Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
BMC Infect Dis ; 24(1): 1080, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39350071

RESUMEN

BACKGROUND: False negative rapid diagnostic tests (RDTs) accruing to the non-detection of Plasmodium falciparum histidine-rich protein 2/3 (Pfhrp2/3) is threatening the diagnosis and management of malaria. Although regular monitoring is necessary to gauge the level of efficacy of the tool, studies in Cameroon remain limited. This study assessed Plasmodium spp. prevalence and Pfhrp2/3 gene deletions across ecological and transmission zones in Cameroon. METHODS: This is a cross-sectional, multi-site, community- and hospital- based study, in 21 health facilities and 14 communities covering all five ecological settings in low seasonal (LS) and intense perennial (IPT) malaria transmission zones between 2019 and 2021. Participants were screened for malaria parasite using Pfhrp2 RDT and light microscopic examination of thick peripheral blood smears. DNA was extracted from dried blood spot using chelex®-100 and P. falciparum confirmed using varATS real-time quantitative Polymerase Chain Reaction (qPCR), P. malariae and P. ovale by real-time qPCR of Plasmepsin gene, and P. vivax using a commercial kit. Isolates with amplified Pfcsp and Pfama-1 genes were assayed for Pfhrp 2/3 gene deletions by conventional PCR. RESULTS: A total of 3,373 participants enrolled, 1,786 Plasmodium spp. infected, with 77.4% P. falciparum. Discordant RDT and qPCR results (False negatives) were reported in 191 (15.7%) P. falciparum mono-infected samples from LS (29%, 42) and IPT (13.9%, 149). The Pfhrp2+/Pfhrp3 + genotype was most frequent, similar between LS (5.5%, 8/145) and IPT (6.0%, 65/1,076). Single Pfhrp2 and Pfhrp3 gene deletions occurred in LS (0.7%, 1/145 each) and IPT (3.6%, 39/1,076 vs. 2.9%, 31/1,076), respectively. Whilst a single sample harboured Pfhrp2-/Pfhrp3- genotype in LS, 2.4% (26/1,076) were double deleted at IPT. Pfhrp2+/Pfhrp3- (0.3%, 3/1,076) and Pfhrp2-/Pfhrp3+ (1.2%, 13/1,076) genotypes were only observed in IPT. Pfhrp2, Pfhrp3 deletions and Pfhrp2-/Pfhrp3- genotype accounted for 78.8% (26), 69.7% (23) and 63.6% (21) RDT false negatives, respectively. CONCLUSION: Plasmodium falciparum remains the most dominant and widely distributed Plasmodium species across transmission and ecological zones in Cameroon. Although the low prevalence of Pfhrp2/3 gene deletions supports the continued use of HRP2-based RDTs for routine malaria diagnosis, the high proportion of false-negatives due to gene deleted parasites necessitates continued surveillance to inform control and elimination efforts.


Asunto(s)
Antígenos de Protozoos , Pruebas Diagnósticas de Rutina , Eliminación de Gen , Malaria Falciparum , Plasmodium falciparum , Proteínas Protozoarias , Estudios Transversales , Camerún/epidemiología , Proteínas Protozoarias/genética , Humanos , Antígenos de Protozoos/genética , Plasmodium falciparum/genética , Adulto , Adolescente , Masculino , Malaria Falciparum/epidemiología , Malaria Falciparum/transmisión , Malaria Falciparum/parasitología , Femenino , Niño , Adulto Joven , Preescolar , Persona de Mediana Edad , Reacciones Falso Negativas , Lactante , Prevalencia , Estaciones del Año , Anciano
2.
Malar J ; 22(1): 171, 2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37270589

RESUMEN

BACKGROUND: Pfcrt gene has been associated with chloroquine resistance and the pfmdr1 gene can alter malaria parasite susceptibility to lumefantrine, mefloquine, and chloroquine. In the absence of chloroquine (CQ) and extensive use of artemether-lumefantrine (AL) from 2004 to 2020 to treat uncomplicated falciparum malaria, pfcrt haplotype, and pfmdr1 single nucleotide polymorphisms (SNPs) were determined in two sites of West Ethiopia with a gradient of malaria transmission. METHODS: 230 microscopically confirmed P. falciparum isolates were collected from Assosa (high transmission area) and Gida Ayana (low transmission area) sites, of which 225 of them tested positive by PCR. High-Resolution Melting Assay (HRM) was used to determine the prevalence of pfcrt haplotypes and pfmdr1 SNPs. Furthermore, the pfmdr1 gene copy number (CNV) was determined using real-time PCR. A P-value of less or equal to 0.05 was considered significant. RESULTS: Of the 225 samples, 95.5%, 94.4%, 86.7%, 91.1%, and 94.2% were successfully genotyped with HRM for pfcrt haplotype, pfmdr1-86, pfmdr1-184, pfmdr1-1042 and pfmdr1-1246, respectively. The mutant pfcrt haplotypes were detected among 33.5% (52/155) and 80% (48/60) of isolates collected from the Assosa and Gida Ayana sites, respectively. Plasmodium falciparum with chloroquine-resistant haplotypes was more prevalent in the Gida Ayana area compared with the Assosa area (COR = 8.4, P = 0.00). Pfmdr1-N86Y wild type and 184F mutations were found in 79.8% (166/208) and 73.4% (146/199) samples, respectively. No single mutation was observed at the pfmdr1-1042 locus; however, 89.6% (190/212) of parasites in West Ethiopia carry the wild-type D1246Y variants. Eight pfmdr1 haplotypes at codons N86Y-Y184F-D1246Y were identified with the dominant NFD 61% (122/200). There was no difference in the distribution of pfmdr1 SNPs, haplotypes, and CNV between the two study sites (P > 0.05). CONCLUSION: Plasmodium falciparum with the pfcrt wild-type haplotype was prevalent in high malaria transmission site than in low transmission area. The NFD haplotype was the predominant haplotype of the N86Y-Y184F-D1246Y. A continuous investigation is needed to closely monitor the changes in the pfmdr1 SNPs, which are associated with the selection of parasite populations by ACT.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Etiopía/epidemiología , Combinación Arteméter y Lumefantrina/uso terapéutico , Arteméter/uso terapéutico , Malaria Falciparum/parasitología , Cloroquina/farmacología , Cloroquina/uso terapéutico , Malaria/tratamiento farmacológico , Lumefantrina/uso terapéutico , Plasmodium falciparum , Polimorfismo de Nucleótido Simple , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/uso terapéutico , Resistencia a Medicamentos/genética
3.
Malar J ; 22(1): 257, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37670357

RESUMEN

BACKGROUND: Thanks to the scale up of malaria control interventions, the malaria burden in Senegal has decreased substantially to the point that the National Malaria Control Programme plans to achieve malaria elimination by 2030. To guide such efforts, measuring and monitoring parasite population evolution and anti-malarial drugs resistance is extremely important. Information on the prevalence of parasite mutations related to drug resistance can provide a first signal of emergence, introduction and selection that can help with refining drug interventions. The aim of this study was to analyse the prevalence of anti-malarial drug resistance-associated markers before and after the implementation of artemisinin-based combination therapy (ACT) from 2005 to 2014 in Dielmo, a model site for malaria intervention studies in Senegal. METHODS: Samples from both malaria patients and Plasmodium falciparum asymptomatic carriers were analysed with high resolution melting (HRM) technique to genotype P. falciparum chloroquine resistance transporter (Pfcrt) gene haplotypes and multidrug-resistant protein 1 (Pfmdr1) gene at codons N86 and Y184. RESULTS: Among the 539 samples analysed, 474, 486, and 511 were successfully genotyped for Pfmdr1 N86, Y184, and Pfcrt, respectively. The prevalence of drug resistance markers was high, particularly during the malaria upsurges. Following the scale-up in bed net distribution, only the mutant (86F-like) variant of Pfmdr1 86 was present while during the malaria upsurges the predominance of two types 86Y-86N (43%) and 86F-like (56%) were observed. Most infections (87%) carried the wild type Y-allele at Pfmdr1 184 during the period of nets scale-up while during the malaria upsurges only 16% of infections had wild type and 79% of infections had mixed (mutant/wild) type. The frequency of the mixed genotypes SVMNT-like_CVMNK and SVMNT-like_CVIET within Pfcrt gene was particularly low during bednet scale up. Their frequency increased significantly (P < 0.001) during the malaria upsurges. CONCLUSION: This data demonstrated the effect of multiple interventions on the dynamics of drug resistance-associated mutations in the main malaria parasite P. falciparum in an endemic village in Senegal. Monitoring drug resistance markers should be conducted periodically to detect threats of emergence or resurgence that could compromise the efficacy of anti-malarial drugs.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Humanos , Senegal , Prevalencia , África Occidental , Cloroquina , Proteínas de Transporte de Membrana
4.
Antimicrob Agents Chemother ; 66(9): e0000222, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35993723

RESUMEN

The emergence of artemisinin-resistant parasites in Africa has had a devastating impact, causing most malaria cases and related deaths reported on the continent. In Ethiopia, artemether-lumefantrine (AL) is the first-line drug for the treatment of uncomplicated falciparum malaria. This study is one of the earliest evaluations of artemether-lumefantrine (AL) efficacy in western Ethiopia, 17 years after the introduction of this drug in the study area. This study aimed at assessing PCR- corrected clinical and parasitological responses at 28 days following AL treatment. Sixty uncomplicated falciparum malaria patients were enrolled, treated with standard doses of AL, and monitored for 28 days with clinical and parasitological assessments from September 15 to December 15, 2020. Microscopy was used for patient recruitment and molecular diagnosis of P. falciparum was performed by Var gene acidic terminal sequence (varATS) real-time PCR on dried blood spots collected from each patient from day 0 and on follow-up days 1, 2, 3, 7, 14, 21, and 28. MspI and msp2 genotyping was done to confirm occurrence of recrudescence. Data entry and analysis were done by using the WHO-designed Excel spreadsheet and SPSS version 20 for Windows. A P value of less or equal to 0.05 was considered significant. From a total of 60 patients enrolled in this efficacy study, 10 were lost to follow-up; the results were analyzed for 50 patients. All the patients were fever-free on day 3. The asexual parasite positivity rate on day 3 was zero. However; 60% of the patients were PCR positive on day 3. PCR positivity on day 3 was more common among patients <15 years old as compared with those ≥15 years old (AOR = 6.44, P = 0.027). Only two patients met the case definition of treatment failure. These patients were classified as a late clinical failure as they showed symptoms of malaria and asexual stages of the parasite detected by microscopy on day 14 of their follow-ups. Hence, the Kaplan-Meier analysis of PCR- corrected adequate clinical and parasitological response (ACPR) rate of AL among study participants was 96% (95% CI: 84.9-99). In seven patients, the residual submicroscopic parasitemia persists from day 0 to day 28 of the follow-up. In addition, 16% (8/50) of patients were PCR- and then turned PCR+ after day 7 of the follow-up. AL remains efficacious for the treatment of uncomplicated falciparum malaria in the study area. However, the persistence of PCR-detected residual submicroscopic parasitemia following AL might compromise this treatment and need careful monitoring.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Malaria , Adolescente , Antimaláricos/uso terapéutico , Arteméter/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Artemisininas/uso terapéutico , Progresión de la Enfermedad , Etanolaminas/uso terapéutico , Etiopía , Fluorenos/uso terapéutico , Humanos , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Parasitemia/tratamiento farmacológico , Plasmodium falciparum/genética , Sudán , Resultado del Tratamiento
5.
Malar J ; 21(1): 383, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36522733

RESUMEN

BACKGROUND: Genetic diversity of malaria parasites can inform the intensity of transmission and poses a major threat to malaria control and elimination interventions. Characterization of the genetic diversity would provide essential information about the ongoing control efforts. This study aimed to explore allelic polymorphism of merozoite surface protein 1 (msp1) and merozoite surface protein 2 (msp2) to determine the genetic diversity and multiplicity of Plasmodium falciparum infections circulating in high and low transmission sites in western Ethiopia. METHODS: Parasite genomic DNA was extracted from a total of 225 dried blood spots collected from confirmed uncomplicated P. falciparum malaria-infected patients in western Ethiopia. Of these, 72.4% (163/225) and 27.6% (62/225) of the samples were collected in high and low transmission areas, respectively. Polymorphic msp1 and msp2 genes were used to explore the genetic diversity and multiplicity of falciparum malaria infections. Genotyping of msp1 was successful in 86.5% (141/163) and 88.7% (55/62) samples collected from high and low transmission areas, respectively. Genotyping of msp2 was carried out among 85.3% (139/163) and 96.8% (60/62) of the samples collected in high and low transmission sites, respectively. Plasmodium falciparum msp1 and msp2 genes were amplified by nested PCR and the PCR products were analysed by QIAxcel ScreenGel Software. A P-value of less or equal to 0.05 was considered significant. RESULTS: High prevalence of falciparum malaria was identified in children less than 15 years as compared with those ≥ 15 years old (AOR = 2.438, P = 0.005). The three allelic families of msp1 (K1, MAD20, and RO33) and the two allelic families of msp2 (FC27 and 3D7), were observed in samples collected in high and low transmission areas. However, MAD 20 and FC 27 alleles were the predominant allelic families in both settings. Plasmodium falciparum isolates circulating in western Ethiopia had low genetic diversity and mean MOI. No difference in mean MOI between high transmission sites (mean MOI 1.104) compared with low transmission area (mean MOI 1.08) (p > 0.05). The expected heterozygosity of msp1 was slightly higher in isolates collected from high transmission sites (He = 0.17) than in those isolates from low transmission (He = 0.12). However, the heterozygosity of msp2 was not different in both settings (Pfmsp2: 0.04 in high transmission; pfmsp2: 0.03 in low transmission). CONCLUSION: Plasmodium falciparum from clinical malaria cases in western Ethiopia has low genetic diversity and multiplicity of infection irrespective of the intensity of transmission at the site of sampling. These may be signaling the effectiveness of malaria control strategies in Ethiopia; although further studies are required to determine how specific intervention strategies and other parameters that drive the pattern.


Asunto(s)
Malaria Falciparum , Proteína 1 de Superficie de Merozoito , Niño , Masculino , Humanos , Adolescente , Proteína 1 de Superficie de Merozoito/genética , Plasmodium falciparum/genética , Antígenos de Protozoos/genética , Etiopía/epidemiología , Proteínas Protozoarias/genética , Variación Genética , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Proteínas de la Membrana/genética , Genotipo
6.
Malar J ; 21(1): 160, 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35659662

RESUMEN

BACKGROUND: The development of resistance by Plasmodium falciparum to anti-malarial drugs impedes any benefits of the drug. In addition, absence or delayed availability of current anti-malarial drugs in remote areas has the potential to results to parasite escape and continuous transmission. CASE PRESENTATION: The case of a 29-year old pregnant woman from Biase Local Government Area in Cross River State Nigeria presenting with febrile illness and high body temperature of 38.7 °C was reported. She looked pale and vomited twice on arrival at the health facility. Her blood smear on the first day of hospitalization was positive for P. falciparum by RDT, microscopy (21,960 parasite/µl) and real-time PCR, with a PCV of 18%. She was treated with 600 mg intravenous quinine in 500 ml of 5% Dextrose/0.9% Saline 8-hourly for 24 h. On the second day of hospitalization, she complained of weakness, persistent high-grade fever and vaginal bleeding. A bulging amnion from an extended cervix was observed. Following venous blood collection for laboratory investigations, 600 µg of misoprostol was inserted into the posterior fornix of her vagina as part of her obstetric care. Parenteral quinine was discontinued, and she was given full therapeutic regimen of artemether-lumefantrine 80/480 mg tablets to be taken for 3 days beginning from the second day. Her blood samples on the second and third day of hospitalization remained positive for P. falciparum by all three diagnostic methods. Single nucleotide polymorphism (SNP) assay on all three P. falciparum isolates revealed the presence of variants associated with multiple drug resistant markers. DISCUSSION: Infecting P. falciparum isolates may have been resistant to initial quinine treatment resulting from parasite cross-resistance with other quinoline associated resistant markers such as 86Y and 184 F. CONCLUSIONS: Therefore, the likely transmission of similarly resistant parasites in the study area calls for reinforcement of interventions and adherence to current World Health Organization guidelines in administering only approved drugs to individuals in order to mitigate parasite escape and eventual transmission to other susceptible individuals.


Asunto(s)
Aborto Espontáneo , Antimaláricos , Malaria Falciparum , Malaria , Adulto , África Occidental , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Arteméter/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Resistencia a Medicamentos , Resistencia a Múltiples Medicamentos , Femenino , Humanos , Malaria/parasitología , Malaria Falciparum/parasitología , Nigeria , Plasmodium falciparum , Embarazo , Mujeres Embarazadas , Quinina/farmacología , Quinina/uso terapéutico
7.
BMC Public Health ; 22(1): 445, 2022 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-35248006

RESUMEN

BACKGROUND: The first case of the novel coronavirus disease-2019 (COVID-19) in West Africa was first confirmed in Nigeria in February 2020. Since then, several public health interventions and preventive measures have been implemented to curtail transmission of the causative agent, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Therefore, this study was performed to assess the knowledge, attitudes, and perceptions of West Africans towards COVID-19. METHODS: An online survey was conducted between 29 September to 29 October 2020 among West Africans. Thirty-three survey questions were designed to collect sociodemographic data and participants' knowledge, attitude and perception towards COVID-19. The study targeted all West African nationals who were 18 years and above, and willing to participate in the study. Participants were either in-country or abroad. RESULTS: Overall, 1106 respondents (≥18 years) from 16 West African countries, with about 12.1% of them residing outside the West African subregion, participated in the survey. The respondents had an average COVID-19 knowledge score of 67.82 ± 8.31, with knowledge of the disease significantly associated with the country of residence (p = 0.00) and marginally (p = 0.05) so with settlement types (i.e., urban, suburban and rural areas). Most respondents (93.4%) could identify the main COVID-19 symptoms, and 73.20% would consult a healthcare professional if infected with SARS-CoV-2. Also, 75.2% of the respondents are willing to receive the COVID-19 vaccine, whereas 10.40% and 14.40% are unwilling and undecided, respectively. Perceptions of what constitute COVID-19 preventive measures were highly variable. Approximately, 8% of the respondents felt that their government responded excellently in managing the pandemic while a third felt that the response was just good. Also, more than half (54%) opined that isolation and treatment of COVID-19 patients is a way of curbing SARS-CoV-2 spread. CONCLUSIONS: Most West Africans have basic knowledge of COVID-19 and showed a positive attitude, with likely proactive practice towards the disease. However, results showed that these varied across countries and are influenced by the types of settlements. Therefore, the health and education authorities in various countries should develop focused measures capturing people in different settlements to improve their preventative measures when designing public health interventions for COVID-19 and any future epidemics or pandemics.


Asunto(s)
COVID-19 , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , Conocimientos, Actitudes y Práctica en Salud , Humanos , Percepción , Salud Pública , SARS-CoV-2 , Encuestas y Cuestionarios
8.
Malar J ; 20(1): 38, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33436004

RESUMEN

BACKGROUND: Characterizing the genetic diversity of malaria parasite populations in different endemic settings (from low to high) could be helpful in determining the effectiveness of malaria interventions. This study compared Plasmodium falciparum parasite population diversity from two sites with low (pre-elimination) and high transmission in Senegal and Nigeria, respectively. METHODS: Parasite genomic DNA was extracted from 187 dried blood spot collected from confirmed uncomplicated P. falciparum malaria infected patients in Senegal (94) and Nigeria (93). Allelic polymorphism at merozoite surface protein 1 (msp1) and merozoite surface protein- 2 (msp2) genes were assessed by nested PCR. RESULTS: The most frequent msp1 and msp2 allelic families are the K1 and IC3D7 allelotypes in both Senegal and Nigeria. Multiplicity of infection (MOI) of greater that 1 and thus complex infections was common in both study sites in Senegal (Thies:1.51/2.53; Kedougou:2.2/2.0 for msp1/2) than in Nigeria (Gbagada: 1.39/1.96; Oredo: 1.35/1.75]). The heterozygosity of msp1 gene was higher in P. falciparum isolates from Senegal (Thies: 0.62; Kedougou: 0.53) than isolates from Nigeria (Gbagada: 0.55; Oredo: 0.50). In Senegal, K1 alleles was associated with heavy than with moderate parasite density. Meanwhile, equal proportions of K1 were observed in both heavy and moderate infection types in Nigeria. The IC3D7 subtype allele of the msp2 family was the most frequent in heavily parasitaemic individuals from both countries than in the moderately infected participants. CONCLUSION: The unexpectedly low genetic diversity of infections high endemic Nigerian setting compared to the low endemic settings in Senegal is suggestive of possible epidemic outbreak in Nigeria.


Asunto(s)
Antígenos de Protozoos/genética , Variación Genética , Malaria Falciparum/parasitología , Proteína 1 de Superficie de Merozoito/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Humanos , Lactante , Malaria Falciparum/epidemiología , Masculino , Persona de Mediana Edad , Nigeria/epidemiología , Senegal/epidemiología , Adulto Joven
9.
Malar J ; 19(1): 229, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32590997

RESUMEN

BACKGROUND: Malaria in sub-Saharan Africa (sSA) is thought to be mostly caused by Plasmodium falciparum. Recently, growing reports of cases due to Plasmodium ovale, Plasmodium malariae, and Plasmodium vivax have been increasingly observed to play a role in malaria epidemiology in sSA. This in fact is due to the usage of very sensitive diagnostic tools (e.g. PCR), which have highlighted the underestimation of non-falciparum malaria in this sub-region. Plasmodium vivax was historically thought to be absent in sSA due to the high prevalence of the Duffy negativity in individuals residing in this sub-continent. Recent studies reporting detection of vivax malaria in Duffy-negative individuals from Mali, Mauritania, Cameroon challenge this notion. METHODS: Following previous report of P. vivax in Duffy-negative individuals in Nigeria, samples were further collected and assessed RDT and/or microscopy. Thereafter, malaria positive samples were subjected to conventional PCR method and DNA sequencing to confirm both single/mixed infections as well as the Duffy status of the individuals. RESULTS: Amplification of Plasmodium gDNA was successful in 59.9% (145/242) of the evaluated isolates and as expected P. falciparum was the most predominant (91.7%) species identified. Interestingly, four P. vivax isolates were identified either as single (3) or mixed (one P. falciparum/P. vivax) infection. Sequencing results confirmed all vivax isolates as truly vivax malaria and the patient were of Duffy-negative genotype. CONCLUSION: Identification of additional vivax isolates among Duffy-negative individuals from Nigeria, substantiate the expanding body of evidence on the ability of P. vivax to infect RBCs that do not express the DARC gene. Hence, such genetic-epidemiological study should be conducted at the country level in order to evaluate the true burden of P. vivax in Nigeria.


Asunto(s)
Sistema del Grupo Sanguíneo Duffy/inmunología , Malaria Vivax/sangre , Plasmodium vivax/fisiología , Receptores de Superficie Celular/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Humanos , Malaria Vivax/parasitología , Masculino , Persona de Mediana Edad , Nigeria , Adulto Joven
10.
Malar J ; 17(1): 439, 2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30486887

RESUMEN

BACKGROUND: Malaria in Nigeria is principally due to Plasmodium falciparum and, to a lesser extent to Plasmodium malariae and Plasmodium ovale. Plasmodium vivax is thought to be absent in Nigeria in particular and sub-Saharan Africa in general, due to the near fixation of the Duffy negative gene in this population. Nevertheless, there are frequent reports of P. vivax infection in Duffy negative individuals in the sub-region, including reports from two countries sharing border with Nigeria to the west (Republic of Benin) and east (Cameroon). Additionally, there were two cases of microscopic vivax-like malaria from Nigerian indigenous population. Hence molecular surveillance of the circulating Plasmodium species in two states (Lagos and Edo) of southwestern Nigeria was carried out. METHODS: A cross-sectional survey between September 2016 and March 2017 was conducted. 436 febrile patients were included for the present work. Venous blood of these patients was subjected to RDT as well as microscopy. Further, parasite DNA was isolated from positive samples and PCR diagnostic was employed followed by direct sequencing of the 18S rRNA of Plasmodium species as well as sequencing of a portion of the promoter region of the Duffy antigen receptor for chemokines. Samples positive for P. vivax were re-amplified several times and finally using the High Fidelity Taq to rule out any bias introduced. RESULTS: Of the 256 (58.7%) amplifiable malaria parasite DNA, P. falciparum was, as expected, the major cause of infection, either alone 85.5% (219/256; 97 from Edo and 122 from Lagos), or mixed with P. malariae 6.3% (16/256) or with P. vivax 1.6% (4/256). Only one of the five P. vivax isolates was found to be a single infection. DNA sequencing and subsequent alignment of the 18S rRNA of P. vivax with the reference strains displayed very high similarities (100%). Remarkably, the T-33C was identified in all P. vivax samples, thus confirming that all vivax-infected patients in the current study are Duffy negative. CONCLUSION: The present study gave the first molecular evidence of P. vivax in Nigeria in Duffy negative individuals. Though restricted to two states; Edo in South-South and Lagos in South-west Nigeria, the real burden of this species in Nigeria and sub-Saharan Africa might have been underestimated, hence there is need to put in place a country-wide, as well as a sub-Saharan Africa-wide surveillance and appropriate control measures.


Asunto(s)
Sistema del Grupo Sanguíneo Duffy/genética , Malaria Vivax/epidemiología , Malaria Vivax/parasitología , Plasmodium vivax/aislamiento & purificación , Receptores de Superficie Celular/genética , Preescolar , Estudios Transversales , ADN Protozoario/química , ADN Protozoario/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Nigeria/epidemiología , Plasmodium vivax/clasificación , Plasmodium vivax/genética , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN
11.
Sci Rep ; 14(1): 16901, 2024 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043812

RESUMEN

Malaria transmission and endemicity in Africa remains hugely disproportionate compared to the rest of the world. The complex life cycle of P. falciparum (Pf) between the vertebrate human host and the anopheline vector results in differential expression of genes within and between hosts. An in-depth understanding of Pf interaction with various human genes through regulatory elements will pave way for identification of newer tools in the arsenal for malaria control. Therefore, the regulatory elements (REs) involved in the over- or under-expression of various host immune genes hold the key to elucidating alternative control measures that can be applied for disease surveillance, prompt diagnosis and treatment. We carried out an RNAseq analysis to identify differentially expressed genes and network elucidation of non-coding RNAs and target genes associated with immune response in individuals with different clinical outcomes. Raw RNAseq datasets, retrieved for analyses include individuals with severe (Gambia-20), symptomatic (Burkina Faso-15), asymptomatic (Mali-16) malaria as well as uninfected controls (Tanzania-20; Mali-36). Of the total 107 datasets retrieved, we identified 5534 differentially expressed genes (DEGs) among disease and control groups. A peculiar pattern of DEGs was observed, with individuals presenting with severe/symptomatic malaria having the highest and most diverse upregulated genes, while a reverse phenomenon was recorded among asymptomatic and uninfected individuals. In addition, we identified 141 differentially expressed micro RNA (miRNA), of which 78 and 63 were upregulated and downregulated respectively. Interactome analysis revealed a moderate interaction between DEGs and miRNAs. Of all identified miRNA, five were unique (hsa-mir-32, hsa-mir-25, hsa-mir-221, hsa-mir-29 and hsa-mir-148) because of their connectivity to several genes, including hsa-mir-221 connected to 16 genes. Six-hundred and eight differentially expressed long non coding RNA (lncRNA) were also identified, including SLC7A11, LINC01524 among the upregulated ones. Our study provides important insight into host immune genes undergoing differential expression under different malaria conditions. It also identified unique miRNAs and lncRNAs that modify and/or regulate the expression of various immune genes. These regulatory elements we surmise, have the potential to serve a diagnostic purpose in discriminating between individuals with severe/symptomatic malaria and those with asymptomatic infection or uninfected, following further clinical validation from field isolates.


Asunto(s)
Perfilación de la Expresión Génica , MicroARNs , ARN Largo no Codificante , Humanos , MicroARNs/genética , ARN Largo no Codificante/genética , Perfilación de la Expresión Génica/métodos , Malaria Falciparum/genética , Malaria Falciparum/parasitología , Transcriptoma , Plasmodium falciparum/genética , Regulación de la Expresión Génica , Infecciones Asintomáticas , Redes Reguladoras de Genes , Malaria/genética , Malaria/parasitología
12.
BMC Res Notes ; 17(1): 129, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725016

RESUMEN

OBJECTIVES: The study evaluated sub-microscopic malaria infections in pregnancy using two malaria Rapid Diagnostic Tests (mRDTs), microscopy and RT-PCR and characterized Plasmodium falciparum dihydrofolate reductase (Pfdhfr) and Plasmodium falciparum dihydropteroate synthase (Pfdhps) drug resistant markers in positive samples. METHODS: This was a cross sectional survey of 121 pregnant women. Participants were finger pricked, blood drops were collected for rapid diagnosis with P. falciparum histidine-rich protein 11 rapid diagnostic test kit and the ultra-sensitive Alere Pf malaria RDT, Blood smears for microscopy and dried blood spots on Whatman filter paper for molecular analysis were made. Real time PCR targeting the var acidic terminal sequence (varATS) gene of P. falciparum was carried out on a CFX 96 real time system thermocycler (BioRad) in discriminating malaria infections. For each run, laboratory strain of P. falciparum 3D7 and nuclease free water were used as positive and negative controls respectively. Additionally, High resolution melt analyses was employed for genotyping of the different drug resistance markers. RESULTS: Out of one hundred and twenty-one pregnant women sampled, the SD Bioline™ Malaria Ag P.f HRP2-based malaria rapid diagnostic test (mRDT) detected eight (0.06%) cases, the ultra-sensitive Alere™ malaria Ag P.f rapid diagnostic test mRDT had similar outcome in the same samples as detected by the HRP2-based mRDT. Microscopy and RT-PCR confirmed four out of the eight infections detected by both rapid diagnostic tests as true positive and RT-PCR further detected three false negative samples by the two mRDTs providing a sub-microscopic malaria prevalence of 3.3%. Single nucleotide polymorphism in Pfdhps gene associated with sulphadoxine resistance revealed the presence of S613 mutant genotypes in three of the seven positive isolates and isolates with mixed wild/mutant genotype at codon A613S. Furthermore, four mixed genotypes at the A581G codon were also recorded while the other Pfdhps codons (A436G, A437G and K540E) showed the presence of wild type alleles. In the Pfdhfr gene, there were mutations in 28.6%, 28.6%, and 85.7% at the I51, R59 and N108 codons respectively. Mixed wild and mutant type genotypes were also observed in 28.6% each of the N51I, and C59R codons. For the Pfcrt, two haplotypes CVMNK and CVIET were observed. The SVMNT was altogether absent. Triple mutant CVIET 1(14.3%) and triple mutant + wild genotype CVIET + CVMNK 1(14.3%) were observed. The Pfmdr1 haplotypes were single mutants YYND 1(14.3%); NFND 1(14.3%) and double mutants YFND 4(57.1%); YYDD 1(14.3%).


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Polimorfismo de Nucleótido Simple , Femenino , Humanos , Malaria Falciparum/parasitología , Malaria Falciparum/diagnóstico , Malaria Falciparum/epidemiología , Embarazo , Plasmodium falciparum/genética , Plasmodium falciparum/efectos de los fármacos , Adulto , Estudios Transversales , Polimorfismo de Nucleótido Simple/genética , Nigeria/epidemiología , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Alelos , Adulto Joven , Complicaciones Parasitarias del Embarazo/parasitología , Complicaciones Parasitarias del Embarazo/genética , Complicaciones Parasitarias del Embarazo/diagnóstico , Resistencia a Múltiples Medicamentos/genética , Dihidropteroato Sintasa/genética , Tetrahidrofolato Deshidrogenasa/genética , Proteínas Protozoarias/genética , Adolescente
13.
Front Cell Infect Microbiol ; 14: 1366563, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716192

RESUMEN

Background: Routine surveillance for antimalarial drug resistance is critical to sustaining the efficacy of artemisinin-based Combination Therapies (ACTs). Plasmodium falciparum kelch-13 (Pfkelch-13) and non-Pfkelch-13 artemisinin (ART) resistance-associated mutations are uncommon in Africa. We investigated polymorphisms in Plasmodium falciparum actin-binding protein (Pfcoronin) associated with in vivo reduced sensitivity to ART in Nigeria. Methods: Fifty-two P. falciparum malaria subjects who met the inclusion criteria were followed up in a 28-day therapeutic efficacy study of artemether-lumefantrine in Lagos, Nigeria. Parasite detection was done by microscopy and molecular diagnostic approaches involving PCR amplification of genes for Pf18S rRNA, varATS, telomere-associated repetitive elements-2 (TARE-2). Pfcoronin and Pfkelch-13 genes were sequenced bi-directionally while clonality of infections was determined using 12 neutral P. falciparum microsatellite loci and msp2 analyses. Antimalarial drugs (sulfadoxine-pyrimethamine, amodiaquine, chloroquine and some quinolones) resistance variants (DHFR_51, DHFR_59, DHFR_108, DHFR_164, MDR1_86, MDR1_184, DHPS_581 and DHPS_613) were genotyped by high-resolution melting (HRM) analysis. Results: A total of 7 (26.92%) cases were identified either as early treatment failure, late parasitological failure or late clinical failure. Of the four post-treatment infections identified as recrudescence by msp2 genotypes, only one was classified as recrudescence by multilocus microsatellites genotyping. Microsatellite analysis revealed no significant difference in the mean allelic diversity, He, (P = 0.19, Mann-Whitney test). Allele sizes and frequency per locus implicated one isolate. Genetic analysis of this isolate identified two new Pfcoronin SNVs (I68G and L173F) in addition to the P76S earlier reported. Linkage-Disequilibrium as a standardized association index, IAS, between multiple P. falciparum loci revealed significant LD (IAS = 0.2865, P=0.02, Monte-Carlo simulation) around the neutral microsatellite loci. The pfdhfr/pfdhps/pfmdr1 drug resistance-associated haplotypes combinations, (108T/N/51I/164L/59R/581G/86Y/184F), were observed in two samples. Conclusion: Pfcoronin mutations identified in this study, with potential to impact parasite clearance, may guide investigations on emerging ART tolerance in Nigeria, and West African endemic countries.


Asunto(s)
Antimaláricos , Artemisininas , Resistencia a Medicamentos , Malaria Falciparum , Proteínas de Microfilamentos , Plasmodium falciparum , Adulto , Femenino , Humanos , Masculino , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Artemisininas/farmacología , Artemisininas/uso terapéutico , Combinación de Medicamentos , Resistencia a Medicamentos/genética , Genotipo , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Proteínas de Microfilamentos/genética , Repeticiones de Microsatélite/genética , Mutación , Nigeria , Plasmodium falciparum/genética , Plasmodium falciparum/efectos de los fármacos , Polimorfismo Genético , Proteínas Protozoarias/genética , Recurrencia
14.
PLoS One ; 19(2): e0281342, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38300957

RESUMEN

Coronavirus disease 2019 (COVID-19) pandemic, caused by the Severe Acute Coronavirus 2 (SARS-CoV-2), is a global health threat with extensive misinformation and conspiracy theories. Therefore, this study investigated the knowledge, attitude and perception of sub-Saharan Africans (SSA) on COVID-19 during the exponential phase of the pandemic. In this cross-sectional survey, self-administered web-based questionnaires were distributed through several online platforms. A total of 1046 respondents from 35 SSA countries completed the survey. The median age was 33 years (18-76 years) and about half (50.5%) of them were males. More than 40% across all socio-demographic categories except the Central African region (21.2%), vocational/secondary education (28.6%), student/unemployed (35.5%), had high COVID-19 knowledge score. Socio-demographic factors and access to information were associated with COVID-19 knowledge. Bivariate analysis revealed that independent variables, including the region of origin, age, gender, education and occupation, were significantly (p < 0.05) associated with COVID-19 knowledge. Multivariate analysis showed that residing in East (odds ratio [OR]: 7.9, 95% confidence interval (CI): 4.7-14, p<0.001), Southern (OR: 3.7, 95% CI: 2.1-6.5, p<0.001) and West (OR: 3.9, 95% CI: 2.9-5.2, p<0.001) Africa was associated with high COVID-19 knowledge level. Apart from East Africa (54.7%), willingness for vaccine acceptance across the other SSA regions was <40%. About 52%, across all socio-demographic categories, were undecided. Knowledge level, region of origin, age, gender, marital status and religion were significantly (p < 0.05) associated with COVID-19 vaccine acceptance. About 67.4% were worried about contracting SARS-CoV-2, while 65.9% indicated they would consult a health professional if exposed. More than one-third of the respondents reported that their governments had taken prompt measures to tackle the pandemic. Despite high COVID-19 knowledge in our study population, most participants were still undecided regarding vaccination, which is critical in eliminating the pandemic. Therefore, extensive, accurate, dynamic and timely education in this aspect is of ultimate priority.


Asunto(s)
COVID-19 , Masculino , Humanos , Adulto , Femenino , COVID-19/epidemiología , Estudios Transversales , SARS-CoV-2 , Vacunas contra la COVID-19 , Conocimientos, Actitudes y Práctica en Salud , Pandemias , Encuestas y Cuestionarios , Percepción , África del Sur del Sahara/epidemiología
15.
Am J Trop Med Hyg ; 110(2): 214-219, 2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38167431

RESUMEN

Despite marked progress in Senegal, three regions in the southeast part continue to have a high burden of malaria, but there have been no recent studies assessing the prevalence of malaria associated with pregnancy. This study aimed to determine the prevalence of malaria infection in pregnant women attending antenatal clinics in Senegal. During the malaria transmission season of 2019, pregnant women attending 11 health care facilities for a scheduled visit and those presenting unwell with signs of malaria were invited to participate in a malaria screening study. A finger prick blood sample was taken for malaria diagnosis by rapid diagnosis test (RDT) and polymerase chain reaction (PCR). A total of 877 pregnant women were enrolled, 787 for a scheduled antenatal consultation and 90 for an unscheduled consultation with signs of malaria. The prevalence of Plasmodium falciparum among the first group was 48% by PCR and 20% by RDT, and that among the second group was 86% by PCR and 83% by RDT. RDT sensitivity in capturing asymptomatic, PCR-positive infections was 9.2% but ranged from 83% to 94% among febrile women. The prevalence of infection by PCR in women who reported having received at least three doses of sulfadoxine pyrimethamine (SP) was 41.9% compared with 58.9% in women who reported they had not received any SP doses (prevalence ratio adjusted for gravidity and gestational age, 0.54; 95% CI, 0.41-0.73). The burden of P. falciparum infections remains high among pregnant women, the majority of which are not captured by RDT. More effective measures to prevent malaria infection in pregnancy are needed.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Humanos , Femenino , Embarazo , Lactante , Antimaláricos/uso terapéutico , Mujeres Embarazadas , Prevalencia , Senegal/epidemiología , Sulfadoxina/uso terapéutico , Pirimetamina/uso terapéutico , Malaria/tratamiento farmacológico , Malaria Falciparum/diagnóstico , Malaria Falciparum/epidemiología , Malaria Falciparum/tratamiento farmacológico , Combinación de Medicamentos , Infecciones Asintomáticas/epidemiología , Instituciones de Atención Ambulatoria
16.
PeerJ ; 11: e16519, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38099304

RESUMEN

Malaria remains a global public health challenge. The disease has a great impact in sub-Saharan Africa among children under five years of age and pregnant women. Malaria control programs targeting the parasite and mosquitoes vectors with combinational therapy and insecticide-treated bednets are becoming obsolete due to the phenomenon of resistance, which is a challenge for reducing morbidity and mortality. Malaria vaccines would be effective alternative to the problem of parasite and insecticide resistance, but focal reports of polymorphisms in malaria candidate antigens have made it difficult to design an effective malaria vaccine. Therefore, studies geared towards elucidating the polymorphic pattern and how genes targeted for vaccine design evolve are imperative. We have carried out molecular and genetic analysis of two genes encoding vaccine candidates-the Plasmodium falciparum cell traversal ookinetes and sporozoites (Pfceltos) and P. falciparum reticulocyte binding protein 5 (Pfrh5) in parasite isolates from malaria-infected children in Ibadan, Nigeria to evaluate their genetic diversity, relatedness and pattern of molecular evolution. Pfceltos and Pfrh5 genes were amplified from P. falciparum positive samples. Amplified fragments were purified and sequenced using the chain termination method. Post-sequence edit of fragments and application of various population genetic analyses was done. We observed a higher number of segregating sites and haplotypes in the Pfceltos than in Pfrh5 gene, the former also presenting higher haplotype (0.942) and nucleotide diversity (θ = 0.01219 and π = 0.01148). In contrast, a lower haplotype (0.426) and nucleotide diversity (θ = 0.00125; π = 0.00095) was observed in the Pfrh5 gene. Neutrality tests do not show deviation from neutral expectations for Pfceltos, with the circulation of multiple low frequency haplotypes (Tajima's D = -0.21637; Fu and Li's D = -0.08164; Fu and Li's F = -0.14051). Strong linkage disequilibrium was observed between variable sites, in each of the genes studied. We postulate that the high diversity and circulation of multiple haplotypes has the potential of making a Pfceltos-subunit vaccine ineffective, while the low genetic diversity of Pfrh5 gene substantiates its evolutionary conservation and potential as a malaria vaccine candidate.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Embarazo , Niño , Animales , Humanos , Femenino , Preescolar , Plasmodium falciparum/genética , Haplotipos , Esporozoítos , Vacunas contra la Malaria/genética , Nigeria , Proteínas Protozoarias/genética , Malaria Falciparum/prevención & control , Malaria/prevención & control , Antígenos de Protozoos/genética , Nucleótidos
17.
Infect Genet Evol ; 116: 105535, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38030029

RESUMEN

The ability to accurately measure the intensity of malaria transmission in areas with low transmission is extremely important to guide elimination efforts. Plasmodium falciparum Cell-traversal protein for ookinetes and sporozoites (PfCelTOS) is an important conserved sporozoite antigen reported as one of the promising malaria vaccine candidates, and could be used to estimate malaria transmission intensity. This study aimed at determining whether the diversity of PfCelTOS gene reflects the changes in malaria transmission that occurred between 2007 and 2014 in Dielmo, a Senegalese village, before and after the implementation of insecticide treated bed nets (ITNs). Of the 109 samples positive for PfCelTOS PCR, 96 (88%) were successfully sequenced and analysed for polymorphisms and population diversity. The number of segregating sites was higher during the pre-intervention period (13) and the malaria resurgences (11) than during the intervention period (5). Similarly, the number and diversity of haplotypes were higher during the pre-intervention period (16 and 0.914, respectively) and the malaria resurgences (6 and 0.821, respectively) than during the intervention period (4 and 0.758, respectively). Moreover, the average number of nucleotide differences was higher during the pre-intervention (3.792) and during malaria resurgences (3.467) than during the intervention period (2.189). The 3D7 KSSFNEP haplotype was only observed during the intervention period. Only two haplotypes were shared in both the pre-intervention and intervention periods while four haplotypes were shared between the pre-intervention and the malaria resurgences. The Fst values indicate moderate differentiation between pre-intervention and intervention periods (0.17433), and between intervention and malaria resurgences period (0.19198) as well as between pre-intervention and malaria resurgences periods (0.06607). PfCelTOS genetic diversity reflected changes of malaria transmission, with higher polymorphisms recorded before the large-scale implementation of ITNs and during the malaria resurgences. PfCelTOS is also a candidate vaccine; mapping its diversity across multiple endemic environments will facilitate the design and optimisation of a broad and efficacious vaccine.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Animales , Plasmodium falciparum/genética , Esporozoítos , Proteínas Protozoarias/genética , Antígenos de Protozoos/genética , Senegal/epidemiología , Malaria/prevención & control , Variación Genética , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control
18.
Res Sq ; 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37461533

RESUMEN

Background: Effective approaches to fight against malaria include disease prevention, an early diagnosis of malaria cases, and rapid management of confirmed cases by treatment with effective antimalarials. Artemisinin-based combination therapies are first-line treatments for uncomplicated malaria in endemic areas. However, cases of resistance to artemisinin have already been described in South-East Asia resulting in prolonged parasite clearance time after treatment. In Mali, though mutations in the K13 gene associated with delayed clearance in Asia are absent, a significant difference in parasite clearance time following treatment with artesunate was observed between two malaria endemic sites, Bougoula-Hameau and Faladje. Hypothetically, differences in complexity of Plasmodium falciparum infections may be accounted for this difference. Hence, the aims of this study were to assess the complexity of infection (COI) and genetic diversity of P. falciparum parasites during malaria treatment in Bougoula-Hameau and Faladje in Mali. Methods: Thirty (30) patients per village were randomly selected from 221 patients enrolled in a prospective artesunate monotherapy study conducted in Faladje and Bougoula-Hameau in 2016. All parasitemic blood samples of patients from enrollment to last positive slide were retained to assess malaria parasite COI and polymorphisms. DNA were extracted with a Qiagen kit and Pfcsp and Pfama1 encoding gene were amplified by nested PCR and sequenced using the Illumina platform. The parasite clearance time (PCT) was determined using the parasite clearance estimator of Worldwide Antimarial Resistance Network (WWARN). Data were analyzed with R®. Results: The median number of genetically distinct parasite clones was similar at enrollment, 7 (IQR of 5-9) in Faladje and 6 (IQR of 4-10) in Bougoula-Hameau (p-value = 0.1). On the first day after treatment initiation, the COI was higher in Faladje (6; CI:4-8) than in Bougoula-Hameau (4; CI:4-6) with a p-value =0. 02. Overall, COI was high with higher PCT. Finally, there was a low genetic diversity between Faladje and Bougoula-Hameau. Conclusion: This study demonstrated that the difference in PCT observed between the two villages could be due to differences in the complexity of infection of these two villages.

19.
Pan Afr Med J ; 41: 148, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35519174

RESUMEN

The reduction in the severity and prevalence of COVID-19 has been largely due to the rapid development and deployment of COVID-19 vaccines. Consequently, WHO, in partnership with the Coalition for Epidemic Preparedness Innovation, GAVI, the Vaccine Alliance, set up the COVID-19 Vaccines Global Access (COVAX) Initiative. The goal of this initiative is to prevent discrimination between high and low-income/middle-income countries and ensure equitable vaccine distribution. The first COVID-19 vaccine sent to most countries in the region through the COVAX initiative was the Oxford AstraZeneca (ChAdOx1 nCoV-19) vaccine. Due to the reduced protection against variants of concern, safety issues, and supply challenges of the AstraZeneca vaccine in some countries, heterologous booster dose with alternative vaccines for individuals who have received a prime dose of AstraZeneca. Moreover, vaccine mixing (heterologous vaccination) due to its superior immunogenicity and enhanced protection is being recommended even for individuals who are yet to be vaccinated. However, it is important that prior adoption, empirical data on immunogenicity, safety, and reactogenicity be locally generated in populations where such heterologous vaccine is to be implemented. Regrettably, such data from our search in all clinical trial databases is not ongoing in Africa as at the time of writing this manuscript. Therefore, this treatise advocates an experimental arm to generate such robust evidence. This will provide empirical evidence to guide this innovative approach aimed at ensuring equity and access to COVID-19 vaccines in LMICs, particularly countries within the African region.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , COVID-19/prevención & control , ChAdOx1 nCoV-19 , Humanos , Inmunogenicidad Vacunal , SARS-CoV-2 , Vacunación
20.
Microorganisms ; 10(6)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35744665

RESUMEN

P. ovale was until recently thought to be a single unique species. However, the deployment of more sensitive tools has led to increased diagnostic sensitivity, including new evidence supporting the presence of two sympatric species: P. ovale curtisi (Poc) and P. ovale wallikeri (Pow). The increased reports and evolution of P. ovale subspecies are concerning for sub-Saharan Africa where the greatest burden of malaria is borne. Employing published sequence data, we set out to decipher the genetic diversity and phylogenetic relatedness of P. ovale curtisi and P. ovale wallikeri using the tryptophan-rich protein and small subunit ribosomal RNA genes from Gabon, Senegal, Ethiopia and Kenya. Higher number of segregating sites were recorded in Poc isolates from Gabon than from Ethiopia, with a similar trend in the number of haplotypes. With regards to Pow, the number of segregating sites and haplotypes from Ethiopia were higher than from those in Gabon. Poc from Kenya, had higher segregating sites (20), and haplotypes (4) than isolates from Senegal (8 and 3 respectively), while nucleotide from Senegal were more diverse (θw = 0.02159; π = 0.02159) than those from Kenya (θw = 0.01452; π = 0.01583). Phylogenetic tree construction reveal two large clades with Poc from Gabon and Ethiopia, and distinct Gabonese and Ethiopian clades on opposite ends. A similar observation was recorded for the phylogeny of Poc isolates from Kenya and Senegal. With such results, there is a high potential that ovale malaria control measures deployed in one country may be effective in the other since parasite from both countries show some degree of relatedness. How this translates to malaria control efforts throughout the continent would be next step deserving more studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA