Megacariocitos/metabolismo , Glicoproteínas de Membrana/genética , MicroARNs/genética , Proteínas de Microfilamentos/genética , Trombopoyesis/genética , Actinas/metabolismo , Biomarcadores , Técnicas de Silenciamiento del Gen , Humanos , Glicoproteínas de Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Interferencia de ARNRESUMEN
With advances in nanotechnology, engineered nanomaterial applications are a rapidly growing sector of the economy. Some nanomaterials can reach the brain through nose-to-brain transport. This transport creates concern for potential neurotoxicity of insoluble nanomaterials and a need for toxicity screening tests that detect nose-to-brain transport. Such tests can involve intranasal instillation of aqueous suspensions of nanomaterials in dispersion media that limit particle agglomeration. Unfortunately, protein and some elements in existing dispersion media are suboptimal for potential nose-to-brain transport of nanomaterials because olfactory transport has size- and ion-composition requirements. Therefore, we designed a protein-free dispersion media containing phospholipids and amino acids in an isotonic balanced electrolyte solution, a solution for nasal and olfactory transport (SNOT). SNOT disperses hexagonal boron nitride nanomaterials with a peak particle diameter below 100 nm. In addition, multiwalled carbon nanotubes (MWCNTs) in an established dispersion medium, when diluted with SNOT, maintain dispersion with reduced albumin concentration. Using stereomicroscopy and microscopic examination of plastic sections, dextran dyes dispersed in SNOT are demonstrated in the neuroepithelium of the nose and olfactory bulb of B6;129P2-Omptm3Mom/MomJ mice after intranasal instillation in SNOT. These findings support the potential for SNOT to disperse nanomaterials in a manner permitting nose-to-brain transport for neurotoxicity studies.
Asunto(s)
Nanoestructuras , Nanotubos de Carbono , Administración Intranasal , Animales , Encéfalo/metabolismo , Ratones , Nanoestructuras/toxicidad , Bulbo Olfatorio , Pruebas de ToxicidadRESUMEN
Aging-related chronic inflammation is a risk factor for many human disorders through incompletely understood mechanisms. Aged mice deficient in microRNA (miRNA/miR)-146a succumb to life-shortening chronic inflammation. In this study, we report that miR-155 in T cells contributes to shortened lifespan of miR-146a-/- mice. Using single-cell RNA sequencing and flow cytometry, we found that miR-155 promotes the activation of effector T cell populations, including T follicular helper cells, and increases germinal center B cells and autoantibodies in mice aged over 15 months. Mechanistically, aerobic glycolysis genes are elevated in T cells during aging, and upon deletion of miR-146a, in a T cell miR-155-dependent manner. Finally, skewing T cell metabolism toward aerobic glycolysis by deleting mitochondrial pyruvate carrier recapitulates age-dependent T cell phenotypes observed in miR-146a-/- mice, revealing the sufficiency of metabolic reprogramming to influence immune cell functions during aging. Altogether, these data indicate that T cell-specific miRNAs play pivotal roles in regulating lifespan through their influences on inflammaging.
Asunto(s)
Modelos Animales de Enfermedad , Inflamación/genética , Longevidad/genética , MicroARNs/genética , Linfocitos T/metabolismo , Factores de Edad , Animales , Femenino , Inflamación/inmunología , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Linfocitos T/inmunología , Linfocitos T/patologíaRESUMEN
Identifying regulatory mechanisms that influence inflammation in metabolic tissues is critical for developing novel metabolic disease treatments. Here, we investigated the role of microRNA-146a (miR-146a) during diet-induced obesity in mice. miR-146a is reduced in obese and type 2 diabetic patients and our results reveal that miR-146a-/- mice fed a high-fat diet (HFD) have exaggerated weight gain, increased adiposity, hepatosteatosis, and dysregulated blood glucose levels compared to wild-type controls. Pro-inflammatory genes and NF-κB activation increase in miR-146a-/- mice, indicating a role for this miRNA in regulating inflammatory pathways. RNA-sequencing of adipose tissue macrophages demonstrated a role for miR-146a in regulating both inflammation and cellular metabolism, including the mTOR pathway, during obesity. Further, we demonstrate that miR-146a regulates inflammation, cellular respiration and glycolysis in macrophages through a mechanism involving its direct target Traf6. Finally, we found that administration of rapamycin, an inhibitor of mTOR, was able to rescue the obesity phenotype in miR-146a-/- mice. Altogether, our study provides evidence that miR-146a represses inflammation and diet-induced obesity and regulates metabolic processes at the cellular and organismal levels, demonstrating how the combination of diet and miRNA genetics influences obesity and diabetic phenotypes.
Asunto(s)
Inflamación/prevención & control , Enfermedades Metabólicas/prevención & control , MicroARNs/genética , MicroARNs/metabolismo , Animales , Glucemia/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Humanos , Hiperglucemia/genética , Hiperglucemia/metabolismo , Hiperglucemia/prevención & control , Inflamación/genética , Inflamación/metabolismo , Insulina/sangre , Grasa Intraabdominal/metabolismo , Grasa Intraabdominal/patología , Macrófagos/metabolismo , Masculino , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/antagonistas & inhibidores , FN-kappa B/metabolismo , Obesidad/genética , Obesidad/metabolismo , Obesidad/prevención & control , Proteínas Proto-Oncogénicas c-akt/genética , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética , Aumento de Peso/efectos de los fármacos , Aumento de Peso/genéticaRESUMEN
The purpose of this research was to assess the effects of a microRNA (miRNA) cluster on platelet production. Human chromosome 19q13.41 harbors an evolutionarily conserved cluster of three miRNA genes (MIR99B, MIRLET7E, MIR125A) within 727 base-pairs. We now report that levels of miR-99b-5p, miR-let7e-5p and miR-125a-5p are strongly correlated in human platelets, and all are positively associated with platelet count, but not white blood count or hemoglobin level. Although the cluster regulates hematopoietic stem cell proliferation, the function of this genomic locus in megakaryocyte (MK) differentiation and platelet production is unknown. Furthermore, studies of individual miRNAs do not represent broader effects in the context of a cluster. To address this possibility, MK/platelet lineage-specific Mir-99b/let7e/125a knockout mice were generated. Compared to wild type littermates, cluster knockout mice had significantly lower platelet counts and reduced MK proplatelet formation, but no differences in MK numbers, ploidy, maturation or ultra-structural morphology, and no differences in platelet function. Compared to wild type littermates, knockout mice showed similar survival after pulmonary embolism. The major conclusions are that the effect of the Mir-99b/let7e/125a cluster is confined to a late stage of thrombopoiesis, and this effect on platelet number is uncoupled from platelet function.
Asunto(s)
Plaquetas/metabolismo , Megacariocitos/metabolismo , MicroARNs/genética , Animales , Plaquetas/citología , Eliminación de Gen , Humanos , Megacariocitos/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Familia de Multigenes , Recuento de Plaquetas , Pruebas de Función Plaquetaria , Trombocitopenia/genética , TrombopoyesisRESUMEN
Intracranial (i.c.) infection of susceptible C57BL/6 mice with the neurotropic JHM strain of mouse hepatitis virus (JHMV) (a member of the Coronaviridae family) results in acute encephalomyelitis and viral persistence associated with an immune-mediated demyelinating disease. The present study was undertaken to better understand the molecular pathways evoked during innate and adaptive immune responses as well as the chronic demyelinating stage of disease in response to JHMV infection of the central nervous system (CNS). Using single-cell RNA sequencing analysis (scRNAseq) on flow-sorted CD45-positive (CD45+) cells enriched from brains and spinal cords of experimental mice, we demonstrate the heterogeneity of the immune response as determined by the presence of unique molecular signatures and pathways involved in effective antiviral host defense. Furthermore, we identify potential genes involved in contributing to demyelination as well as remyelination being expressed by both microglia and macrophages. Collectively, these findings emphasize the diversity of the immune responses and molecular networks at defined stages following viral infection of the CNS.IMPORTANCE Understanding the immunological mechanisms contributing to both host defense and disease following viral infection of the CNS is of critical importance given the increasing number of viruses that are capable of infecting and replicating within the nervous system. With this in mind, the present study was undertaken to evaluate the molecular signatures of immune cells within the CNS at defined times following infection with a neuroadapted murine coronavirus using scRNAseq. This approach has revealed that the immunological landscape is diverse, with numerous immune cell subsets expressing distinct mRNA expression profiles that are, in part, dictated by the stage of infection. In addition, these findings reveal new insight into cellular pathways contributing to control of viral replication as well as to neurologic disease.
Asunto(s)
Infecciones del Sistema Nervioso Central/inmunología , Infecciones del Sistema Nervioso Central/virología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Interacciones Huésped-Patógeno/inmunología , Virus de la Hepatitis Murina/fisiología , Animales , Infecciones del Sistema Nervioso Central/genética , Infecciones del Sistema Nervioso Central/patología , Biología Computacional/métodos , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/patología , Encefalomielitis/genética , Encefalomielitis/inmunología , Encefalomielitis/patología , Encefalomielitis/virología , Perfilación de la Expresión Génica , Antígenos H-2/genética , Antígenos H-2/inmunología , Interacciones Huésped-Patógeno/genética , Inmunidad Innata , Ratones , Análisis de Secuencia de ARN , Análisis de la Célula IndividualRESUMEN
BACKGROUND: Unplanned readmission is one of many measures of the quality of care of pediatric patients with neurological conditions. In this multicenter study, we searched for novel risk factors of readmission of patients with neurological conditions. METHODS: We retrieved hospitalization data of patients less than 18 years with one or more neurological conditions. This resulted in a total of 105,834 encounters from 18 hospitals. We included data on patient demographics, prior healthcare resource utilization, neurological conditions, number of other conditions/diagnoses, number of medications, and number of surgical procedures performed. We developed a random intercept logistic regression model using stepwise minimization of Akaike Information Criteria for variable selection. RESULTS: The most important neurological conditions associated with unplanned pediatric readmissions include hydrocephalus, inflammatory diseases of the central nervous system, sleep disorders, disease of myoneural junction and muscle, other central nervous system disorder, other spinal cord conditions (such as vascular myelopathies, and cord compression), and nerve, nerve root and plexus disorders. Current and prior healthcare resource utilization variables, number of medications, other diagnoses, and certain inpatient surgical procedures were associated with changes in odds of readmission. The area under the receiver operator characteristic curve (AUROC) on the independent test set is 0.733 (0.722, 0.743). CONCLUSIONS: Pediatric patients with certain neurological conditions are more likely to be readmitted than others. However, current and prior healthcare resource utilization remain some of the strongest indicators of readmission within this population as in the general pediatric population.
Asunto(s)
Enfermedades del Sistema Nervioso , Readmisión del Paciente , Niño , Femenino , Humanos , Masculino , Enfermedades del Sistema Nervioso/epidemiología , Estudios Retrospectivos , Factores de RiesgoRESUMEN
BACKGROUND: Single cell RNA sequencing (scRNAseq) has provided invaluable insights into cellular heterogeneity and functional states in health and disease. During the analysis of scRNAseq data, annotating the biological identity of cell clusters is an important step before downstream analyses and it remains technically challenging. The current solutions for annotating single cell clusters generally lack a graphical user interface, can be computationally intensive or have a limited scope. On the other hand, manually annotating single cell clusters by examining the expression of marker genes can be subjective and labor-intensive. To improve the quality and efficiency of annotating cell clusters in scRNAseq data, we present a web-based R/Shiny app and R package, Cluster Identity PRedictor (CIPR), which provides a graphical user interface to quickly score gene expression profiles of unknown cell clusters against mouse or human references, or a custom dataset provided by the user. CIPR can be easily integrated into the current pipelines to facilitate scRNAseq data analysis. RESULTS: CIPR employs multiple approaches for calculating the identity score at the cluster level and can accept inputs generated by popular scRNAseq analysis software. CIPR provides 2 mouse and 5 human reference datasets, and its pipeline allows inter-species comparisons and the ability to upload a custom reference dataset for specialized studies. The option to filter out lowly variable genes and to exclude irrelevant reference cell subsets from the analysis can improve the discriminatory power of CIPR suggesting that it can be tailored to different experimental contexts. Benchmarking CIPR against existing functionally similar software revealed that our algorithm is less computationally demanding, it performs significantly faster and provides accurate predictions for multiple cell clusters in a scRNAseq experiment involving tumor-infiltrating immune cells. CONCLUSIONS: CIPR facilitates scRNAseq data analysis by annotating unknown cell clusters in an objective and efficient manner. Platform independence owing to Shiny framework and the requirement for a minimal programming experience allows this software to be used by researchers from different backgrounds. CIPR can accurately predict the identity of a variety of cell clusters and can be used in various experimental contexts across a broad spectrum of research areas.
Asunto(s)
Internet , Anotación de Secuencia Molecular , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Programas Informáticos , Algoritmos , Animales , Secuencia de Bases , Agregación Celular , Análisis por Conglomerados , Bases de Datos Genéticas , Humanos , RatonesRESUMEN
The present study examines functional contributions of microglia in host defense, demyelination, and remyelination following infection of susceptible mice with a neurotropic coronavirus. Treatment with PLX5622, an inhibitor of colony stimulating factor 1 receptor (CSF1R) that efficiently depletes microglia, prior to infection of the central nervous system (CNS) with the neurotropic JHM strain of mouse hepatitis virus (JHMV) resulted in increased mortality compared with control mice that correlated with impaired control of viral replication. Single cell RNA sequencing (scRNASeq) of CD45+ cells isolated from the CNS revealed that PLX5622 treatment resulted in muted CD4+ T cell activation profile that was associated with decreased expression of transcripts encoding MHC class II and CD86 in macrophages but not dendritic cells. Evaluation of spinal cord demyelination revealed a marked increase in white matter damage in PLX5622-treated mice that corresponded with elevated expression of transcripts encoding disease-associated proteins Osteopontin (Spp1), Apolipoprotein E (Apoe), and Triggering receptor expressed on myeloid cells 2 (Trem2) that were enriched within macrophages. In addition, PLX5622 treatment dampened expression of Cystatin F (Cst7), Insulin growth factor 1 (Igf1), and lipoprotein lipase (Lpl) within macrophage populations which have been implicated in promoting repair of damaged nerve tissue and this was associated with impaired remyelination. Collectively, these findings argue that microglia tailor the CNS microenvironment to enhance control of coronavirus replication as well as dampen the severity of demyelination and influence repair.