Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proteomics ; 24(9): e2300214, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38475964

RESUMEN

Physical inactivity associated with gravity unloading, such as microgravity during spaceflight and hindlimb unloading (HU), can cause various physiological changes. In this study, we attempted to identify serum proteins whose levels fluctuated in response to gravity unloading. First, we quantitatively assessed changes in the serum proteome profiles of spaceflight mice using mass spectrometry with data-independent acquisition. The serum levels of several proteins involved in the responses to estrogen and glucocorticoid, blood vessel maturation, osteoblast differentiation, and ossification were changed by microgravity exposure. Furthermore, a collective evaluation of serum proteomic data from spaceflight and HU mice identified 30 serum proteins, including Mmp2, Igfbp2, Tnc, Cdh5, and Pmel, whose levels varied to a similar extent in both gravity unloading models. These changes in serum levels could be involved in the physiological changes induced by gravity unloading. A collective evaluation of serum, femur, and soleus muscle proteome data of spaceflight mice also showed 24 serum proteins, including Igfbp5, Igfbp3, and Postn, whose levels could be associated with biological changes induced by microgravity. This study examined serum proteome profiles in response to gravity unloading, and may help deepen our understanding of microgravity adaptation mechanisms during prolonged spaceflight missions.


Asunto(s)
Proteínas Sanguíneas , Proteómica , Vuelo Espacial , Ingravidez , Animales , Ratones , Proteómica/métodos , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/análisis , Espectrometría de Masas/métodos , Suspensión Trasera , Proteoma/metabolismo , Proteoma/análisis , Masculino , Ratones Endogámicos C57BL
2.
Proteomics ; 24(10): e2300328, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38185763

RESUMEN

The molecular mechanisms associated with spaceflight-induced biological adaptations that may affect many healthy tissue functions remain poorly understood. In this study, we analyzed temporal changes in the serum proteome of six astronauts during prolonged spaceflight missions using quantitative comprehensive proteome analysis performed with the data-independent acquisition method of mass spectrometry (DIA-MS). All six astronauts participated in a spaceflight mission for approximately 6 months and showed a decreasing trend in T-scores at almost all sites where dual-energy X-ray absorptiometry scans were performed. DIA-MS successfully identified 624 nonredundant proteins in sera and further quantitative analysis for each sampling point provided information on serum protein profiles closely related to several time points before (pre-), during (in-), and after (post-) spaceflight. Changes in serum protein levels between spaceflight and on the ground suggest that abnormalities in bone metabolism are induced in astronauts during spaceflight. Furthermore, changes in the proteomic profile occurring during spaceflight suggest that serum levels of bone metabolism-related proteins, namely ALPL, COL1A1, SPP1, and POSTN, could serve as highly responsive indicators of bone metabolism status in spaceflight missions. This study will allow us to accelerate research to improve our understanding of the molecular mechanisms of biological adaptations associated with prolonged spaceflight.


Asunto(s)
Astronautas , Proteoma , Vuelo Espacial , Humanos , Proteoma/metabolismo , Proteoma/análisis , Masculino , Proteínas Sanguíneas/análisis , Proteínas Sanguíneas/metabolismo , Proteómica/métodos , Persona de Mediana Edad , Adulto , Espectrometría de Masas/métodos
3.
Calcif Tissue Int ; 114(5): 535-549, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38467838

RESUMEN

Heterotopic ossification (HO) is the process by which ectopic bone forms at an extraskeletal site. Inflammatory conditions induce plasminogen activator inhibitor 1 (PAI-1), an inhibitor of fibrinolysis, which regulates osteogenesis. In the present study, we investigated the roles of PAI-1 in the pathophysiology of HO induced by trauma/burn treatment using PAI-1-deficient mice. PAI-1 deficiency significantly promoted HO and increased the number of alkaline phosphatase (ALP)-positive cells in Achilles tendons after trauma/burn treatment. The mRNA levels of inflammation markers were elevated in Achilles tendons of both wild-type and PAI-1-deficient mice after trauma/burn treatment and PAI-1 mRNA levels were elevated in Achilles tendons of wild-type mice. PAI-1 deficiency significantly up-regulated the expression of Runx2, Osterix, and type 1 collagen in Achilles tendons 9 weeks after trauma/burn treatment in mice. In in vitro experiments, PAI-1 deficiency significantly increased ALP activity and mineralization in mouse osteoblasts. Moreover, PAI-1 deficiency significantly increased ALP activity and up-regulated osteocalcin expression during osteoblastic differentiation from mouse adipose-tissue-derived stem cells, but suppressed the chondrogenic differentiation of these cells. In conclusion, the present study showed that PAI-1 deficiency promoted HO in Achilles tendons after trauma/burn treatment partly by enhancing osteoblast differentiation and ALP activity in mice. Endogenous PAI-1 may play protective roles against HO after injury and inflammation.


Asunto(s)
Tendón Calcáneo , Trastornos Hemorrágicos , Osificación Heterotópica , Inhibidor 1 de Activador Plasminogénico , Inhibidor 1 de Activador Plasminogénico/deficiencia , Tenotomía , Animales , Osificación Heterotópica/metabolismo , Osificación Heterotópica/etiología , Tendón Calcáneo/metabolismo , Tendón Calcáneo/lesiones , Tendón Calcáneo/patología , Ratones , Inhibidor 1 de Activador Plasminogénico/metabolismo , Tenotomía/métodos , Osteogénesis/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Masculino , Osteoblastos/metabolismo , Diferenciación Celular , Modelos Animales de Enfermedad
4.
J Bone Miner Metab ; 42(3): 282-289, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38704516

RESUMEN

INTRODUCTION: Glucocorticoids delay fracture healing and induce osteoporosis. Angiogenesis plays an important role in bone repair after bone injury. Plasminogen activator inhibitor-1 (PAI-1) is the principal inhibitor of plasminogen activators and an adipocytokine that regulates metabolism. However, the mechanisms by which glucocorticoids delay bone repair remain unclear. MATERIALS AND METHODS: Therefore, we herein investigated the roles of PAI-1 and angiogenesis in glucocorticoid-induced delays in bone repair after femoral bone injury using PAI-1-deficient female mice intraperitoneally administered dexamethasone (Dex). RESULTS: PAI-1 deficiency significantly attenuated Dex-induced decreases in the number of CD31-positive vessels at damaged sites 4 days after femoral bone injury in mice. PAI-1 deficiency also significantly ameliorated Dex-induced decreases in the number of CD31- and endomucin-positive type H vessels and CD31-positive- and endomucin-negative vessels at damaged sites 4 days after femoral bone injury. Moreover, PAI-1 deficiency significantly mitigated Dex-induced decreases in the expression of vascular endothelial growth factor as well as hypoxia inducible factor-1α, transforming growth factor-ß1, and bone morphogenetic protein-2 at damaged sites 4 days after femoral bone injury. CONCLUSION: The present results demonstrate that Dex-reduced angiogenesis at damaged sites during the early bone-repair phase after femoral bone injury partly through PAI-1 in mice.


Asunto(s)
Dexametasona , Glucocorticoides , Neovascularización Fisiológica , Inhibidor 1 de Activador Plasminogénico , Animales , Ratones , Inhibidor 1 de Activador Plasminogénico/metabolismo , Femenino , Glucocorticoides/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Dexametasona/farmacología , Fémur/efectos de los fármacos , Fémur/metabolismo , Fémur/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Curación de Fractura/efectos de los fármacos , Ratones Noqueados , Ratones Endogámicos C57BL , Proteína Morfogenética Ósea 2/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Angiogénesis
5.
Calcif Tissue Int ; 112(3): 377-388, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36576505

RESUMEN

Extracellular vesicles (EVs) play crucial roles in physiological and pathophysiological processes. Although studies have described muscle-bone interactions via humoral factors, we reported that EVs from C2C12 muscle cells (Myo-EVs) suppress osteoclast formation. Current clinical evidence suggests that inflammation induces both sarcopenia and osteoporosis. Although tumor necrosis factor-α (TNF-α) is a critical proinflammatory factor, the influences of TNF-α on muscle-bone interactions and Myo-EVs are still unclear. In the present study, we investigated the effects of TNF-α stimulation of C2C12 cells on osteoclast formation and osteoblastic differentiation modulated by Myo-EVs in mouse cells. TNF-α significantly decreased the protein amount in Myo-EVs, but did not affect the Myo-EV size distribution. TNF-α treatment of C2C12 myoblasts significantly decreased the suppression of osteoclast formation induced by Myo-EVs from C2C12 myoblasts in mouse bone marrow cells. Moreover, TNF-α treatment of C2C12 myoblasts in mouse preosteoclastic Raw 264.7 cells significantly limited the Myo-EV-induced suppression of osteoclast formation and decreased the Myo-EV-induced increase in mRNA levels of osteoclast formation-related genes. On the other hand, TNF-α treatment of C2C12 muscle cells significantly decreased the degree of Myo-EV-promoted mRNA levels of Osterix and osteocalcin, as well as ALP activity in mouse mesenchymal ST-2 cells. TNF-α also significantly decreased miR196-5p level in Myo-EVs from C2C12 myoblasts in quantitative real-time PCR. In conclusion, TNF-α stimulation of C2C12 muscle cells blunts both the osteoclast formation suppression and the osteoblastic differentiation promotion that occurs due to Myo-EVs in mouse cells. Thus, TNF-α may disrupt the muscle-bone interactions by direct Myo-EV modulation.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Animales , Ratones , Factor de Necrosis Tumoral alfa/metabolismo , Diferenciación Celular , Células Musculares , Vesículas Extracelulares/metabolismo , ARN Mensajero/metabolismo , MicroARNs/metabolismo
6.
Endocr J ; 70(2): 161-171, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36198617

RESUMEN

Humoral factors that are secreted from skeletal muscles can regulate bone metabolism and contribute to muscle-bone relationships. Although extracellular vesicles (EVs) play important roles in physiological and pathophysiological processes, the roles of EVs that are secreted from skeletal muscles in bone repair have remained unclear. In the present study, we investigated the effects of the local administration of muscle cell-derived EVs on bone repair in control and streptozotocin-treated diabetic female mice. Muscle cell-derived EVs (Myo-EVs) were isolated from the conditioned medium from mouse muscle C2C12 cells by ultracentrifugation, after which Myo-EVs and gelatin hydrogel sheets were transplanted on femoral bone defect sites. The local administration of Myo-EVs significantly improved delayed bone repair that was induced by the diabetic state in mice 9 days after surgery. Moreover, this administration significantly enhanced the ratio of bone volume to tissue volume at the damaged sites 9 days after surgery in the control mice. Moreover, the local administration of Myo-EVs significantly blunted the number of Osterix-positive cells that were suppressed by the diabetic state at the damage sites after bone injury in mice. Additionally, Myo-EVs significantly blunted the mRNA levels of Osterix and alkaline phosphatase (ALP), and ALP activity was suppressed by advanced glycation end product 3 in ST2 cells that were treated with bone morphogenetic protein-2. In conclusion, we have shown for the first time that the local administration of Myo-EVs improves delayed bone repair that is induced by the diabetic state through an enhancement of osteoblastic differentiation in female mice.


Asunto(s)
Diabetes Mellitus Experimental , Vesículas Extracelulares , Ratones , Femenino , Animales , Diabetes Mellitus Experimental/metabolismo , Células Musculares , Huesos , Vesículas Extracelulares/metabolismo , Músculo Esquelético
7.
J Cell Physiol ; 237(5): 2492-2502, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35194789

RESUMEN

Exercise is important for the prevention and treatment of sarcopenia and osteoporosis. Although the interactions between skeletal muscles and bone have recently been reported, the myokines linking muscle to bone during exercise remain unknown. We previously revealed that chronic exercise using treadmill running blunts ovariectomy-induced osteopenia in mice. We herein performed an RNA sequence analysis of the gastrocnemius and soleus muscles of male mice with or without chronic exercise to identify the myokines responsible for the effects of chronic exercise on the muscle/bone relationship. We extracted peripheral myelin protein 22 (PMP22) as a humoral factor that was putatively induced by chronic exercise in the soleus and gastrocnemius muscles of mice from the RNA sequence analysis. Chronic exercise significantly enhanced the expression of PMP22 in the gastrocnemius and soleus muscles of female mice. PMP22 suppressed macrophage-colony stimulating factor and receptor activator factor κB ligand-induced increases in the expression of osteoclast-related genes and osteoclast formation from mouse bone marrow cells. Moreover, PMP22 significantly inhibited osteoblast differentiation, alkaline phosphatase activity, and mineralization in mouse osteoblast cultures; however, the overexpression of PMP22 did not affect muscle phenotypes in mouse muscle C2C12 cells. A simple regression analysis revealed that PMP22 mRNA levels in the gastrocnemius and soleus muscles were positively related to cortical bone mineral density at the femurs of mice with or without chronic exercise. In conclusion, we identified PMP22 as a novel myokine induced by chronic exercise in mice. We first showed that PMP22 suppresses osteoclast formation and the osteoblast phenotype in vitro.


Asunto(s)
Enfermedades Óseas Metabólicas , Huesos , Proteínas de la Mielina/metabolismo , Animales , Enfermedades Óseas Metabólicas/metabolismo , Huesos/metabolismo , Femenino , Masculino , Ratones , Músculo Esquelético/metabolismo , Osteoclastos/metabolismo
8.
Int J Clin Oncol ; 27(5): 829-839, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35347493

RESUMEN

BACKGROUND: The U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) have published guidelines on the use of cancer treatments in young people of reproductive potential. However, no such guideline is available in Japan. Therefore, this project aimed to gather relevant data and draft a respective guidance paper. METHODS: From April 2019 to March 2021, the Study Group for Providing Information on the Proper Use of Pharmaceuticals in Patients with Reproductive Potential at the Japan Agency for Medical Research and Development gathered opinions from experts in reproductive medicine, toxicology, and drug safety measures. The group considered these opinions, the FDA and EMA guidelines, and relevant Japanese guidelines and prepared a guidance paper, which they sent to 19 related organizations for comment. RESULTS: By November 2020, the draft guidance paper was completed and sent to the related organizations, 17 of which provided a total of 156 comments. The study group finalized the guidance paper in March 2021. CONCLUSIONS: The "Guidance on the Need for Contraception Related to Use of Pharmaceuticals" (The report of the Study Group for Providing Information on the Proper Use of Pharmaceuticals in Patients with Reproductive Potential, Research on Regulatory Science of Pharmaceuticals and Medical Devices, Japan Agency for Medical Research and Development: JP20mk0101139) is expected to help Japanese healthcare professionals provide fertility-related care and advice to adolescents, and young adults with cancer and their families.


Asunto(s)
Anticoncepción , Investigación , Adolescente , Humanos , Japón , Preparaciones Farmacéuticas , Estados Unidos , United States Food and Drug Administration , Adulto Joven
9.
Biochim Biophys Acta ; 1840(10): 3170-80, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24440156

RESUMEN

BACKGROUND: Although rat anti-mouse IL-6 receptor (IL-6R) antibody (MR16-1) has been reported to effectively ameliorate various tissue damages, its effect on skeletal muscle regeneration has not been determined. Moreover, the localization, persistence and duration of action of this reagent in damaged tissues after systemic administration have not been assessed. METHODS: The MR16-1 was administered i.p. immediately after cardiotoxin (CTX)-induced muscle damage on mice. RESULTS: MR16-1 administered i.p. was observed only to the damaged muscle. This delivered MR16-1 was dramatically decreased from 3 to 7days post-injury concomitantly with a reduction of IL-6R expression. This reduction of the MR16-1 level in the damaged muscle was not rescued by additional administration of MR16-1, suggesting the short half-life of MR16-1 was not the factor for the remaining levels. In addition, a significant inhibitory effect of MR16-1 on phosphorylation of the signal transducer and activator of transcription 3 was observed in the macrophage-enriched area of damaged muscle 3days after injury. Finally, the acceleration of muscle regeneration observed at day 7 post-injury following MR16-1 treatment was associated with reduced expression of fibrosis-related genes, such as interleukin-10 and arginase, in the infiltrated macrophages. CONCLUSIONS: These results suggest that MR16-1 which was found primarily localized in infiltrated macrophages in the damaged muscle might facilitate muscle regeneration via immune modulation. GENERAL SIGNIFICANCE: These findings are deemed to provide further insight into the understanding not only of MR16-1 treatment on muscle regeneration, but also of the other anti-cytokine treatment on the cytokine-related disease.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Macrófagos/metabolismo , Proteínas Musculares/biosíntesis , Músculo Esquelético/lesiones , Músculo Esquelético/metabolismo , Receptores de Interleucina-6/antagonistas & inhibidores , Regeneración/efectos de los fármacos , Animales , Arginasa/genética , Arginasa/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Macrófagos/patología , Ratones , Ratones Noqueados , Proteínas Musculares/genética , Músculo Esquelético/patología , Ratas , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/metabolismo , Regeneración/genética
10.
Bone ; 181: 117040, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38316336

RESUMEN

The intermittent administration of parathyroid hormone (PTH) exerts potent bone anabolic effects, which increase bone mineral density (BMD) and reduce fracture risk in osteoporotic patients. However, the underlying mechanisms remain unclear. Tmem119 has been proposed as a factor that is closely linked to the osteoblast phenotype, and we previously reported that PTH enhanced the expression of Tmem119 in mouse osteoblastic cells. However, roles of Tmem119 in the bone anabolic effects of PTH in vivo remain unknown. We herein investigated the roles of Tmem119 in bone anabolic effects of PTH using Tmem119-deficient mice. Tmem119 deficiency significantly reduced PTH-induced increases in trabecular bone volume and cortical BMD of femurs. Effects of Tmem119 deficiency on bone mass seemed predominant in female mice. Histomorphometric analyses with calcein labeling showed that Tmem119 deficiency significantly attenuated PTH-induced increases in the rates of bone formation and mineralization as well as numbers of osteoblasts. Moreover, Tmem119 deficiency significantly blunted PTH-induced decreases in phosphorylation of ß-catenin and increases in alkaline phosphatase activity in osteoblasts. In conclusion, the present results indicate that Tmem119 is involved in bone anabolic effects of PTH through osteoblastic bone formation partly related to canonical Wnt-ß-catenin signaling in mice.


Asunto(s)
Anabolizantes , Hormona Paratiroidea , Humanos , Animales , Femenino , Ratones , Hormona Paratiroidea/farmacología , Hormona Paratiroidea/metabolismo , Osteogénesis , Anabolizantes/farmacología , Anabolizantes/metabolismo , beta Catenina/metabolismo , Huesos/metabolismo , Osteoblastos/metabolismo , Densidad Ósea , Proteínas de la Membrana/metabolismo
11.
Bone ; 186: 117177, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38942344

RESUMEN

Tmem119 was identified as a bone anabolic factor in osteoblasts, however the roles of Tmem119 on bone repair have remained unknown. Therefore, we herein investigated the roles of Tmem119 on bone repair by examining the bone repair process after a femoral bone defect using Tmem119-deficient mice. In Tmem119-deficient mice, bone repair after a femoral bone defect was significantly delayed 10 and 14 days after bone injury in female and male mice with 3-dimensional micro-computed tomography analyses, respectively. The number of alkaline phosphatase-positive cells at the damaged sites was significantly decreased 7 days after bone injury in Tmem119-deficient mice, although the number of Osterix-positive cells was not significantly different 4 days after bone injury. The number of tartrate-resistant acid phosphatase-positive multinucleated cells as well as the number and luminal area of CD31-positive vessels at the damaged sites were not significantly different between Tmem119-deficient and wild-type mice. The present study first showed that Tmem119 deficiency delayed bone repair partly through a decrease in the osteoblastic bone formation of differentiated osteoblasts.


Asunto(s)
Fémur , Proteínas de la Membrana , Osteoblastos , Microtomografía por Rayos X , Animales , Femenino , Masculino , Ratones , Regeneración Ósea , Fémur/diagnóstico por imagen , Fémur/patología , Fémur/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoblastos/metabolismo , Osteogénesis
12.
PLoS One ; 19(10): e0311902, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39388484

RESUMEN

Chronic kidney disease (CKD) is a significant global health issue and often involves CKD-mineral and bone disorder (MBD) and sarcopenia. Plasminogen activator inhibitor-1 (PAI-1) is an inhibitor of fibrinolysis. PAI-1 has been implicated in the pathogenesis of osteoporosis and muscle wasting induced by inflammatory conditions. However, the roles of PAI-1 in CKD-MBD and sarcopenia remain unknown. Therefore, the present study investigated the roles of PAI-1 in bone loss and muscle wasting induced by adenine in PAI-1-deficient mice. CKD was induced in PAI-1+/+ and PAI-1-/- mice by administration of adenine for ten weeks. Muscle wasting was assessed by grip strength test, quantitative computed tomography (CT) analysis and muscle weight measurement. Osteoporosis was assessed by micro-CT analysis of femoral microstructural parameters. PAI-1 deficiency did not affect adenine-induced decreases in body weight and food intake or renal dysfunction in male or female mice. PAI-1 deficiency also did not affect adenine-induced decreases in grip strength, muscle mass in the lower limbs, or the tissue weights of the gastrocnemius, soleus, and tibialis anterior muscles in male or female mice. PAI-1 deficiency aggravated trabecular bone loss in CKD-induced male mice, but significantly increased trabecular bone in CKD-induced female mice. On the other hand, PAI-1 deficiency did not affect cortical bone loss in CKD-induced mice. In conclusion, PAI-1 is not critical for the pathophysiology of CKD-MBD or CKD-induced sarcopenia in mice. However, PAI-1 may be partly related to bone metabolism in trabecular bone in the CKD state with sex differences.


Asunto(s)
Adenina , Sarcopenia , Animales , Sarcopenia/metabolismo , Sarcopenia/patología , Sarcopenia/etiología , Ratones , Masculino , Femenino , Adenina/efectos adversos , Adenina/toxicidad , Inhibidor 1 de Activador Plasminogénico/deficiencia , Inhibidor 1 de Activador Plasminogénico/metabolismo , Inhibidor 1 de Activador Plasminogénico/genética , Ratones Noqueados , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Osteoporosis/metabolismo , Osteoporosis/inducido químicamente , Osteoporosis/patología , Osteoporosis/etiología , Ratones Endogámicos C57BL , Microtomografía por Rayos X , Trastornos Hemorrágicos/patología , Trastornos Hemorrágicos/metabolismo
13.
J Appl Physiol (1985) ; 136(3): 643-658, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38328826

RESUMEN

Mechanical-unloading-induced skeletal muscle atrophy results in physical frailty and disability. Elucidating its mechanism is required to establish effective countermeasures for this muscle adaptation. First, we analyzed the proteome profile in the gastrocnemius (Gast) and soleus muscles of space-flown mice raised under microgravity or artificial 1-g for 30 days, and found that the expression levels of fibrinolysis-related proteins were significantly elevated in the mechanical-unloaded muscles. Next, we investigated the roles of the fibrinolytic system in skeletal muscle atrophy induced by mechanical unloading on the ground. Eight-week-old male mice with plasminogen gene deficiency (Plg-/-) and their wild-type littermates were divided into control and hindlimb-suspended groups and were raised for 21 days. Plasminogen deficiency significantly enhanced the decrease in muscle mass at the lower limbs of mice following hindlimb unloading, and the Gast muscle atrophy was more prominent in Plg-/- mice. In addition, plasminogen deficiency significantly increased the expression of autophagy-related markers, beclin1 mRNA and LC3B protein, in the mechanical-unloaded Gast muscles, but did not affect the increase in the gene expression of ubiquitin ligases, atrogin-1 and MuRF1. Neither plasminogen deficiency nor hindlimb unloading affected the Akt/mechanistic target of rapamycin pathway in the Gast muscles. These results suggested that plasminogen deficiency might accelerate protein breakdown via the autophagy-lysosome, but not the ubiquitin-proteasome, system in the mechanical-unloaded Gast muscles. In conclusion, we first showed that plasminogen deficiency exacerbated the Gast muscle atrophy in hindlimb-unloaded mice. Plasminogen and the fibrinolysis system might play some protective roles against muscle atrophy induced by mechanical unloading in developing mice.NEW & NOTEWORTHY The expression levels of fibrinolysis-related proteins, including plasminogen, were significantly elevated in the gastrocnemius (Gast) and soleus muscles of mice following 30-day microgravity exposure. Plasminogen deficiency exacerbated atrophy of the Gast, but not the soleus, muscles in mice following 21-day hindlimb suspension. It was also suggested that protein breakdown via the autophagy-lysosome system was accelerated in the Gast muscles. Plasminogen might play some protective roles against muscle atrophy induced by mechanical unloading in developing mice.


Asunto(s)
Proteínas Musculares , Músculo Esquelético , Animales , Masculino , Ratones , Suspensión Trasera/fisiología , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Ubiquitinas/metabolismo , Ubiquitinas/farmacología , Plasminógeno/metabolismo
14.
J Proteomics ; 300: 105166, 2024 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-38574990

RESUMEN

Osteoporosis is characterized by weakened bone microstructure and loss of bone mass. Current diagnostic criteria for osteoporosis are based on the T-score, which is a measure of bone mineral density. However, osteoporotic fragility fractures can occur regardless of the T-score, underscoring the need for additional criteria for the early detection of patients at fracture risk. To identify indicators of reduced bone strength, we performed serum proteomic analysis using data-independent acquisition mass spectrometry with serum samples from two patient groups, one with osteoporosis but no fractures and the other with osteopenia and fragility fractures. Collective evaluation of the results identified six serum proteins that changed to a similar extent in both patient groups compared with controls. Of these, extracellular matrix protein 1 (ECM1), which contributes to bone formation, showed the most significant increase in serum levels in both patient groups. An ELISA-based assay suggested that ECM1 could serve as a serum indicator of the need for therapeutic intervention; however, further prospective studies with a larger sample size are necessary to confirm these results. The present findings may contribute to the provision of early and appropriate therapeutic strategies for patients at risk of osteoporotic fractures. SIGNIFICANCE: This study aimed to identify objective serum indicators of the need for therapeutic intervention in individuals at risk of osteoporotic fracture. Comprehensive proteome analyses of serum collected from patients with osteoporosis but no fractures, patients with osteopenia and fragility fractures, and controls were performed by data-independent acquisition mass spectrometry. Collective evaluation of the proteome analysis data and ELISA-based assays identified serum ECM1 as a potential objective marker of the risk of fragility fractures in patients with osteoporosis or osteopenia. The findings are an important step toward the development of appropriate bone health management methods to improve well-being and maintain quality of life.


Asunto(s)
Biomarcadores , Espectrometría de Masas , Osteoporosis , Fracturas Osteoporóticas , Humanos , Osteoporosis/sangre , Femenino , Anciano , Fracturas Osteoporóticas/sangre , Biomarcadores/sangre , Espectrometría de Masas/métodos , Masculino , Persona de Mediana Edad , Proteómica/métodos , Densidad Ósea , Enfermedades Óseas Metabólicas/sangre , Enfermedades Óseas Metabólicas/diagnóstico , Proteínas de la Matriz Extracelular/sangre , Proteínas Sanguíneas/análisis , Anciano de 80 o más Años , Proteoma/análisis , Proteoma/metabolismo
15.
Exp Clin Endocrinol Diabetes ; 131(4): 228-235, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36549337

RESUMEN

The interactions between muscle and bone are noted in the clinical relationships between sarcopenia and osteoporosis. Myokines secreted from the skeletal muscles play roles in muscle-bone interactions related to various physiological and pathophysiological states. Although numerous evidence suggests that growth hormone (GH) influences both muscle and bone, the effects of GH on the muscle-bone interactions have remained unknown. We, therefore, investigated the influences of GH administration for 8 weeks on muscle and bone, including myokine expression, in mice with or without ovariectomy (OVX). GH administration significantly increased muscle mass in the whole body and lower limbs, as well as tissue weights of the extensor digitorum longus (EDL) and soleus muscles in mice with or without OVX. Moreover, it markedly increased grip strength in both mice. As for femurs, GH administration significantly increased cortical thickness and area in mice with or without OVX. Moreover, GH significantly blunted the decrease in the ratio of bone volume to tissue volume at the trabecular bone in mice with OVX. GH administration significantly decreased follistatin mRNA levels in the EDL, but not the soleus, muscles in mice with or without OVX, although it did not affect the other myokines examined. However, GH administration significantly elevated serum follistatin levels in mice. In conclusion, this study indicates that GH administration increases skeletal muscle mass and grip strength and cortical and trabecular bone-related parameters obtained by micro-computed tomography analyses in mice. However, myokine regulation might not be critical for the effects of GH on muscle and bone.


Asunto(s)
Hormona del Crecimiento , Hormona de Crecimiento Humana , Ratones , Femenino , Animales , Hormona del Crecimiento/farmacología , Folistatina/metabolismo , Folistatina/farmacología , Microtomografía por Rayos X , Hormona de Crecimiento Humana/metabolismo , Músculo Esquelético/metabolismo , Densidad Ósea
16.
PLoS One ; 18(6): e0287541, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37352205

RESUMEN

Chronic obstructive pulmonary disease (COPD) causes sarcopenia and osteoporosis. However, the mechanisms underlying muscle and bone loss as well as the interactions between muscle and bone in the COPD state remain unclear. Therefore, we herein investigated the effects of the COPD state on muscle and bone in mice intratracheally administered porcine pancreatic elastase (PPE). The intratracheal administration of PPE to mice significantly reduced trabecular bone mineral density (BMD), trabecular bone volume, trabecular number, cortical BMD and cortical area. It also significantly decreased grip strength, but did not affect muscle mass or the expression of myogenic differentiation-, protein degradation- or autophagy-related genes in the soleus and gastrocnemius muscles. Among the myokines examined, myostatin mRNA levels in the soleus muscles were significantly elevated in mice treated with PPE, and negatively related to grip strength, but not bone parameters, in mice treated with or without 2 U PPE in simple regression analyses. Grip strength positively related to bone parameters in mice treated with or without PPE. In conclusion, we showed that a PPE model of COPD in mice exerts dominant effects on bone rather than skeletal muscles. Increased myostatin expression in the soleus muscles of mice in the COPD state may negatively relate to a reduction in grip strength, but not bone loss.


Asunto(s)
Enfermedades Óseas Metabólicas , Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Ratones , Porcinos , Animales , Miostatina/genética , Elastasa Pancreática/efectos adversos , Enfisema Pulmonar/inducido químicamente , Enfermedad Pulmonar Obstructiva Crónica/inducido químicamente , Densidad Ósea/fisiología , Músculo Esquelético
17.
Sci Rep ; 13(1): 15768, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737267

RESUMEN

Gravity-dependent physical processes strongly affect the ability of elderly people to maintain musculoskeletal health by reducing muscle atrophy and increasing bone mineral density, thereby increasing quality of life. A need therefore exists to identify molecules in the musculoskeletal system that are responsive to gravitational loading and to establish an objective indicator for the maintenance of healthy musculoskeletal systems. Here, we performed an integrated assessment of the results of soleus muscle proteomic analyses in three model mouse experiments under different gravity environments (hypergravity, hindlimb unloading, and spaceflight). Myl6b, Gpd1, Fbp2, Pvalb, and Actn3 were shown to be gravity-responsive muscle proteins, and alterations in the levels of these proteins indicated changes in muscle fiber type to slow-twitch type due to gravity loading. In addition, immunoblotting and enzyme-linked immunosorbent assays revealed that Pvalb levels in the sera of hindlimb-unloaded mice and osteoporosis patients were higher than in control subjects, suggesting that Pvalb levels might be useful to objectively evaluate soleus muscle atrophy and bone loss.


Asunto(s)
Proteómica , Calidad de Vida , Anciano , Humanos , Animales , Ratones , Atrofia Muscular , Proteínas Musculares , Fibras Musculares Esqueléticas , Actinina
18.
PLoS One ; 18(4): e0284258, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37027385

RESUMEN

Matrix vesicles (MtVs) are one of the extracellular vesicles (EVs) secreted by osteoblasts. Although MtVs have a classically-defined function as an initiator of ossification and recent findings suggest a role for MtVs in the regulation of bone cell biology, the effects of MtVs on bone repair remain unclear. In the present study, we employed collagenase-released EVs (CREVs) containing abundant MtVs from mouse osteoblasts. CREVs were administered locally in gelatin hydrogels to damaged sites after a femoral bone defect in mice. CREVs exhibited the characteristics of MtVs with a diameter <200 nm. The local administration of CREVs significantly promoted the formation of new bone with increases in the number of alkaline phosphatase (ALP)-positive cells and cartilage formation at the damaged site after the femoral bone defect. However, the addition of CREVs to the medium did not promote the osteogenic differentiation of ST2 cells or the ALP activity or mineralization of mouse osteoblasts in vitro. In conclusion, we herein showed for the first time that MtVs enhanced bone repair after a femoral bone defect partly through osteogenesis and chondrogenesis in mice. Therefore, MtVs have potential as a tool for bone regeneration.


Asunto(s)
Vesículas Extracelulares , Osteogénesis , Ratones , Animales , Células Cultivadas , Huesos , Regeneración Ósea , Diferenciación Celular , Osteoblastos
19.
J Proteomics ; 288: 104976, 2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37482271

RESUMEN

Although the microgravity (µ-g) environment that astronauts encounter during spaceflight can cause severe acute bone loss, the molecular mechanism of this bone loss remains unclear. To investigate the gravity-response proteins involved in bone metabolism, it is important to comprehensively determine which proteins exhibit differential abundance associated with mechanical stimuli. However, comprehensive proteomic analysis using small bone samples is difficult because protein extraction in mineralized bone tissue is inefficient. Here, we established a high-sensitivity analysis system for mouse bone proteins using data-independent acquisition mass spectrometry. This system successfully detected 40 proteins in the femoral diaphysis showing differential abundance between mice raised in a µ-g environment, where the bone mass was reduced by gravity unloading, and mice raised in an artificial 1-gravity environment on the International Space Station. Additionally, 22 proteins, including noncollagenous bone matrix proteins, showed similar abundance between the two groups in the mandible, where bone mass was unaltered due to mastication stimuli, suggesting that these proteins are responsive to mechanical stimuli. One of these proteins, SPARCL1, is suggested to promote osteoclastogenesis induced by receptor activator of nuclear factor-κB ligand. We expect these findings to lead to new insights into the mechanisms of bone metabolism induced by mechanical stimuli. SIGNIFICANCE: We aimed to investigate the gravity-response proteins involved in bone metabolism. To this end, we established a comprehensive analysis system for mouse bone proteins using data-independent acquisition mass spectrometry, which is particularly useful in comprehensively analyzing the bone proteome using small sample volumes. In addition, a comprehensive proteomic analysis of the femoral diaphysis and mandible, which exhibit different degrees of bone loss in mice raised on the International Space Station, identified proteins that respond to mechanical stimuli. SPARCL1, a mechanical stimulus-responsive protein, was consequently suggested to be involved in osteoclast differentiation associated with bone remodeling. Our findings represent an important step toward elucidating the molecular mechanism of bone metabolism induced by mechanical stimuli.


Asunto(s)
Vuelo Espacial , Ingravidez , Ratones , Animales , Proteómica , Fémur , Proteoma
20.
Neurosci Biobehav Rev ; 136: 104617, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35283170

RESUMEN

We reviewed the responses of the neuromuscular properties of mainly the soleus and possible mechanisms. Sensory nervous activity in response to passive shortening and/or active contraction, associated with plantar-flexion or dorsi-flexion of the ankle joints, may play an essential role in the regulation of muscle properties. Passive shortening of the muscle fibers and sarcomeres inhibits the development of tension, electromyogram (EMG), and afferent neurogram. Remodeling of the sarcomeres, which decreases the total sarcomere number in a single muscle fiber causing recovery of the length in each sarcomere, is induced in the soleus following chronic unloading. Although EMG activity and tension development in each sarcomere are increased, the total tension produced by the whole muscle is still less owing to the lower sarcomere number. Therefore, muscle atrophy continues to progress. Moreover, walking or slow running by rear-foot strike landing with the application of greater ground reaction force, which stimulates soleus mobilization, could be an effective countermeasure. Periodic, but not chronic, passive stretching of the soleus may also be effective.


Asunto(s)
Vuelo Espacial , Electromiografía , Humanos , Músculo Esquelético/fisiología , Sarcómeros/fisiología , Caminata
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA