Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Curr Opin Urol ; 34(4): 227-235, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38757170

RESUMEN

PURPOSE OF REVIEW: The purpose of this review is to explore new strategies to treat bladder cancer. This article addresses challenges and opportunities in intravesical therapy of bladder cancer. RECENT FINDINGS: The review examines the latest advances in the development of preclinical approaches for intravesical therapy of bladder cancer. It discusses strategies to improve drug delivery efficiency by using synthesized diverse carriers. Immunotherapy with protein aggregate magnesium-ammonium phospholinoleate-palmitoleate anhydride has been shown to be more effective than intravesical Bacillus Calmette-Guerin. Novel drug delivery systems such the urinary drug-disposing strategy and intravesical nanoparticle formulations improve the drug delivery efficiency while minimizing adverse reactions. Innovative imaging techniques using near-infrared fluorescence probes and multifunctional nano-transformers enable real-time detection and targeted therapy in bladder cancer treatment. SUMMARY: Treatment of bladder cancer is clinically challenging. However, recent progress in drug delivery technologies shows promise. Optimizing these technologies helps improve patient outcomes, and facilitates clinical translation of different treatment modalities.


Asunto(s)
Sistemas de Liberación de Medicamentos , Neoplasias de la Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/terapia , Humanos , Administración Intravesical , Sistemas de Liberación de Medicamentos/métodos , Inmunoterapia/métodos , Antineoplásicos/administración & dosificación , Animales , Nanopartículas/administración & dosificación
2.
Chembiochem ; 23(14): e202200126, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35362644

RESUMEN

The new variant of concern of SARS-CoV-2, namely Omicron, has triggered global fear recently. To date, our knowledge of Omicron, particularly of how S glycoprotein mutations affect the infectivity of the virus and the severity of the infection, is far from complete. This hinders our ability to treat the disease and to predict the future state of SARS-CoV-2 threats to well-being and economic stability. Despite this, efforts have been made to unveil the routes of transmission and the efficiency of existing vaccines in tackling Omicron. This article reviews the latest understanding of Omicron and the current status of the use of vaccines and drugs for infection control. It is hoped that this article can offer insights into the development of more effective measures to tackle the pandemic.


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , SARS-CoV-2/genética
3.
Int J Nanomedicine ; 19: 5059-5070, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38836007

RESUMEN

Purpose: The purpose of this study is to address the need for efficient drug delivery with high drug encapsulation efficiency and sustained drug release. We aim to create nanoparticle-loaded microgels for potential applications in treatment development. Methods: We adopted the process of ionic gelation to generate microgels from sodium alginate and carboxymethyl cellulose. These microgels were loaded with doxorubicin-conjugated amine-functionalized zinc ferrite nanoparticles (AZnFe-NPs). The systems were characterized using various techniques. Toxicity was evaluated in MCF-7 cells. In vitro release studies were conducted at different pH levels at 37 oC, with the drug release kinetics being analyzed using various models. Results: The drug encapsulation efficiency of the created carriers was as high as 70%. The nanoparticle-loaded microgels exhibited pH-responsive behavior and sustained drug release. Drug release from them was mediated via a non-Fickian type of diffusion. Conclusion: Given their high drug encapsulation efficiency, sustained drug release and pH-responsiveness, our nanoparticle-loaded microgels show promise as smart carriers for future treatment applications. Further development and research can significantly benefit the field of drug delivery and treatment development.


Asunto(s)
Preparaciones de Acción Retardada , Doxorrubicina , Portadores de Fármacos , Liberación de Fármacos , Compuestos Férricos , Microgeles , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación , Humanos , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Preparaciones de Acción Retardada/farmacología , Células MCF-7 , Compuestos Férricos/química , Concentración de Iones de Hidrógeno , Microgeles/química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Alginatos/química , Aminas/química , Carboximetilcelulosa de Sodio/química , Nanopartículas/química , Zinc/química , Compuestos de Zinc/química , Supervivencia Celular/efectos de los fármacos
4.
Int J Nanomedicine ; 17: 589-601, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35173432

RESUMEN

PURPOSE: Magnetic nanoparticles have been used in diverse pharmaceutical applications because they can potentially be used to target specific sites. In the present work, a new type of nanocomposites is designed as a carrier of controlled bioactive agent delivery. METHODS: Amine-functionalized magnetic nanoparticles (amine-MNPs) are coupled with carboxymethyl chitosan (CMC) to generate the nanocomposites, namely MNPs-CMC, which can be further loaded with doxorubicin (DOX) to produce MNPs-CMC-DOX. The generated nanocomposites are characterized by using various techniques (including FTIR, 1H-NMR, DSC, TGA, SEM, TEM and XRD). In vitro drug release studies are conducted in PBS with different pH values (1.2 and 6.8) at different temperatures (25°C and 37°C). The toxicity of the nanocomposites is tested in MCF-7 and 3T3 cells. The ROS-generating capacity of the nanocomposites is determined in treated cells using 2',7'-dichlorodihydrofluorescein diacetate. RESULTS: The structures of MNPs, CMC, and nanocomposites are confirmed by FTIR, XRD, and 1H-NMR data reveals the formation of CMC from chitosan (CS). The size of MNPs is estimated by TEM to be around 25 nm. After conjugation with CMC, the size of the nanocomposites increases to 46-57 nm. Based on the release profiles of MNPs-CMC-DOX, our nanocomposites are pH-responsive. In addition, our nanocomposites show reactive oxygen species (ROS)-generating capacity and cell type-dependent toxicity. CONCLUSION: Our nanocomposites show high potential for use in bioactive agent delivery. Along with their ROS-generating capacity, they warrant further development as pH-responsive carriers for therapeutic applications.


Asunto(s)
Quitosano , Nanopartículas de Magnetita , Nanocompuestos , Aminas , Animales , Quitosano/química , Doxorrubicina/química , Doxorrubicina/farmacología , Portadores de Fármacos/química , Liberación de Fármacos , Concentración de Iones de Hidrógeno , Nanopartículas de Magnetita/química , Ratones , Especies Reactivas de Oxígeno
5.
Drug Deliv ; 29(1): 2481-2490, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35912830

RESUMEN

The development of effective carriers enabling combination cancer therapy is of practical importance due to its potential to enhance the effectiveness of cancer treatment. However, most of the reported carriers are monofunctional in nature. The carriers that can be applied to concomitantly mediate multiple treatment modalities are highly deficient. This study fills this gap by reporting the design and fabrication of ROS-generating carbohydrate-based pH-responsive beads with intrinsic anticancer therapy and multidrug co-delivery capacity for combination cancer therapy. Sodium alginate (SA) microspheres and reduced graphene oxide (rGO)-embedded chitosan (CS) beads are developed via emulsion-templated ionic gelation for a combination therapy involving co-delivery of curcumin (CUR) and 5-fluororacil (5-FU). Drug-encapsulated microbeads are characterized by FTIR, DSC, TGA, XRD, and SEM. 5-FU and CUR-encapsulated microbeads are subjected to in vitro drug release studies at pH 6.8 and 1.2 at 37 °C. Various release kinetic parameters are evaluated. The results show that the Korsmeyer-Peppas model and non-Fickian release kinetics are best suited. The microspheres and microbeads are found to effectively act against MCF7 cells and show intrinsic anticancer capacity. These results indicate the promising performance of our beads in mediating combination drug therapy to improve the effectiveness of cancer treatment.


Asunto(s)
Quitosano , Curcumina , Neoplasias , Alginatos/química , Quitosano/química , Curcumina/química , Curcumina/farmacología , Portadores de Fármacos/química , Liberación de Fármacos , Fluorouracilo/química , Grafito , Humanos , Concentración de Iones de Hidrógeno , Microesferas , Especies Reactivas de Oxígeno
6.
Drug Deliv ; 28(1): 1562-1568, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34286634

RESUMEN

The present study reports the generation of 2-hydroxyethyl starch microparticles for co-delivery and controlled release of multiple agents. The obtained microparticles are characterized by using Fourier transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction analysis, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. By using ofloxacin and ketoprofen as drug models, the release sustainability of the microparticles is examined at pH 1.2, 5.4, and 6.8 at 37 °C, with Fickian diffusion being found to be the major mechanism controlling the kinetics of drug release. Upon being loaded with the drug models, the microparticles show high efficiency in acting against Escherichia coli and Bacillus cereus. The results suggest that our reported microparticles warrant further development for applications in which co-administration of multiple bioactive agents is required.


Asunto(s)
Portadores de Fármacos/química , Derivados de Hidroxietil Almidón/química , Cetoprofeno/administración & dosificación , Ofloxacino/administración & dosificación , Bacillus cereus/efectos de los fármacos , Rastreo Diferencial de Calorimetría , Química Farmacéutica , Liberación de Fármacos , Escherichia coli/efectos de los fármacos , Concentración de Iones de Hidrógeno , Cetoprofeno/farmacología , Ofloxacino/farmacología , Tamaño de la Partícula , Solubilidad
7.
Drug Deliv ; 28(1): 1594-1602, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34308729

RESUMEN

Nanogels have high tunability and stability while being able to sense and respond to external stimuli by showing changes in the gel volume, water content, colloidal stability, mechanical strength, and other physical/chemical properties. In this article, advances in the preparation of nanogels will be reviewed. The application potential of nanogels in drug delivery will also be highlighted. It is the objective of this article to present a snapshot of the recent knowledge of nanogel preparation and application for future research in drug delivery.


Asunto(s)
Portadores de Fármacos/química , Nanogeles/química , Polímeros/química , Química Farmacéutica , Reactivos de Enlaces Cruzados/química , Liberación de Fármacos , Emulsiones/química , Humanos , Peso Molecular
8.
Pharmaceutics ; 13(3)2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33670952

RESUMEN

The development of combination therapy has received great attention in recent years because of its potential to achieve higher therapeutic efficacy than that achieved by mono-drug therapy. Carriers for effective and stimuli-responsive co-delivery of multiple agents, however, are highly deficient at the moment. To address this need, this study reports the generation of multi-component hydrogel beads incorporated with reduced graphene oxide (rGO). The beads are prepared by incorporating doxorubicin (DOX)-loaded gelatine (GL) microbeads into hydrogel beads containing rGO and 5-fluorouracil (5-FU). rGO-containing beads are shown to be more effective in inhibiting the growth of MCF-7 cells via the induction of reactive oxygen species (ROS) generation. In addition, the drug release sustainability of the beads is affected by the pH of the release medium, with the release rate increasing in neutral pH but decreasing in the acidic environment. Our beads warrant further development as carriers for pH-responsive and controlled co-delivery of multiple agents.

9.
Front Chem ; 9: 777079, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35118048

RESUMEN

Polymer composites have found applications in diverse areas, ranging from the manufacturing of portable electronic devices to the fabrication of bioactive agent carriers. This article reports the preparation of composite films consisting of sodium alginate (SA) and lithium silver oxide (LAO) nanoparticles. The films are generated by solution casting; whereas the nanoparticles are fabricated by using the hydrothermal method. The effects of the nanoparticles on the morphological, thermal, and dielectric properties of the films are examined by using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Electrical measurements are also performed to determine the dielectric constant (ε'), dielectric loss (ε″), AC conductivity (σac), electrical moduli (M' and M″), and impedance (Z' and Z″). The composite films are shown to be crystalline in nature, with nanoparticles having a diameter of 30-45 nm effectively disseminated in the polymer matrix. They also display good dielectric properties. Our results suggest that the films warrant further exploration for possible use in microelectronic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA