Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Ther ; 31(10): 2948-2961, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37580905

RESUMEN

Photoreceptor cell degeneration and death is the major hallmark of a wide group of human blinding diseases including age-related macular degeneration and inherited retinal diseases such as retinitis pigmentosa. In recent years, inherited retinal diseases have become the "testing ground" for novel therapeutic modalities, including gene and cell-based therapies. Currently there is no available treatment for retinitis pigmentosa caused by FAM161A biallelic pathogenic variants. In this study, we injected an adeno-associated virus encoding for the longer transcript of mFam161a into the subretinal space of P24-P29 Fam161a knockout mice to characterize the safety and efficacy of gene augmentation therapy. Serial in vivo assessment of retinal function and structure at 3, 6, and 8 months of age using the optomotor response test, full-field electroretinography, fundus autofluorescence, and optical coherence tomography imaging as well as ex vivo quantitative histology and immunohistochemical studies revealed a significant structural and functional rescue effect in treated eyes accompanied by expression of the FAM161A protein in photoreceptors. The results of this study may serve as an important step toward future application of gene augmentation therapy in FAM161A-deficient patients by identifying a promising isoform to rescue photoreceptors and their function.


Asunto(s)
Degeneración Retiniana , Retinitis Pigmentosa , Ratones , Animales , Humanos , Degeneración Retiniana/genética , Degeneración Retiniana/terapia , Degeneración Retiniana/patología , Ratones Noqueados , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/terapia , Retinitis Pigmentosa/metabolismo , Retina/metabolismo , Electrorretinografía
2.
Genet Med ; 24(7): 1523-1535, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35486108

RESUMEN

PURPOSE: This study aimed to investigate the clinical and genetic aspects of solute carrier (SLC) genes in inherited retinal diseases (IRDs). METHODS: Exome sequencing data were filtered to identify pathogenic variants in SLC genes. Analysis of transcript and protein expression was performed on fibroblast cell lines and retinal sections. RESULTS: Comprehensive analysis of 433 SLC genes in 913 exome sequencing IRD samples revealed homozygous pathogenic variants in 6 SLC genes, including 2 candidate novel genes, which were 2 variants in SLC66A1, causing autosomal recessive retinitis pigmentosa (ARRP), and a variant in SLC39A12, causing autosomal recessive mild widespread retinal degeneration with marked macular involvement. In addition, we present 4 families with ARRP and homozygous null variants in SLC37A3 that were previously suggested to cause retinitis pigmentosa, 2 of which cause exon skipping. The recently reported SLC4A7- c.2007dup variant was found in 2 patients with ARRP resulting in the absence of protein. Finally, variants in SLC24A1 were found in 4 individuals with either ARRP or congenital stationary night blindness. CONCLUSION: We report on SLC66A1 and SLC39A12 as candidate novel IRD genes, establish SLC37A3 pathogenicity, and provide further evidence of SLC4A7 as IRD genes. We extend the phenotypic spectrum of SLC24A1 and suggest that its ARRP phenotype may be more common than previously reported.


Asunto(s)
Retinitis Pigmentosa , Análisis Mutacional de ADN/métodos , Genes Recesivos , Estudios de Asociación Genética , Humanos , Mutación , Linaje , Fenotipo , Retinitis Pigmentosa/genética
3.
Mol Vis ; 27: 107-116, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33907366

RESUMEN

Purpose: Heterozygous mutations in the gene PRPF31, encoding a pre-mRNA splicing factor, cause autosomal dominant retinitis pigmentosa (adRP) with reduced penetrance. At the molecular level, pathogenicity results from haploinsufficiency, as the largest majority of such mutations trigger nonsense-mediated mRNA decay or involve large deletions of coding exons. We investigated genetically two families with a history of adRP, one of whom showed incomplete penetrance. Methods: All patients underwent thorough ophthalmological examination, including electroretinography (ERG) and Goldmann perimetry. Array-based comparative genomic hybridization (aCGH) and multiplex ligation-dependent probe amplification (MLPA) were used to map heterozygous deletions, while real-time PCR on genomic DNA and long-range PCR allowed resolving the mutations at the base-pair level. PRPF31 transcripts were quantified with real-time PCR on patient-derived lymphoblastoid cell lines. Results: We identified two independent deletions affecting the promoter and the 5' untranslated region (UTR) of PRPF31 but leaving its coding sequence completely unaltered. Analysis of PRPF31 mRNA from lymphoblastoid cell lines from one of these families showed reduced levels of expression in patients versus controls, probably due to the heterozygous ablation of its promoter sequences. Conclusions: In addition to reporting the identification of two novel noncoding deletions in PRPF31, this study provides strong additional evidence that mRNA-mediated haploinsufficiency is the primary cause of pathogenesis for PRPF31-linked adRP.


Asunto(s)
Regiones no Traducidas 5'/genética , Proteínas del Ojo/genética , Regulación de la Expresión Génica/fisiología , Regiones Promotoras Genéticas/genética , ARN no Traducido/genética , Retinitis Pigmentosa/genética , Eliminación de Secuencia/genética , Adolescente , Adulto , Línea Celular , Hibridación Genómica Comparativa , Electrorretinografía , Femenino , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa Multiplex , Linaje , Reacción en Cadena en Tiempo Real de la Polimerasa , Retina/fisiopatología , Retinitis Pigmentosa/diagnóstico por imagen , Retinitis Pigmentosa/fisiopatología , Tomografía de Coherencia Óptica , Pruebas del Campo Visual
4.
Am J Hum Genet ; 99(3): 777-784, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27588452

RESUMEN

Inherited retinal diseases (IRDs) are a diverse group of genetically and clinically heterogeneous retinal abnormalities. The present study was designed to identify genetic defects in individuals with an uncommon combination of autosomal recessive progressive cone-rod degeneration accompanied by sensorineural hearing loss (arCRD-SNHL). Homozygosity mapping followed by whole-exome sequencing (WES) and founder mutation screening revealed two truncating rare variants (c.893-1G>A and c.534delT) in CEP78, which encodes centrosomal protein 78, in six individuals of Jewish ancestry with CRD and SNHL. RT-PCR analysis of CEP78 in blood leukocytes of affected individuals revealed that the c.893-1G>A mutation causes exon 7 skipping leading to deletion of 65bp, predicted to result in a frameshift and therefore a truncated protein (p.Asp298Valfs(∗)17). RT-PCR analysis of 17 human tissues demonstrated ubiquitous expression of different CEP78 transcripts. RNA-seq analysis revealed three transcripts in the human retina and relatively higher expression in S-cone-like photoreceptors of Nrl-knockout retina compared to rods. Immunohistochemistry studies in the human retina showed intense labeling of cone inner segments compared to rods. CEP78 was reported previously to interact with c-nap1, encoded by CEP250 that we reported earlier to cause atypical Usher syndrome. We conclude that truncating mutations in CEP78 result in a phenotype involving both the visual and auditory systems but different from typical Usher syndrome.


Asunto(s)
Alelos , Proteínas de Ciclo Celular/genética , Distrofias de Conos y Bastones/genética , Mutación del Sistema de Lectura/genética , Pérdida Auditiva Sensorineural/genética , Eliminación de Secuencia/genética , Adulto , Autoantígenos/genética , Autoantígenos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Niño , Distrofias de Conos y Bastones/fisiopatología , Exones/genética , Pérdida Auditiva Sensorineural/fisiopatología , Homocigoto , Humanos , ARN Mensajero/análisis , ARN Mensajero/genética , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Síndromes de Usher/genética , Síndromes de Usher/metabolismo , Adulto Joven
5.
Vet Ophthalmol ; 22(1): 93-97, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29888430

RESUMEN

PURPOSE: To establish whether there is cone contribution to retinal function and structure in chinchillas (Chinchilla lanigera), in view of the prevailing notion that this species possesses a pure rod retina. METHODS: Photopic electroretinography (ERG) responses to high-intensity flashes (10 and 25 cd*s/m2 ) were recorded unilaterally in six pigmented chinchillas following 10 minutes of light adaptation (30 cd/m2 ). Retinas of two animals were studied histologically, and immunohistochemistry (IHC) was conducted to detect the presence of short and medium/long wavelength cone photoreceptors. RESULTS: ERG recordings revealed photopic responses, albeit of low amplitudes. Histopathology demonstrated presumptive cone inner segments in the photoreceptor layer. Presence of cone photoreceptors was confirmed by IHC. Cone density was higher in the central retina, and red/green cones outnumbered blue cones. CONCLUSIONS: Our results provide convincing evidence for the presence of functioning cone photoreceptors in the chinchilla retina, disproving the established belief that the species has a pure rod retina.


Asunto(s)
Chinchilla/anatomía & histología , Retina/anatomía & histología , Animales , Electrorretinografía/veterinaria , Células Fotorreceptoras Retinianas Bastones
6.
Genet Med ; 20(9): 1004-1012, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29300381

RESUMEN

PURPOSE: We aimed to identify the cause of disease in patients suffering from a distinctive, atypical form of Usher syndrome. METHODS: Whole-exome and genome sequencing were performed in five patients from three families of Yemenite Jewish origin, suffering from distinctive retinal degeneration phenotype and sensorineural hearing loss. Functional analysis of the wild-type and mutant proteins was performed in human fibrosarcoma cells. RESULTS: We identified a homozygous founder missense variant, c.133G>T (p.D45Y) in arylsulfatase G (ARSG). All patients shared a distinctive retinal phenotype with ring-shaped atrophy along the arcades engirdling the fovea, resulting in ring scotoma. In addition, patients developed moderate to severe sensorineural hearing loss. Both vision and hearing loss appeared around the age of 40 years. The identified variant affected a fully conserved amino acid that is part of the catalytic site of the enzyme. Functional analysis of the wild-type and mutant proteins showed no basal activity of p.D45Y. CONCLUSION: Homozygosity for ARSG-p.D45Y in humans leads to protein dysfunction, causing an atypical combination of late-onset Usher syndrome. Although there is no evidence for generalized clinical manifestations of lysosomal storage diseases in this set of patients, we cannot rule out the possibility that mild and late-onset symptoms may appear.


Asunto(s)
Arilsulfatasas/genética , Síndromes de Usher/genética , Adulto , Arilsulfatasas/metabolismo , Secuencia de Bases , Análisis Mutacional de ADN , Femenino , Efecto Fundador , Homocigoto , Humanos , Masculino , Mutación , Mutación Missense , Linaje , Retina/metabolismo , Degeneración Retiniana/enzimología , Degeneración Retiniana/genética , Retinitis Pigmentosa/enzimología , Retinitis Pigmentosa/genética , Secuenciación del Exoma , Secuenciación Completa del Genoma
7.
Ophthalmology ; 125(5): 725-734, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29276052

RESUMEN

PURPOSE: To analyze the genetic and clinical findings in retinitis pigmentosa (RP) patients of Ashkenazi Jewish (AJ) descent, aiming to identify genotype-phenotype correlations. DESIGN: Cohort study. PARTICIPANTS: Retinitis pigmentosa patients from 230 families of AJ origin. METHODS: Sanger sequencing was performed to detect specific founder mutations known to be prevalent in the AJ population. Ophthalmologic analysis included a comprehensive clinical examination, visual acuity (VA), visual fields, electroretinography, color vision testing, and retinal imaging by OCT, pseudocolor, and autofluorescence fundus photography. MAIN OUTCOME MEASURES: Inheritance pattern and causative mutation; retinal function as assessed by VA, visual fields, and electroretinography results; and retinal structural changes observed on clinical funduscopy as well as by pseudocolor, autofluorescence, and OCT imaging. RESULTS: The causative mutation was identified in 37% of families. The most prevalent RP-causing mutations are the Alu insertion (c.1297_8ins353, p.K433Rins31*) in the male germ cell-associated kinase (MAK) gene (39% of families with a known genetic cause for RP) and c.124A>G, p.K42E in dehydrodolichol diphosphate synthase (DHDDS) (33%). Additionally, disease-causing mutations were identified in 11 other genes. Analysis of clinical parameters of patients with mutations in the 2 most common RP-causing genes revealed that MAK patients had better VA and visual fields at relatively older ages in comparison with DHDDS patients. Funduscopic findings of DHDDS patients matched those of MAK patients who were 20 to 30 years older. Patients with DHDDS mutations were referred for electrophysiologic evaluation at earlier ages, and their cone responses became nondetectable at a much younger age than MAK patients. CONCLUSIONS: Our AJ cohort of RP patients is the largest reported to date and showed a substantial difference in the genetic causes of RP compared with cohorts of other populations, mainly a high rate of autosomal recessive inheritance and a unique composition of causative genes. The most common RP-causing genes in our cohort, MAK and DHDDS, were not described as major causative genes in other populations. The clinical data show that in general, patients with biallelic MAK mutations had a later age of onset and a milder retinal phenotype compared with patients with biallelic DHDDS mutations.


Asunto(s)
Transferasas Alquil y Aril/genética , Judíos/genética , Proteínas Serina-Treonina Quinasas/genética , Retinitis Pigmentosa/genética , Adolescente , Adulto , Edad de Inicio , Anciano , Análisis Mutacional de ADN , Electrorretinografía , Femenino , Estudios de Asociación Genética , Humanos , Israel/epidemiología , Masculino , Persona de Mediana Edad , Mutación , Linaje , Retina/fisiopatología , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/fisiopatología , Tomografía de Coherencia Óptica , Agudeza Visual/fisiología , Campos Visuales/fisiología , Secuenciación del Exoma , Adulto Joven
8.
Exp Eye Res ; 176: 227-234, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30171858

RESUMEN

Recombinant adeno associated viruses (AAV) are the most commonly used vectors in animal model studies of gene therapy for retinal diseases. The ability of a vector to localize and remain in the target tissue, and in this manner to avoid off-target effects beyond the site of delivery, is critical to the efficacy and safety of the treatment. The in vivo imaging system (IVIS) is a non-invasive imaging tool used for detection and quantification of bioluminescence activity in rodents. Our aim was to investigate whether IVIS can detect localization and biodistribution of AAV5 vector in mice following subretinal (SR) and intravitreal (IVT) injections. AAV5 carrying firefly luciferase DNA under control of the ubiquitous cytomegalovirus (CMV) promoter was injected unilaterally IVT or SR (in the central or peripheral retina) of forty-one mice. Luciferase activity was tracked for up to 60 weeks in the longest surviving animals, using repeated (up to 12 times) IVIS bioluminescence imaging. Luciferase presence was also confirmed immunohistochemically (IHC) and by PCR in representative animals. In the SR group, IVIS readings demonstrated luciferase activity in all (32/32) eyes, and luciferase presence was confirmed by IHC (4/4 eyes) and PCR (12/12 eyes). In the IVT group, IVIS readings demonstrated luciferase activity in 7/9 eyes, and luciferase presence was confirmed by PCR in 5/5 eyes and by IHC (2/2 eyes). In two SR-injected animals (one each from the central and peripheral injection sites), PCR detected luciferase presence in the ipsilateral optic nerves, a finding that was not detected by IVIS or IHC. Our results show that when evaluating SR delivery, IVIS has a sensitivity and specificity of 100% compared with the gold standard PCR. When evaluating IVT delivery, IVIS has a sensitivity of 78% and specificity of 100%. These finding confirm the ability of IVIS to detect in-vivo localized expression of AAV following SR delivery in the retina up to 60 weeks post-treatment, using repeated imaging for longitudinal evaluation, without fading of the biological signal, thereby replacing the need for post mortem processing in order to confirm vector expression. However, IVIS is probably not sensitive enough, compared with genome detection, to demonstrate biodistribution to the optic nerve, as it could not detect luciferase activity in ipsilateral optic nerves following SR delivery in mice.


Asunto(s)
Dependovirus/genética , Regulación Enzimológica de la Expresión Génica/fisiología , Vectores Genéticos , Luciferasas de Luciérnaga/genética , Nervio Óptico/enzimología , Retina/enzimología , Cuerpo Vítreo/enzimología , Animales , Técnicas de Transferencia de Gen , Inmunohistoquímica , Inyecciones Intravítreas , Masculino , Ratones , Ratones Endogámicos BALB C , Nervio Óptico/diagnóstico por imagen , Reacción en Cadena de la Polimerasa , Retina/diagnóstico por imagen , Cuerpo Vítreo/diagnóstico por imagen
9.
Doc Ophthalmol ; 137(3): 183-192, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30411184

RESUMEN

PURPOSE: Our aim was to compare the electroretinographic (ERG) responses of two eyes obtained by consecutive unilateral recordings to those obtained by a simultaneous bilateral recording in sheep. METHODS: Eight sheep underwent two full-field ERG recordings, using two recording strategies of the standard ISCEV protocol: consecutive unilateral recordings of one eye after the other, and simultaneous bilateral recording of both eyes. The order of recording strategy within an animal (unilateral/bilateral), eye recording sequence in the unilateral session (OD/OS), and amplifier channel assignment for each eye were all randomized. To test whether duration of dark adaptation and/or anesthesia affect the results, the ISCEV protocol was recorded bilaterally in six additional eyes following 38 min of patched dark adaptation, as was done for the second eye recorded in the consecutive unilateral recordings. RESULTS: The second recorded eye in the unilateral session had significantly higher scotopic b-wave amplitudes compared to the first recorded eye and to the bilaterally recorded eyes. A-wave amplitudes of the dark-adapted mixed rod-cone responses to a high-intensity flash were also significantly higher in the second eye compared to the first eye recorded unilaterally and to the bilaterally recorded eyes. Light-adapted responses were unaffected by the recording strategy. When the ISCEV protocol was recorded after 38 min of dark adaptation, the scotopic responses were higher than in the first eyes, and similar to those of the second eyes recorded unilaterally, suggesting that indeed the longer duration of anesthesia and dark adaptation are responsible for the increased scotopic responses of the second eye. CONCLUSIONS: Consecutive unilateral ERG recordings of two eyes result in higher amplitudes of the dark-adapted responses of the eye recorded second, compared to the eye recorded first and to bilaterally recorded eyes. The differences in scotopic responses can be attributed to different duration of dark adaptation and/or anesthesia of the two consecutively recorded eyes. Photopic responses are not affected. Therefore, simultaneous bilateral ERG responses should be recorded when possible, especially for evaluation of scotopic responses.


Asunto(s)
Adaptación a la Oscuridad/fisiología , Electrorretinografía/métodos , Retina/fisiología , Animales , Masculino , Estimulación Luminosa , Células Fotorreceptoras de Vertebrados/fisiología , Ovinos
10.
Ophthalmology ; 124(7): 992-1003, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28412069

RESUMEN

PURPOSE: To identify the genetic cause of and describe the phenotype in 4 families with autosomal recessive retinitis pigmentosa (arRP) that can be associated with pseudocoloboma. DESIGN: Case series. PARTICIPANTS: Seven patients from 4 unrelated families with arRP, among whom 3 patients had bilateral early-onset macular pseudocoloboma. METHODS: We performed homozygosity mapping and whole-exome sequencing in 5 probands and 2 unaffected family members from 4 unrelated families. Subsequently, Sanger sequencing and segregation analysis were performed in additional family members. We reviewed the medical history of individuals carrying IDH3A variants and performed additional ophthalmic examinations, including full-field electroretinography, fundus photography, fundus autofluorescence imaging, and optical coherence tomography. MAIN OUTCOME MEASURES: IDH3A variants, age at diagnosis, visual acuity, fundus appearance, visual field, and full-field electroretinography, fundus autofluorescence, and optical coherence tomography findings. RESULTS: We identified 7 different variants in IDH3A in 4 unrelated families, that is, 5 missense, 1 nonsense, and 1 frameshift variant. All participants showed symptoms early in life, ranging from night blindness to decreased visual acuity, and were diagnosed between the ages of 1 and 11 years. Four participants with biallelic IDH3A variants displayed a typical arRP phenotype and 3 participants were diagnosed with arRP and pseudocoloboma of the macula. CONCLUSIONS: IDH3A variants were identified as a novel cause of typical arRP in some individuals associated with macular pseudocoloboma. We observed both phenotypes in 2 siblings carrying the same compound heterozygous variants, which could be explained by variable disease expression and warrants caution when making assertions about genotype-phenotype correlations.


Asunto(s)
Coloboma/genética , ADN/genética , Proteínas del Ojo/genética , Estudios de Asociación Genética , Mácula Lútea/patología , Mutación , Retinitis Pigmentosa/genética , Adolescente , Adulto , Niño , Preescolar , Coloboma/diagnóstico , Coloboma/metabolismo , Análisis Mutacional de ADN , Electrorretinografía , Exoma , Proteínas del Ojo/metabolismo , Femenino , Genes Recesivos , Homocigoto , Humanos , Masculino , Linaje , Fenotipo , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/metabolismo , Tomografía de Coherencia Óptica , Agudeza Visual , Campos Visuales , Adulto Joven
11.
Mol Ther ; 23(9): 1423-33, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26087757

RESUMEN

Achromatopsia is a hereditary form of day blindness caused by cone photoreceptor dysfunction. Affected patients suffer from congenital color blindness, photosensitivity, and low visual acuity. Mutations in the CNGA3 gene are a major cause of achromatopsia, and a sheep model of this disease was recently characterized by our group. Here, we report that unilateral subretinal delivery of an adeno-associated virus serotype 5 (AAV5) vector carrying either the mouse or the human intact CNGA3 gene under the control of the red/green opsin promoter results in long-term recovery of visual function in CNGA3-mutant sheep. Treated animals demonstrated shorter maze passage times and a reduced number of collisions with obstacles compared with their pretreatment status, with values close to those of unaffected sheep. This effect was abolished when the treated eye was patched. Electroretinography (ERG) showed marked improvement in cone function. Retinal expression of the transfected human and mouse CNGA3 genes at the mRNA level was shown by polymerase chain reaction (PCR), and cone-specific expression of CNGA3 protein was demonstrated by immunohistochemisrty. The rescue effect has so far been maintained for over 3 years in the first-treated animals, with no obvious ocular or systemic side effects. The results support future application of subretinal AAV5-mediated gene-augmentation therapy in CNGA3 achromatopsia patients.


Asunto(s)
Defectos de la Visión Cromática/genética , Defectos de la Visión Cromática/terapia , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Terapia Genética , Retina/metabolismo , Visión Ocular/genética , Animales , Defectos de la Visión Cromática/fisiopatología , Dependovirus/genética , Modelos Animales de Enfermedad , Electrorretinografía , Femenino , Expresión Génica , Genes Reporteros , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Homocigoto , Humanos , Inyecciones Intraoculares , Masculino , Aprendizaje por Laberinto , Ratones , Mutación , ARN Mensajero/genética , Ovinos
12.
Ophthalmic Res ; 55(3): 126-34, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26670885

RESUMEN

PURPOSE: Conflicting data were reported with respect to the retinal phenotype of mice with dual perturbation of the CCL2 and CX3CR1 genes. We report the generation and retinal phenotype of mice with a reverse CCR2/CX3CL1 gene deficiency as a suggested model for age-related macular degeneration (AMD). METHODS: Crossing of single-deficient mice generated CCR2/CX3CL1 DKO mice. DKO mice were compared with age-matched C57BL6J mice. Evaluation included color fundus photographs, electroretinography (ERG), histology and morphometric analysis. Immunohistochemistry for CD11b in retinal cross-sections and retinal pigment epithelium (RPE)-choroid flat mounts was performed to assess microglia and macrophage recruitment. RESULTS: A minority of DKO mice showed yellowish subretinal deposits at 10 months. ERG recordings showed reduced cone sensitivity in young, but not older DKO mice. Compared to wild-type mice, DKO mice exhibited 11% reduction in the number of outer nuclear layer nuclei. Old DKO mice had an increased number of CD11b-positive cells across the retina, and on RPE-choroid flat mounts. CONCLUSIONS: In the absence of the rd8 allele, deficiency of CCR2 and CX3CL1 in mice leads to a mild form of retinal degeneration which is associated with the recruitment of macrophages, particularly to the subretinal space. This model enables to assess consequences of perturbed chemokine signaling, but it does not recapitulate cardinal AMD features.


Asunto(s)
Quimiocina CX3CL1/fisiología , Receptores CCR2/fisiología , Retina/fisiopatología , Degeneración Retiniana/fisiopatología , Animales , Quimiocina CX3CL1/deficiencia , Quimiocina CX3CL1/genética , Cruzamientos Genéticos , Modelos Animales de Enfermedad , Electrorretinografía , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía , Fenotipo , Receptores CCR2/deficiencia , Receptores CCR2/genética , Retina/patología , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/fisiopatología
13.
Hum Mutat ; 36(9): 836-41, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26077327

RESUMEN

Genetic analysis of clinical phenotypes in consanguineous families is complicated by coinheritance of large DNA regions carrying independent variants. Here, we characterized a family with early onset cone-rod dystrophy (CRD) and muscular dystrophy. Homozygosity mapping (HM) followed by whole exome sequencing revealed a nonsense mutation, p.R270*, in ALMS1 and two novel potentially disease-causing missense variants, p.R1581C and p.Y2070C, in DYSF. ALMS1 and DYSF are genetically and physically linked on chromosome 2 in a genomic region suggested by HM and associated with Alström syndrome, which includes CRD, and with limb girdle muscular dystrophy, respectively. Affected family members lack additional systemic manifestations of Alström syndrome but exhibit mild muscular dystrophy. RNA-seq data did not reveal any significant variations in ALMS1 transcripts in the human retina. Our study thus implicates ALMS1 as a nonsyndromic retinal disease gene and suggests a potential role of variants in interacting cilia genes in modifying clinical phenotypes.


Asunto(s)
Consanguinidad , Proteínas de la Membrana/genética , Proteínas Musculares/genética , Distrofia Muscular de Cinturas/genética , Mutación , Proteínas/genética , Retinitis Pigmentosa/genética , Proteínas de Ciclo Celular , Análisis Mutacional de ADN , Disferlina , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular de Cinturas/diagnóstico , Linaje , Fenotipo , Retina/patología , Retinitis Pigmentosa/diagnóstico
14.
Am J Hum Genet ; 88(2): 207-15, 2011 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-21295282

RESUMEN

Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal degenerations caused by mutations in at least 50 genes. Using homozygosity mapping in Ashkenazi Jewish (AJ) patients with autosomal-recessive RP (arRP), we identified a shared 1.7 Mb homozygous region on chromosome 1p36.11. Sequence analysis revealed a founder homozygous missense mutation, c.124A>G (p.Lys42Glu), in the dehydrodolichyl diphosphate synthase gene (DHDDS) in 20 AJ patients with RP of 15 unrelated families. The mutation was not identified in an additional set of 109 AJ patients with RP, in 20 AJ patients with other inherited retinal diseases, or in 70 patients with retinal degeneration of other ethnic origins. The mutation was found heterozygously in 1 out of 322 ethnically matched normal control individuals. RT-PCR analysis in 21 human tissues revealed ubiquitous expression of DHDDS. Immunohistochemical analysis of the human retina with anti-DHDDS antibodies revealed intense labeling of the cone and rod photoreceptor inner segments. Clinical manifestations of patients who are homozygous for the c.124A>G mutation were within the spectrum associated with arRP. Most patients had symptoms of night and peripheral vision loss, nondetectable electroretinographic responses, constriction of visual fields, and funduscopic hallmarks of retinal degeneration. DHDDS is a key enzyme in the pathway of dolichol, which plays an important role in N-glycosylation of many glycoproteins, including rhodopsin. Our results support a pivotal role of DHDDS in retinal function and may allow for new therapeutic interventions for RP.


Asunto(s)
Transferasas Alquil y Aril/genética , Genes Recesivos/genética , Judíos/genética , Mutación Missense/genética , Retinitis Pigmentosa/genética , Secuencia de Aminoácidos , Mapeo Cromosómico , Femenino , Homocigoto , Humanos , Masculino , Datos de Secuencia Molecular , Linaje , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido
16.
Doc Ophthalmol ; 129(3): 141-50, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25204753

RESUMEN

PURPOSE: Recently we reported on day blindness in sheep caused by a mutation in the CNGA3 gene, thus making affected sheep a naturally occurring large animal model for therapeutic intervention in CNGA3 achromatopsia patients. The purpose of this study was to characterize flicker cone function in normal and day blind sheep, with the aim of generating a normative data base for ongoing gene therapy studies. METHODS: Electoretinographic (ERG) cone responses were evoked with full-field conditions in 10 normal, 6 heterozygous carriers and 36 day blind sheep. Following light adaptation (10 min, 30 cd/m(2)), responses were recorded at four increasing light intensities (1, 2.5, 5 and 10 cd s/m(2)). At each of these intensities, a single photopic flash response followed by 8 cone flicker responses (10-80 Hz) was recorded. Results were used to generate a normative data base for the three groups. Differences between day blind and normal control animals were tested in two age-matched groups (n = 10 per group). RESULTS: The normal sheep cone ERG wave is bipartite in nature, with critical flicker fusion frequency (CFF) >80 Hz. In all four flash intensities, the single photopic flash a-wave and b-wave amplitudes were significantly lower (p < 0.005), and implicit times significantly delayed (p < 0.0001), in day blind animals. In all four flash intensities, CFF values were significantly lower (p < 0.0001) in day blind sheep. CONCLUSIONS: Cone function is severely depressed in day blind sheep. Our results will provide a normative data base for ongoing gene therapy studies.


Asunto(s)
Defectos de la Visión Cromática/veterinaria , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Modelos Animales de Enfermedad , Fusión de Flicker/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Enfermedades de las Ovejas/fisiopatología , Adaptación Ocular , Animales , Defectos de la Visión Cromática/genética , Defectos de la Visión Cromática/fisiopatología , Electrorretinografía/veterinaria , Femenino , Heterocigoto , Humanos , Masculino , Mutación , Estimulación Luminosa , Ovinos , Enfermedades de las Ovejas/genética
17.
Genes (Basel) ; 15(6)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38927740

RESUMEN

Retinitis pigmentosa (RP) is a heterogeneous inherited retinal disorder. Mutations in KIZ cause autosomal recessive (AR) RP. We aimed to characterize the genotype, expression pattern, and phenotype in a large cohort of KIZ cases. Sanger and whole exome sequencing were used to identify the KIZ variants. Medical records were reviewed and analyzed. Thirty-one patients with biallelic KIZ mutations were identified: 28 homozygous for c.226C>T (p.R76*), 2 compound heterozygous for p.R76* and c.3G>A (p.M1?), and one homozygous for c.247C>T (p.R83*). c.226C>T is a founder mutation among patients of Jewish descent. The clinical parameters were less severe in KIZ compared to DHDDS and FAM161A cases. RT-PCR analysis in fibroblast cells revealed the presence of four different transcripts in both WT and mutant samples with a lower percentage of the WT transcript in patients. Sequence analysis identified an exonic sequence enhancer (ESE) that includes the c.226 position which is affected by the mutation. KIZ mutations are an uncommon cause of IRD worldwide but are not rare among Ashkenazi Jews. Our data indicate that p.R76* affect an ESE which in turn results in the pronounced skipping of exon 3. Therefore, RNA-based therapies might show low efficacy since the mutant transcripts are spliced.


Asunto(s)
Mutación , Retinitis Pigmentosa , Humanos , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología , Femenino , Masculino , Adulto , Judíos/genética , Secuenciación del Exoma/métodos , Linaje , Proteínas del Ojo/genética , Fenotipo , Persona de Mediana Edad , Adolescente
18.
Am J Hum Genet ; 87(3): 382-91, 2010 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-20705279

RESUMEN

Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal degenerations caused by mutations in at least 45 genes. Using homozygosity mapping, we identified a ∼4 Mb homozygous region on chromosome 2p15 in patients with autosomal-recessive RP (arRP). This region partially overlaps with RP28, a previously identified arRP locus. Sequence analysis of 12 candidate genes revealed three null mutations in FAM161A in 20 families. RT-PCR analysis in 21 human tissues revealed high levels of FAM161A expression in the retina and lower levels in the brain and testis. In the human retina, we identified two alternatively spliced transcripts with an intact open reading frame, the major one lacking a highly conserved exon. During mouse embryonic development, low levels of Fam161a transcripts were detected throughout the optic cup. After birth, Fam161a expression was elevated and confined to the photoreceptor layer. FAM161A encodes a protein of unknown function that is moderately conserved in mammals. Clinical manifestations of patients with FAM161A mutations varied but were largely within the spectrum associated with arRP. On funduscopy, pallor of the optic discs and attenuation of blood vessels were common, but bone-spicule-like pigmentation was often mild or lacking. Most patients had nonrecordable electroretinographic responses and constriction of visual fields upon diagnosis. Our data suggest a pivotal role for FAM161A in photoreceptors and reveal that FAM161A loss-of-function mutations are a major cause of arRP, accounting for ∼12% of arRP families in our cohort of patients from Israel and the Palestinian territories.


Asunto(s)
Mapeo Cromosómico , Proteínas del Ojo/genética , Genes Recesivos/genética , Homocigoto , Mutación/genética , Retinitis Pigmentosa/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Análisis Mutacional de ADN , Evolución Molecular , Proteínas del Ojo/química , Proteínas del Ojo/metabolismo , Familia , Fondo de Ojo , Regulación del Desarrollo de la Expresión Génica , Ratones , Datos de Secuencia Molecular , Retinitis Pigmentosa/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
Ophthalmol Sci ; 3(1): 100229, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36420180

RESUMEN

Purpose: Pathogenic variants in FAM161A are the most common cause of retinitis pigmentosa in Israel. Two founder pathogenic variants explain the vast majority of cases of Jewish origin, 1 being a nonsense variant (p.Arg523∗). The aim of this study was to generate a knock-in (KI) mouse model harboring the corresponding p.Arg512∗ pathogenic variant and characterize the course of retinal disease. Design: Experimental study of a mouse animal model. Subjects/Participants/Controls: A total of 106 Fam161a knock-in mice and 29 wild-type mice with C57BL/6J background particiapted in this study. Methods: Homozygous Fam161a p.Arg512∗ KI mice were generated by Cyagen Biosciences. Visual acuity (VA) was evaluated using optomotor tracking response and retinal function was assessed by electroretinography (ERG). Retinal structure was examined in vivo using OCT and fundus autofluorescence imaging. Retinal morphometry was evaluated by histologic and immunohistochemical (IHC) analyses. Main Outcome Measures: Visual and retinal function assessments, clinical imaging examinations, quantitative histology, and IHC studies of KI as compared with wild-type (WT) mice retinas. Results: The KI model was generated by replacing 3 bp, resulting in p.Arg512∗. Homozygous KI mice that had progressive loss of VA and ERG responses until the age of 18 months, with no detectable response at 21 months. OCT showed complete loss of the outer nuclear layer at 21 months. Fundus autofluorescence imaging revealed progressive narrowing of blood vessels and formation of patchy hyper-autofluorescent and hypo-autofluorescent spots. Histologic analysis showed progressive loss of photoreceptor nuclei. Immunohistochemistry staining showed Fam161a expression mainly in photoreceptors cilia and the outer plexiform layer (OPL) in WT mice retinas, whereas faint expression was evident mainly in the cilia and OPL of KI mice. Conclusions: The Fam161a - p.Arg512∗ KI mouse model is characterized by widespread retinal degeneration with relatively slow progression. Surprisingly, disease onset is delayed and progression is slower compared with the previously reported knock-out model. The common human null mutation in the KI mouse model is potentially amenable for correction by translational read-through-inducing drugs and by gene augmentation therapy and RNA editing, and can serve to test these treatments as a first step toward possible application in patients. Financial Disclosures: The author(s) have no proprietary or commercial interest in any materials discussed in this article.

20.
J Ocul Pharmacol Ther ; 39(5): 347-358, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37140896

RESUMEN

Purpose: To examine the survival of neural progenitors (NPs) cells derived from human embryonic stem cells (hESCs) following subretinal (SR) transplantation in rodents. Methods: hESCs engineered to express enhanced green fluorescent protein (eGFP) were differentiated in vitro toward an NP fate using a 4-week protocol. State of differentiation was characterized by quantitative-PCR. NPs in suspension (75,000/µl) were transplanted to the SR-space of Royal College of Surgeons (RCS) rats (n = 66), nude-RCS rats (n = 18), and NOD scid gamma (NSG) mice (n = 53). Success of engraftment was determined at 4 weeks post-transplant by in vivo visualization of GFP-expression using a properly filtered rodent fundus camera. Transplanted eyes were examined in vivo at set time points using the fundus camera, and in select cases, by optical coherence tomography imaging, and after enucleation, by retinal histology and immunohistochemistry. Results: In RCS rats, cell rejection was observed in 29% of eyes at 6 weeks, rising to 92% at 8 weeks. In the more immunodeficient nude-RCS rats, the rejection rate was still high reaching 62% of eyes at 6 weeks post-transplant. Following transplantation in highly immunodeficient NSG mice, survival of the hESC-derived NPs was much improved, with 100% survival at 9 weeks and 72% at 20 weeks. A small number of eyes that were followed past 20 weeks showed survival also at 22 weeks. Conclusions: Immune status of recipient animals influences transplant survival. Highly immunodeficient NSG mice provide a better model for studying long-term survival, differentiation, and possible integration of hESC-derived NPs. Clinical Trial Registration numbers: NCT02286089, NCT05626114.


Asunto(s)
Células Madre Embrionarias Humanas , Ratones , Humanos , Ratas , Animales , Roedores , Retina/metabolismo , Diferenciación Celular , Trasplante de Células Madre , Supervivencia Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA