Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Cell ; 178(3): 600-611.e16, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31348887

RESUMEN

The eukaryotic replicative helicase CMG is a closed ring around double-stranded (ds)DNA at origins yet must transition to single-stranded (ss)DNA for helicase action. CMG must also handle repair intermediates, such as reversed forks that lack ssDNA. Here, using correlative single-molecule fluorescence and force microscopy, we show that CMG harbors a ssDNA gate that enables transitions between ss and dsDNA. When coupled to DNA polymerase, CMG remains on ssDNA, but when uncoupled, CMG employs this gate to traverse forked junctions onto dsDNA. Surprisingly, CMG undergoes rapid diffusion on dsDNA and can transition back onto ssDNA to nucleate a functional replisome. The gate-distinct from that between Mcm2/5 used for origin loading-is intrinsic to CMG; however, Mcm10 promotes strand passage by enhancing the affinity of CMG to DNA. This gating process may explain the dsDNA-to-ssDNA transition of CMG at origins and help preserve CMG on dsDNA during fork repair.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ADN/metabolismo , Replicación del ADN , ADN de Cadena Simple/química , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
2.
Mol Cell ; 77(1): 17-25.e5, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31704183

RESUMEN

Structural and biochemical studies have revealed the basic principles of how the replisome duplicates genomic DNA, but little is known about its dynamics during DNA replication. We reconstitute the 34 proteins needed to form the S. cerevisiae replisome and show how changing local concentrations of the key DNA polymerases tunes the ability of the complex to efficiently recycle these proteins or to dynamically exchange them. Particularly, we demonstrate redundancy of the Pol α-primase DNA polymerase activity in replication and show that Pol α-primase and the lagging-strand Pol δ can be re-used within the replisome to support the synthesis of large numbers of Okazaki fragments. This unexpected malleability of the replisome might allow it to deal with barriers and resource challenges during replication of large genomes.


Asunto(s)
ADN Polimerasa III/genética , Replicación del ADN/genética , ADN/genética , Células Eucariotas/fisiología , ADN Polimerasa I/genética , ADN Primasa/genética , Saccharomyces cerevisiae/genética
3.
Proc Natl Acad Sci U S A ; 121(18): e2319727121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38669181

RESUMEN

The DNA sliding clamp PCNA is a multipurpose platform for DNA polymerases and many other proteins involved in DNA metabolism. The topologically closed PCNA ring needs to be cracked open and loaded onto DNA by a clamp loader, e.g., the well-studied pentameric ATPase complex RFC (RFC1-5). The CTF18-RFC complex is an alternative clamp loader found recently to bind the leading strand DNA polymerase ε and load PCNA onto leading strand DNA, but its structure and the loading mechanism have been unknown. By cryo-EM analysis of in vitro assembled human CTF18-RFC-DNA-PCNA complex, we have captured seven loading intermediates, revealing a detailed PCNA loading mechanism onto a 3'-ss/dsDNA junction by CTF18-RFC. Interestingly, the alternative loader has evolved a highly mobile CTF18 AAA+ module likely to lower the loading activity, perhaps to avoid competition with the RFC and to limit its role to leading strand clamp loading. To compensate for the lost stability due to the mobile AAA+ module, CTF18 has evolved a unique ß-hairpin motif that reaches across RFC2 to interact with RFC5, thereby stabilizing the pentameric complex. Further, we found that CTF18 also contains a separation pin to locally melt DNA from the 3'-end of the primer; this ensures its ability to load PCNA to any 3'-ss/dsDNA junction, facilitated by the binding energy of the E-plug to the major groove. Our study reveals unique structural features of the human CTF18-RFC and contributes to a broader understanding of PCNA loading by the alternative clamp loaders.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas , Microscopía por Crioelectrón , Proteínas Nucleares , Antígeno Nuclear de Célula en Proliferación , Proteína de Replicación C , Humanos , Microscopía por Crioelectrón/métodos , ADN/metabolismo , ADN/química , Replicación del ADN , Modelos Moleculares , Antígeno Nuclear de Célula en Proliferación/metabolismo , Antígeno Nuclear de Célula en Proliferación/química , Unión Proteica , Proteína de Replicación C/metabolismo , Proteína de Replicación C/química
4.
Proc Natl Acad Sci U S A ; 120(52): e2316466120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38109526

RESUMEN

DNA replication in all cells begins with the melting of base pairs at the duplex origin to allow access to single-stranded DNA templates which are replicated by DNA polymerases. In bacteria, origin DNA is presumed to be melted by accessory proteins that allow loading of two ring-shaped replicative helicases around single-strand DNA (ssDNA) for bidirectional unwinding and DNA replication. In eukaryotes, by contrast, two replicative CMG (Cdc45-Mcm2-7-GINS) helicases are initially loaded head to head around origin double-strand DNA (dsDNA), and there does not appear to be a separate origin unwinding factor. This led us to investigate whether head-to-head CMGs use their adenosine triphosphate (ATP)-driven motors to initiate duplex DNA unwinding at the origin. Here, we show that CMG tracks on one strand of the duplex while surrounding it, and this feature allows two head-to-head CMGs to unwind dsDNA by using their respective motors to pull on opposite strands of the duplex. We further show that while CMG is capable of limited duplex unwinding on its own, the extent of unwinding is greatly and rapidly stimulated by addition of the multifunctional CMG-binding protein Mcm10 that is critical for productive initiation of DNA replication in vivo. On the basis of these findings, we propose that Mcm10 is a processivity or positioning factor that helps translate the work performed by the dual CMG motors at the origin into productive unwinding that facilitates bidirectional DNA replication.


Asunto(s)
Proteínas de Mantenimiento de Minicromosoma , Proteínas de Saccharomyces cerevisiae , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Replicación del ADN , ADN/metabolismo , ADN de Cadena Simple/genética
5.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35042821

RESUMEN

The adenosine triphosphate (ATP) analog ATPγS often greatly slows or prevents enzymatic ATP hydrolysis. The eukaryotic CMG (Cdc45, Mcm2 to 7, GINS) replicative helicase is presumed unable to hydrolyze ATPγS and thus unable to perform DNA unwinding, as documented for certain other helicases. Consequently, ATPγS is often used to "preload" CMG onto forked DNA substrates without unwinding before adding ATP to initiate helicase activity. We find here that CMG does hydrolyze ATPγS and couples it to DNA unwinding. Indeed, the rate of unwinding of a 20- and 30-mer duplex fork of different sequences by CMG is only reduced 1- to 1.5-fold using ATPγS compared with ATP. These findings imply that a conformational change is the rate-limiting step during CMG unwinding, not hydrolysis. Instead of using ATPγS for loading CMG onto DNA, we demonstrate here that nonhydrolyzable adenylyl-imidodiphosphate (AMP-PNP) can be used to preload CMG onto a forked DNA substrate without unwinding.


Asunto(s)
Adenosina Trifosfato/análogos & derivados , ADN Helicasas/metabolismo , Complejos Multiproteicos/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Proteínas de Ciclo Celular/metabolismo , ADN/química , ADN Helicasas/genética , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(49): e2216240119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36442086

RESUMEN

Duplication of DNA genomes requires unwinding of the double-strand (ds) DNA so that each single strand (ss) can be copied by a DNA polymerase. The genomes of eukaryotic cells are unwound by two ring-shaped hexameric helicases that initially encircle dsDNA but transition to ssDNA for function as replicative helicases. How the duplex is initially unwound, and the role of the two helicases in this process, is poorly understood. We recently described an initiation mechanism for eukaryotes in which the two helicases are directed inward toward one another and shear the duplex open by pulling on opposite strands of the duplex while encircling dsDNA [L. D. Langston, M. E. O'Donnell, eLife 8, e46515 (2019)]. Two head-to-head T-Antigen helicases are long known to be loaded at the SV40 origin. We show here that T-Antigen tracks head (N-tier) first on ssDNA, opposite the direction proposed for decades. We also find that SV40 T-Antigen tracks directionally while encircling dsDNA and mainly tracks on one strand of the duplex in the same orientation as during ssDNA translocation. Further, two inward directed T-Antigen helicases on dsDNA are able to melt a 150-bp duplex. These findings explain the "rabbit ear" DNA loops observed at the SV40 origin by electron microscopy and reconfigure how the DNA loops emerge from the double hexamer relative to earlier models. Thus, the mechanism of DNA shearing by two opposing helicases is conserved in a eukaryotic viral helicase and may be widely used to initiate origin unwinding of dsDNA genomes.


Asunto(s)
Antígenos Virales de Tumores , ADN Helicasas , Animales , Conejos , Antígenos Virales de Tumores/genética , ADN de Cadena Simple/genética , Replicación del ADN , Eucariontes
7.
Proc Natl Acad Sci U S A ; 119(42): e2211568119, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36215487

RESUMEN

Eukaryotic DNA replication is initiated at multiple chromosomal sites known as origins of replication that are specifically recognized by the origin recognition complex (ORC) containing multiple ATPase sites. In budding yeast, ORC binds to specific DNA sequences known as autonomously replicating sequences (ARSs) that are mostly nucleosome depleted. However, nucleosomes may still inhibit the licensing of some origins by occluding ORC binding and subsequent MCM helicase loading. Using purified proteins and single-molecule visualization, we find here that the ORC can eject histones from a nucleosome in an ATP-dependent manner. The ORC selectively evicts H2A-H2B dimers but leaves the (H3-H4)2 tetramer on DNA. It also discriminates canonical H2A from the H2A.Z variant, evicting the former while retaining the latter. Finally, the bromo-adjacent homology (BAH) domain of the Orc1 subunit is essential for ORC-mediated histone eviction. These findings suggest that the ORC is a bona fide nucleosome remodeler that functions to create a local chromatin environment optimal for origin activity.


Asunto(s)
Nucleosomas , Complejo de Reconocimiento del Origen , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato , Cromatina , ADN/metabolismo , Replicación del ADN , Histonas/metabolismo , Nucleosomas/genética , Complejo de Reconocimiento del Origen/metabolismo , Origen de Réplica
8.
Proc Natl Acad Sci U S A ; 117(48): 30344-30353, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33203675

RESUMEN

The DNA polymerase (Pol) δ of Saccharomyces cerevisiae (S.c.) is composed of the catalytic subunit Pol3 along with two regulatory subunits, Pol31 and Pol32. Pol δ binds to proliferating cell nuclear antigen (PCNA) and functions in genome replication, repair, and recombination. Unique among DNA polymerases, the Pol3 catalytic subunit contains a 4Fe-4S cluster that may sense the cellular redox state. Here we report the 3.2-Šcryo-EM structure of S.c. Pol δ in complex with primed DNA, an incoming ddTTP, and the PCNA clamp. Unexpectedly, Pol δ binds only one subunit of the PCNA trimer. This singular yet extensive interaction holds DNA such that the 2-nm-wide DNA threads through the center of the 3-nm interior channel of the clamp without directly contacting the protein. Thus, a water-mediated clamp and DNA interface enables the PCNA clamp to "waterskate" along the duplex with minimum drag. Pol31 and Pol32 are positioned off to the side of the catalytic Pol3-PCNA-DNA axis. We show here that Pol31-Pol32 binds single-stranded DNA that we propose underlies polymerase recycling during lagging strand synthesis, in analogy to Escherichia coli replicase. Interestingly, the 4Fe-4S cluster in the C-terminal CysB domain of Pol3 forms the central interface to Pol31-Pol32, and this strategic location may explain the regulation of the oxidation state on Pol δ activity, possibly useful during cellular oxidative stress. Importantly, human cancer and other disease mutations map to nearly every domain of Pol3, suggesting that all aspects of Pol δ replication are important to human health and disease.


Asunto(s)
ADN Polimerasa III/química , ADN Polimerasa III/metabolismo , ADN/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Microscopía por Crioelectrón , ADN/química , ADN Polimerasa III/ultraestructura , Didesoxinucleótidos/química , Didesoxinucleótidos/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Modelos Moleculares , Mutación/genética , Neoplasias/genética , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Nucleótidos de Timina/química , Nucleótidos de Timina/metabolismo
9.
Proc Natl Acad Sci U S A ; 117(48): 30354-30361, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33199603

RESUMEN

Efficient and faithful replication of the genome is essential to maintain genome stability. Replication is carried out by a multiprotein complex called the replisome, which encounters numerous obstacles to its progression. Failure to bypass these obstacles results in genome instability and may facilitate errors leading to disease. Cells use accessory helicases that help the replisome bypass difficult barriers. All eukaryotes contain the accessory helicase Pif1, which tracks in a 5'-3' direction on single-stranded DNA and plays a role in genome maintenance processes. Here, we reveal a previously unknown role for Pif1 in replication barrier bypass. We use an in vitro reconstituted Saccharomyces cerevisiae replisome to demonstrate that Pif1 enables the replisome to bypass an inactive (i.e., dead) Cas9 (dCas9) R-loop barrier. Interestingly, dCas9 R-loops targeted to either strand are bypassed with similar efficiency. Furthermore, we employed a single-molecule fluorescence visualization technique to show that Pif1 facilitates this bypass by enabling the simultaneous removal of the dCas9 protein and the R-loop. We propose that Pif1 is a general displacement helicase for replication bypass of both R-loops and protein blocks.


Asunto(s)
Replicación del ADN , ADN/genética , ADN/metabolismo , Estructuras R-Loop , Proteínas de Unión a Telómeros/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , ADN/química , Edición Génica , Modelos Biológicos , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , ARN Guía de Kinetoplastida
10.
Subcell Biochem ; 96: 233-258, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33252731

RESUMEN

In all cell types, a multi-protein machinery is required to accurately duplicate the large duplex DNA genome. This central life process requires five core replisome factors in all cellular life forms studied thus far. Unexpectedly, three of the five core replisome factors have no common ancestor between bacteria and eukaryotes. Accordingly, the replisome machines of bacteria and eukaryotes have important distinctions in the way that they are organized and function. This chapter outlines the major replication proteins that perform DNA duplication at replication forks, with particular attention to differences and similarities in the strategies used by eukaryotes and bacteria.


Asunto(s)
Replicación del ADN , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Bacterias/enzimología , Bacterias/genética , Eucariontes/enzimología , Eucariontes/genética
11.
Proc Natl Acad Sci U S A ; 116(3): 798-803, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30598452

RESUMEN

The 11-subunit eukaryotic replicative helicase CMG (Cdc45, Mcm2-7, GINS) tightly binds Mcm10, an essential replication protein in all eukaryotes. Here we show that Mcm10 has a potent strand-annealing activity both alone and in complex with CMG. CMG-Mcm10 unwinds and then reanneals single strands soon after they have been unwound in vitro. Given the DNA damage and replisome instability associated with loss of Mcm10 function, we examined the effect of Mcm10 on fork regression. Fork regression requires the unwinding and pairing of newly synthesized strands, performed by a specialized class of ATP-dependent DNA translocases. We show here that Mcm10 inhibits fork regression by the well-known fork reversal enzyme SMARCAL1. We propose that Mcm10 inhibits the unwinding of nascent strands to prevent fork regression at normal unperturbed replication forks, either by binding the fork junction to form a block to SMARCAL1 or by reannealing unwound nascent strands to their parental template. Analysis of the CMG-Mcm10 complex by cross-linking mass spectrometry reveals Mcm10 interacts with six CMG subunits, with the DNA-binding region of Mcm10 on the N-face of CMG. This position on CMG places Mcm10 at the fork junction, consistent with a role in regulating fork regression.


Asunto(s)
ADN Helicasas/metabolismo , Replicación del ADN , ADN/metabolismo , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Humanos , Espectrometría de Masas , Proteína de Replicación A/metabolismo
12.
Biochem Soc Trans ; 48(6): 2769-2778, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33300972

RESUMEN

The replication of DNA in chromosomes is initiated at sequences called origins at which two replisome machines are assembled at replication forks that move in opposite directions. Interestingly, in vivo studies observe that the two replication forks remain fastened together, often referred to as a replication factory. Replication factories containing two replisomes are well documented in cellular studies of bacteria (Escherichia coli and Bacillus subtilis) and the eukaryote, Saccharomyces cerevisiae. This basic twin replisome factory architecture may also be preserved in higher eukaryotes. Despite many years of documenting the existence of replication factories, the molecular details of how the two replisome machines are tethered together has been completely unknown in any organism. Recent structural studies shed new light on the architecture of a eukaryote replisome factory, which brings with it a new twist on how a replication factory may function.


Asunto(s)
Bacillus subtilis/metabolismo , Replicación del ADN , Escherichia coli/metabolismo , Origen de Réplica , Saccharomyces cerevisiae/metabolismo , Cromosomas/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Dimerización , Epigénesis Genética , Nucleosomas/metabolismo , Multimerización de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Bioessays ; 40(3)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29405332

RESUMEN

The eukaryotic helicase is an 11-subunit machine containing an Mcm2-7 motor ring that encircles DNA, Cdc45 and the GINS tetramer, referred to as CMG (Cdc45, Mcm2-7, GINS). CMG is "built" on DNA at origins in two steps. First, two Mcm2-7 rings are assembled around duplex DNA at origins in G1 phase, forming the Mcm2-7 "double hexamer." In a second step, in S phase Cdc45 and GINS are assembled onto each Mcm2-7 ring, hence producing two CMGs that ultimately form two replication forks that travel in opposite directions. Here, we review recent findings about CMG structure and function. The CMG unwinds the parental duplex and is also the organizing center of the replisome: it binds DNA polymerases and other factors. EM studies reveal a 20-subunit core replisome with the leading Pol ϵ and lagging Pol α-primase on opposite faces of CMG, forming a fundamentally asymmetric architecture. Structural studies of CMG at a replication fork reveal unexpected details of how CMG engages the DNA fork. The structures of CMG and the Mcm2-7 double hexamer on DNA suggest a completely unanticipated process for formation of bidirectional replication forks at origins.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN/química , ADN/química , Proteínas de Mantenimiento de Minicromosoma/química , Proteínas Nucleares/química , Proteínas de Saccharomyces cerevisiae/química , Animales , Sitios de Unión , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Encephalitozoon cuniculi/genética , Encephalitozoon cuniculi/metabolismo , Fase G1 , Humanos , Proteínas de Mantenimiento de Minicromosoma/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Modelos Moleculares , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformación de Ácido Nucleico , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo
14.
Proc Natl Acad Sci U S A ; 114(4): 675-680, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28069954

RESUMEN

The eukaryotic genome is primarily replicated by two DNA polymerases, Pol ε and Pol δ, that function on the leading and lagging strands, respectively. Previous studies have established recruitment mechanisms whereby Cdc45-Mcm2-7-GINS (CMG) helicase binds Pol ε and tethers it to the leading strand, and PCNA (proliferating cell nuclear antigen) binds tightly to Pol δ and recruits it to the lagging strand. The current report identifies quality control mechanisms that exclude the improper polymerase from a particular strand. We find that the replication factor C (RFC) clamp loader specifically inhibits Pol ε on the lagging strand, and CMG protects Pol ε against RFC inhibition on the leading strand. Previous studies show that Pol δ is slow and distributive with CMG on the leading strand. However, Saccharomyces cerevisiae Pol δ-PCNA is a rapid and processive enzyme, suggesting that CMG may bind and alter Pol δ activity or position it on the lagging strand. Measurements of polymerase binding to CMG demonstrate Pol ε binds CMG with a Kd value of 12 nM, but Pol δ binding CMG is undetectable. Pol δ, like bacterial replicases, undergoes collision release upon completing replication, and we propose Pol δ-PCNA collides with the slower CMG, and in the absence of a stabilizing Pol δ-CMG interaction, the collision release process is triggered, ejecting Pol δ on the leading strand. Hence, by eviction of incorrect polymerases at the fork, the clamp machinery directs quality control on the lagging strand and CMG enforces quality control on the leading strand.


Asunto(s)
ADN Polimerasa III/metabolismo , ADN Polimerasa II/metabolismo , Replicación del ADN/genética , Células Eucariotas/metabolismo , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Control de Calidad , ARN Polimerasa Dependiente del ARN/metabolismo , Proteína de Replicación C/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Proc Natl Acad Sci U S A ; 114(44): 11733-11738, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29078353

RESUMEN

Replicative DNA polymerases misincorporate ribonucleoside triphosphates (rNTPs) into DNA approximately once every 2,000 base pairs synthesized. Ribonucleotide excision repair (RER) removes ribonucleoside monophosphates (rNMPs) from genomic DNA, replacing the error with the appropriate deoxyribonucleoside triphosphate (dNTP). Ribonucleotides represent a major threat to genome integrity with the potential to cause strand breaks. Furthermore, it has been shown in the bacterium Bacillus subtilis that loss of RER increases spontaneous mutagenesis. Despite the high rNTP error rate and the effect on genome integrity, the mechanism underlying mutagenesis in RER-deficient bacterial cells remains unknown. We performed mutation accumulation lines and genome-wide mutational profiling of B. subtilis lacking RNase HII, the enzyme that incises at single rNMP residues initiating RER. We show that loss of RER in B. subtilis causes strand- and sequence-context-dependent GC → AT transitions. Using purified proteins, we show that the replicative polymerase DnaE is mutagenic within the sequence context identified in RER-deficient cells. We also found that DnaE does not perform strand displacement synthesis. Given the use of nucleotide excision repair (NER) as a backup pathway for RER in RNase HII-deficient cells and the known mutagenic profile of DnaE, we propose that misincorporated ribonucleotides are removed by NER followed by error-prone resynthesis with DnaE.


Asunto(s)
Bacillus subtilis/genética , ADN Bacteriano/genética , Ribonucleótidos/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , ADN Polimerasa I/genética , ADN Polimerasa I/metabolismo , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica/fisiología , Modelos Biológicos , Mutagénesis , Mutación , Ribonucleasa H/genética , Ribonucleasa H/metabolismo
16.
Proc Natl Acad Sci U S A ; 114(40): 10630-10635, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28923950

RESUMEN

The replisome, the multiprotein system responsible for genome duplication, is a highly dynamic complex displaying a large number of different enzyme activities. Recently, the Saccharomyces cerevisiae minimal replication reaction has been successfully reconstituted in vitro. This provided an opportunity to uncover the enzymatic activities of many of the components in a eukaryotic system. Their dynamic behavior and interactions in the context of the replisome, however, remain unclear. We use a tethered-bead assay to provide real-time visualization of leading-strand synthesis by the S. cerevisiae replisome at the single-molecule level. The minimal reconstituted leading-strand replisome requires 24 proteins, forming the CMG helicase, the Pol ε DNA polymerase, the RFC clamp loader, the PCNA sliding clamp, and the RPA single-stranded DNA binding protein. We observe rates and product lengths similar to those obtained from ensemble biochemical experiments. At the single-molecule level, we probe the behavior of two components of the replication progression complex and characterize their interaction with active leading-strand replisomes. The Minichromosome maintenance protein 10 (Mcm10), an important player in CMG activation, increases the number of productive replication events in our assay. Furthermore, we show that the fork protection complex Mrc1-Tof1-Csm3 (MTC) enhances the rate of the leading-strand replisome threefold. The introduction of periods of fast replication by MTC leads to an average rate enhancement of a factor of 2, similar to observations in cellular studies. We observe that the MTC complex acts in a dynamic fashion with the moving replisome, leading to alternating phases of slow and fast replication.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Replicación del ADN/fisiología , ADN de Hongos/biosíntesis , Proteínas de Unión al ADN/metabolismo , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Proteínas de Mantenimiento de Minicromosoma/genética , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
17.
Proc Natl Acad Sci U S A ; 114(5): E697-E706, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28096349

RESUMEN

The eukaryotic CMG (Cdc45, Mcm2-7, GINS) helicase consists of the Mcm2-7 hexameric ring along with five accessory factors. The Mcm2-7 heterohexamer, like other hexameric helicases, is shaped like a ring with two tiers, an N-tier ring composed of the N-terminal domains, and a C-tier of C-terminal domains; the C-tier contains the motor. In principle, either tier could translocate ahead of the other during movement on DNA. We have used cryo-EM single-particle 3D reconstruction to solve the structure of CMG in complex with a DNA fork. The duplex stem penetrates into the central channel of the N-tier and the unwound leading single-strand DNA traverses the channel through the N-tier into the C-tier motor, 5'-3' through CMG. Therefore, the N-tier ring is pushed ahead by the C-tier ring during CMG translocation, opposite the currently accepted polarity. The polarity of the N-tier ahead of the C-tier places the leading Pol ε below CMG and Pol α-primase at the top of CMG at the replication fork. Surprisingly, the new N-tier to C-tier polarity of translocation reveals an unforeseen quality-control mechanism at the origin. Thus, upon assembly of head-to-head CMGs that encircle double-stranded DNA at the origin, the two CMGs must pass one another to leave the origin and both must remodel onto opposite strands of single-stranded DNA to do so. We propose that head-to-head motors may generate energy that underlies initial melting at the origin.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Mantenimiento de Minicromosoma/química , Proteínas Nucleares/química , Proteínas de Saccharomyces cerevisiae/química , Replicación del ADN , ADN de Cadena Simple/química , Modelos Moleculares , Conformación Proteica , Origen de Réplica
18.
Proc Natl Acad Sci U S A ; 113(26): E3639-48, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27298353

RESUMEN

Several important physiological transactions, including control of replicative life span (RLS), prevention of collision between replication and transcription, and cellular differentiation, require programmed replication fork arrest (PFA). However, a general mechanism of PFA has remained elusive. We previously showed that the Tof1-Csm3 fork protection complex is essential for PFA by antagonizing the Rrm3 helicase that displaces nonhistone protein barriers that impede fork progression. Here we show that mutations of Dbf4-dependent kinase (DDK) of Saccharomyces cerevisiae, but not other DNA replication factors, greatly reduced PFA at replication fork barriers in the spacer regions of the ribosomal DNA array. A key target of DDK is the mini chromosome maintenance (Mcm) 2-7 complex, which is known to require phosphorylation by DDK to form an active CMG [Cdc45 (cell division cycle gene 45), Mcm2-7, GINS (Go, Ichi, Ni, and San)] helicase. In vivo experiments showed that mutational inactivation of DDK caused release of Tof1 from the chromatin fractions. In vitro binding experiments confirmed that CMG and/or Mcm2-7 had to be phosphorylated for binding to phospho-Tof1-Csm3 but not to its dephosphorylated form. Suppressor mutations that bypass the requirement for Mcm2-7 phosphorylation by DDK restored PFA in the absence of the kinase. Retention of Tof1 in the chromatin fraction and PFA in vivo was promoted by the suppressor mcm5-bob1, which bypassed DDK requirement, indicating that under this condition a kinase other than DDK catalyzed the phosphorylation of Tof1. We propose that phosphorylation regulates the recruitment and retention of Tof1-Csm3 by the replisome and that this complex antagonizes the Rrm3 helicase, thereby promoting PFA, by preserving the integrity of the Fob1-Ter complex.


Asunto(s)
ADN Helicasas/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética
19.
Adv Exp Med Biol ; 1042: 207-228, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29357060

RESUMEN

Eukaryotic replication proteins are highly conserved, and thus study of Saccharomyces cerevisiae replication can inform about this central process in higher eukaryotes including humans. The S. cerevisiae replisome is a large and dynamic assembly comprised of ~50 proteins. The core of the replisome is composed of 31 different proteins including the 11-subunit CMG helicase; RFC clamp loader pentamer; PCNA clamp; the heteroligomeric DNA polymerases ε, δ, and α-primase; and the RPA heterotrimeric single strand binding protein. Many additional protein factors either travel with or transiently associate with these replisome proteins at particular times during replication. In this chapter, we summarize several recent structural studies on the S. cerevisiae replisome and its subassemblies using single particle electron microscopy and X-ray crystallography. These recent structural studies have outlined the overall architecture of a core replisome subassembly and shed new light on the mechanism of eukaryotic replication.


Asunto(s)
Replicación del ADN/fisiología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Animales , ADN Helicasas/química , ADN Helicasas/metabolismo , ADN Polimerasa II/química , ADN Polimerasa II/metabolismo , Humanos , Multimerización de Proteína , Estructura Cuaternaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA