Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
2.
Genome Med ; 16(1): 10, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200577

RESUMEN

BACKGROUND: Type 2 diabetes (T2D) is a heterogeneous and polygenic disease. Previous studies have leveraged the highly polygenic and pleiotropic nature of T2D variants to partition the heterogeneity of T2D, in order to stratify patient risk and gain mechanistic insight. We expanded on these approaches by performing colocalization across GWAS traits while assessing the causality and directionality of genetic associations. METHODS: We applied colocalization between T2D and 20 related metabolic traits, across 243 loci, to obtain inferences of shared casual variants. Network-based unsupervised hierarchical clustering was performed on variant-trait associations. Partitioned polygenic risk scores (PRSs) were generated for each cluster using T2D summary statistics and validated in 21,742 individuals with T2D from 3 cohorts. Inferences of directionality and causality were obtained by applying Mendelian randomization Steiger's Z-test and further validated in a pediatric cohort without diabetes (aged 9-12 years old, n = 3866). RESULTS: We identified 146 T2D loci that colocalized with at least one metabolic trait locus. T2D variants within these loci were grouped into 5 clusters. The clusters corresponded to the following pathways: obesity, lipodystrophic insulin resistance, liver and lipid metabolism, hepatic glucose metabolism, and beta-cell dysfunction. We observed heterogeneity in associations between PRSs and metabolic measures across clusters. For instance, the lipodystrophic insulin resistance (Beta - 0.08 SD, 95% CI [- 0.10-0.07], p = 6.50 × 10-32) and beta-cell dysfunction (Beta - 0.10 SD, 95% CI [- 0.12, - 0.08], p = 1.46 × 10-47) PRSs were associated to lower BMI. Mendelian randomization Steiger analysis indicated that increased T2D risk in these pathways was causally associated to lower BMI. However, the obesity PRS was conversely associated with increased BMI (Beta 0.08 SD, 95% CI 0.06-0.10, p = 8.0 × 10-33). Analyses within a pediatric cohort supported this finding. Additionally, the lipodystrophic insulin resistance PRS was associated with a higher odds of chronic kidney disease (OR 1.29, 95% CI 1.02-1.62, p = 0.03). CONCLUSIONS: We successfully partitioned T2D genetic variants into phenotypic pathways using a colocalization first approach. Partitioned PRSs were associated to unique metabolic and clinical outcomes indicating successful partitioning of disease heterogeneity. Our work expands on previous approaches by providing stronger inferences of shared causal variants, causality, and directionality of GWAS variant-trait associations.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Niño , Diabetes Mellitus Tipo 2/genética , Puntuación de Riesgo Genético , Resistencia a la Insulina/genética , Análisis por Conglomerados , Obesidad/genética
3.
Acad Radiol ; 31(7): 2887-2896, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38494349

RESUMEN

RATIONALE AND OBJECTIVES: The paravertebral muscles, characterized by their susceptibility to severe size loss and fat infiltration in old age, lack established reference values for age-related variations in muscle parameters. This study aims to fill this gap by establishing reference values for paravertebral muscles in a Chinese adult population. MATERIALS AND METHODS: This cross-sectional study utilized the baseline data from the prospective cohort China Action on Spine and Hip (CASH). A total of 4305 community-dwelling participants aged 21-80 years in China were recruited between 2013 and 2017. Pregnant women, individuals with metal implants, limited mobility or diseases/conditions (spinal tumor, infection, etc.) affecting lumbar vertebra were excluded from the study. Psoas and paraspinal muscles were measured in quantitative computed tomography (QCT) images at the L3 and L5 levels using Osirix software. Age-related reference values for muscle area, density, and fat fraction were constructed as percentile charts using the lambda-mu-sigma (LMS) method. RESULTS: The paravertebral muscles exhibited an age-related decline in muscle area and density, coupled with an increase in muscle fat fraction. Between the ages of 25 and 75, the reductions in psoas and paraspinal muscle cross-sectional area at the L3 level were - 0.47%/yr and - 0.53%/yr in men, and - 0.19%/yr and - 0.23%/yr in women, respectively. Notably, accelerated muscle loss was observed during menopause and postmenopause in women (45-75 years) and intermittently during middle and old age in men (35-55 and 60-75 years). Besides, the age-related decreases in PSMA, PMA, and PSMD and the increases in PSMFF were more pronounced in L5 than in L3 CONCLUSION: This study shows distinct patterns of accelerated muscle loss were identified in menopausal and postmenopausal women and in middle-aged and old men. The findings contribute valuable information for future investigations on paravertebral muscle loss and myosteatosis.


Asunto(s)
Músculos Paraespinales , Tomografía Computarizada por Rayos X , Humanos , Persona de Mediana Edad , Femenino , Masculino , Adulto , Anciano , China , Valores de Referencia , Estudios Transversales , Músculos Paraespinales/diagnóstico por imagen , Anciano de 80 o más Años , Estudios Prospectivos , Adulto Joven , Músculos Psoas/diagnóstico por imagen , Pueblos del Este de Asia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA