Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genes Cells ; 28(4): 319-325, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36719634

RESUMEN

We investigated the alterations in autophagy-related molecules in neurons differentiated from induced pluripotent stem cells obtained from patients with Alzheimer's disease (AD). Consistent with our previous microarray data, ATG4A protein was upregulated in the neurons derived from a familial AD patient with an APP-E693Δ mutation who showed accumulation of intracellular amyloid ß peptide (Aß). This upregulation was reversed by inhibiting Aß production, suggesting that the intracellular Aß may be responsible for the upregulation of ATG4A. The LC3B-II/LC3B-I ratio, an index of autophagosome formation, was lower in the neurons derived from the AD patient with APP-E693Δ as well as the neurons derived from other familial and sporadic AD patients. These findings indicate that dysregulation of autophagy-related molecules may accelerate the pathogenesis of AD.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Mutación , Neuronas/metabolismo
2.
Am J Pathol ; 193(5): 591-607, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36773783

RESUMEN

α-Klotho is a longevity-related protein. Its deficiency shortens lifespan with prominent senescent phenotypes, including muscle atrophy and weakness in mice. α-Klotho has two forms: membrane α-Klotho and circulating α-Klotho (c-α-Klotho). Loss of membrane α-Klotho impairs a phosphaturic effect, thereby accelerating phosphate-induced aging. However, the mechanisms of senescence on c-α-Klotho loss remain largely unknown. Herein, with the aging of wild-type mice, c-α-Klotho declined, whereas Smad2, an intracellular transforming growth factor (TGF)-ß effector, became activated in skeletal muscle. Moreover, c-α-Klotho suppressed muscle-wasting TGF-ß molecules, including myostatin, growth and differentiation factor 11, activin, and TGF-ß1, through binding to ligands as well as type I and type II serine/threonine kinase receptors. Indeed, c-α-Klotho reversed impaired in vitro myogenesis caused by these TGF-ßs. Oral administration of Ki26894, a small-molecule inhibitor of type I receptors for these TGF-ßs, restored muscle atrophy and weakness in α-Klotho (-/-) mice and in elderly wild-type mice by suppression of activated Smad2 and up-regulated Cdkn1a (p21) transcript, a target of phosphorylated Smad2. Ki26894 also induced the slow to fast myofiber switch. These findings show c-α-Klotho's potential as a circulating inhibitor counteracting TGF-ß-induced sarcopenia. These data highlight the potential of a novel therapy involving TGF-ß blockade to prevent sarcopenia.


Asunto(s)
Sarcopenia , Factor de Crecimiento Transformador beta , Ratones , Animales , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Sarcopenia/prevención & control , Proteínas Serina-Treonina Quinasas/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factores de Crecimiento Transformadores
3.
Biochem Biophys Res Commun ; 628: 84-90, 2022 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-36084555

RESUMEN

Mutations of the caveolin 3 gene cause autosomal dominant limb-girdle muscular dystrophy (LGMD)1C. In mice, overexpression of mutant caveolin 3 leads to loss of caveolin 3 and results in myofiber hypotrophy in association with activation of neuronal nitric oxide synthase (nNOS) at the sarcolemma. Here, we show that caveolin 3 directly bound to nNOS and suppressed its phosphorylation-dependent activation at a specific residue, Ser1412 in the nicotinamide adenine dinucleotide phosphate (NADPH)-flavin adenine dinucleotide (FAD) module near the C-terminus of the reduction domain, in vitro. Constitutively active nNOS enhanced myoblast fusion, but not myogenesis, in vitro. Phosphorylation-dependent activation of nNOS occurred in muscles from caveolin 3-mutant mice and LGMD1C patients. Mating with nNOS-mutant mice exacerbated myofiber hypotrophy in the caveolin 3-mutant mice. In nNOS-mutant mice, regenerating myofibers after cardiotoxin injury became hypotrophic with reduced myoblast fusion. Administration of NO donor increased myofiber size and the number of myonuclei in the caveolin 3-mutant mice. Exercise also increased myofiber size accompanied by phosphorylation-dependent activation of nNOS in wild-type and caveolin 3-mutant mice. These data indicate that caveolin 3 inhibits phosphorylation-dependent activation of nNOS, which leads to myofiber hypertrophy via enhancing myoblast fusion. Hypertrophic signaling by nNOS phosphorylation could act in a compensatory manner in caveolin 3-deficient muscles.


Asunto(s)
Caveolina 3 , Flavina-Adenina Dinucleótido , Óxido Nítrico Sintasa de Tipo I , Animales , Cardiotoxinas , Caveolina 3/genética , Caveolina 3/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Ratones , NADP/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Fosforilación , Sarcolema/metabolismo
4.
J Neurol Neurosurg Psychiatry ; 90(5): 529-536, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-29666206

RESUMEN

OBJECTIVE: The aim of this study was to evaluate the efficacy and safety of high-dose taurine supplementation for prevention of stroke-like episodes of MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes), a rare genetic disorder caused by point mutations in the mitochondrial DNA that lead to a taurine modification defect at the first anticodon nucleotide of mitochondrial tRNALeu(UUR), resulting in failure to decode codons accurately. METHODS: After the nationwide survey of MELAS, we conducted a multicentre, open-label, phase III trial in which 10 patients with recurrent stroke-like episodes received high-dose taurine (9 g or 12 g per day) for 52 weeks. The primary endpoint was the complete prevention of stroke-like episodes during the evaluation period. The taurine modification rate of mitochondrial tRNALeu(UUR) was measured before and after the trial. RESULTS: The proportion of patients who reached the primary endpoint (100% responder rate) was 60% (95% CI 26.2% to 87.8%). The 50% responder rate, that is, the number of patients achieving a 50% or greater reduction in frequency of stroke-like episodes, was 80% (95% CI 44.4% to 97.5%). Taurine reduced the annual relapse rate of stroke-like episodes from 2.22 to 0.72 (P=0.001). Five patients showed a significant increase in the taurine modification of mitochondrial tRNALeu(UUR) from peripheral blood leukocytes (P<0.05). No severe adverse events were associated with taurine. CONCLUSIONS: The current study demonstrates that oral taurine supplementation can effectively reduce the recurrence of stroke-like episodes and increase taurine modification in mitochondrial tRNALeu(UUR) in MELAS. TRIAL REGISTRATION NUMBER: UMIN000011908.


Asunto(s)
Suplementos Dietéticos , Síndrome MELAS/complicaciones , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/prevención & control , Taurina/uso terapéutico , Administración Oral , Adolescente , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento , Adulto Joven
5.
Stem Cells ; 35(7): 1815-1834, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28480592

RESUMEN

Recently, we found that resident myogenic stem satellite cells upregulate a multi-functional secreted protein, semaphorin 3A (Sema3A), exclusively at the early-differentiation phase in response to muscle injury; however, its physiological significance is still unknown. Here we show that Sema3A impacts slow-twitch fiber generation through a signaling pathway, cell-membrane receptor (neuropilin2-plexinA3) → myogenin-myocyte enhancer factor 2D → slow myosin heavy chain. This novel axis was found by small interfering RNA-transfection experiments in myoblast cultures, which also revealed an additional element that Sema3A-neuropilin1/plexinA1, A2 may enhance slow-fiber formation by activating signals that inhibit fast-myosin expression. Importantly, satellite cell-specific Sema3A conditional-knockout adult mice (Pax7CreERT2 -Sema3Afl °x activated by tamoxifen-i.p. injection) provided direct in vivo evidence for the Sema3A-driven program, by showing that slow-fiber generation and muscle endurance were diminished after repair from cardiotoxin-injury of gastrocnemius muscle. Overall, the findings highlight an active role for satellite cell-secreted Sema3A ligand as a key "commitment factor" for the slow-fiber population during muscle regeneration. Results extend our understanding of the myogenic stem-cell strategy that regulates fiber-type differentiation and is responsible for skeletal muscle contractility, energy metabolism, fatigue resistance, and its susceptibility to aging and disease. Stem Cells 2017;35:1815-1834.


Asunto(s)
Fibras Musculares de Contracción Lenta/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Regeneración/genética , Células Satélite del Músculo Esquelético/metabolismo , Semaforina-3A/genética , Animales , Cardiotoxinas/administración & dosificación , Diferenciación Celular , Regulación de la Expresión Génica , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fibras Musculares de Contracción Lenta/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/lesiones , Mioblastos/citología , Mioblastos/efectos de los fármacos , Miogenina/genética , Miogenina/metabolismo , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuropilina-2/genética , Neuropilina-2/metabolismo , Cultivo Primario de Células , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Regeneración/efectos de los fármacos , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/efectos de los fármacos , Semaforina-3A/antagonistas & inhibidores , Semaforina-3A/metabolismo , Transducción de Señal , Tamoxifeno/farmacología
6.
Biochem Biophys Res Commun ; 492(2): 199-205, 2017 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-28821434

RESUMEN

BACKGROUND: The dystroglycan complex consists of two subunits: extracellular α-dystroglycan and membrane-spanning ß-dystroglycan, which provide a tight link between the extracellular matrix and the intracellular cytoskeleton. Previous studies showed that 43 kDa ß-dystroglycan is proteolytically cleaved into the 30 kDa fragment by matrix metalloproteinases (MMPs) in various non-muscle tissues, whereas it is protected from cleavage in muscles by the sarcoglycan complex which resides close to the dystroglycan complex. It is noteworthy that cleaved ß-dystroglycan is detected in muscles from patients with sarcoglycanopathy, sarcoglycan-deficient muscular dystrophy. In vitro assays using protease inhibitors suggest that both MMP-2 and MMP-9 contribute to the cleavage of ß-dystroglycan. However, this has remained uninvestigated in vivo. METHODS: We generated triple-knockout (TKO) mice targeting MMP-2, MMP-9 and γ-sarcoglycan to examine the status of ß-dystroglycan cleavage in the absence of the candidate matrix metalloproteinases in sarcoglycan-deficient muscles. RESULTS: Unexpectedly, ß-dystroglycan was cleaved in muscles from TKO mice. Muscle pathology was not ameliorated but worsened in TKO mice compared with γ-sarcoglycan single-knockout mice. The gene expression of MMP-14 was up-regulated in TKO mice as well as in γ-sarcoglycan knockout mice. In vitro assay showed MMP-14 is capable to cleave ß-dystroglycan. CONCLUSIONS: Double-targeting of MMP-2 and MMP-9 cannot prevent cleavage of ß-dystroglycan in sarcoglycanopathy. Thus, matrix metalloproteinases contributing to ß-dystroglycan cleavage are redundant, and MMP-14 could participate in the pathogenesis of sarcoglycanopathy.


Asunto(s)
Distroglicanos/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/genética , Músculo Esquelético/metabolismo , Sarcoglicanopatías/genética , Sarcoglicanos/genética , Animales , Eliminación de Gen , Humanos , Metaloproteinasa 14 de la Matriz/genética , Metaloproteinasa 14 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Noqueados , Músculo Esquelético/patología , Proteolisis , Sarcoglicanopatías/metabolismo , Sarcoglicanopatías/patología , Sarcoglicanos/metabolismo , Regulación hacia Arriba
7.
Hum Mol Genet ; 20(15): 2975-83, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21610159

RESUMEN

Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy 1C (LGMD1C). However, the precise molecular pathogenesis of caveolin-3-related muscular dystrophy remains uncertain. Here, we demonstrate the effect of gene dosage on the severity of the myopathic phenotype in P104L mutant caveolin-3 (mCav3(P104L)) transgenic mice, a model of LGMD1C. We analyzed the endoplasmic reticulum (ER) stress response in the transgenic mice and found upregulated transcription of the molecular chaperone, glucose-regulated protein (GRP78). Moreover, signaling downstream of GRP78 in the myofibers was activated toward apoptosis. However, terminal transferase dUTP nick end labeling assays detected a few apoptotic nuclei in transgenic mouse skeletal muscle, probably due to the transcriptional activation of Dad1, an anti-apoptotic factor in the ER. These findings suggest that the ER stress response caused by mCav3(P104L) plays a role in the pathogenesis of LGMD1C as a toxic gain of function effect.


Asunto(s)
Caveolina 3/metabolismo , Distrofia Muscular de Cinturas/metabolismo , Animales , Northern Blotting , Western Blotting , Células COS , Caveolina 3/genética , Línea Celular , Chlorocebus aethiops , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Etiquetado Corte-Fin in Situ , Ratones , Ratones Transgénicos , Distrofia Muscular de Cinturas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
Intern Med ; 62(9): 1345-1349, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36130887

RESUMEN

Becker muscular dystrophy (BMD) is an X-linked neuromuscular disease characterized by progressive muscle weakness that currently has no cure. Immune-mediated necrotizing myopathy (IMNM) is a type of autoimmune inflammatory myopathy characterized by proximal muscle weakness that is treated with immunosuppressive therapy. We herein report a patient diagnosed with BMD complicated with IMNM by a pathological analysis. Notably, the patient had an elevated serum anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase antibody level. Oral glucocorticoid and methotrexate treatment partially improved the muscle weakness with decreased levels of serum creatine kinase. An accurate diagnosis is important for therapeutic decisions in these complicated cases.


Asunto(s)
Enfermedades Autoinmunes , Enfermedades Musculares , Distrofia Muscular de Duchenne , Miositis , Humanos , Autoanticuerpos , Enfermedades Autoinmunes/complicaciones , Enfermedades Autoinmunes/diagnóstico , Debilidad Muscular/etiología , Enfermedades Musculares/patología , Distrofia Muscular de Duchenne/complicaciones , Distrofia Muscular de Duchenne/tratamiento farmacológico , Miositis/complicaciones , Miositis/diagnóstico , Miositis/tratamiento farmacológico , Necrosis
9.
Lab Invest ; 92(8): 1100-14, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22584670

RESUMEN

Skeletal muscle expressing Pro104Leu mutant caveolin 3 (CAV3(P104L)) in mouse becomes atrophied and serves as a model of autosomal dominant limb-girdle muscular dystrophy 1C. We previously found that caveolin 3-deficient muscles showed activated intramuscular transforming growth factor beta (TGF-ß) signals. However, the cellular mechanism by which loss of caveolin 3 leads to muscle atrophy is unknown. Recently, several small-molecule inhibitors of TGF-ß type I receptor (TßRI) kinase have been developed as molecular-targeting drugs for cancer therapy by suppressing intracellular TGF-ß1, -ß2, and -ß3 signaling. Here, we show that a TßRI kinase inhibitor, Ki26894, restores impaired myoblast differentiation in vitro caused by activin, myostatin, and TGF-ß1, as well as CAV3(P104L). Oral administration of Ki26894 increased muscle mass and strength in vivo in wild-type mice, and improved muscle atrophy and weakness in the CAV3(P104L) mice. The inhibitor restored the number of satellite cells, the resident stem cells of adult skeletal muscle, with suppression of the increased phosphorylation of Smad2, an effector, and the upregulation of p21 (also known as Cdkn1a), a target gene of the TGF-ß family members in muscle. These data indicate that both TGF-ß-dependent reduction in satellite cells and impairment of myoblast differentiation contribute to the cellular mechanism underlying caveolin 3-deficient muscle atrophy. TßRI kinase inhibitors could antagonize the activation of intramuscular anti-myogenic TGF-ß signals, thereby providing a novel therapeutic rationale for the alternative use of this type of anticancer drug in reversing muscle atrophy in various clinical settings.


Asunto(s)
Receptores de Activinas Tipo I/antagonistas & inhibidores , Caveolina 3/deficiencia , Distrofia Muscular de Cinturas/tratamiento farmacológico , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta1/metabolismo , Receptores de Activinas Tipo I/farmacología , Activinas/metabolismo , Activinas/farmacología , Animales , Caveolina 3/genética , Caveolina 3/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Línea Celular , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Células HEK293 , Humanos , Masculino , Ratones , Ratones Transgénicos , Desarrollo de Músculos/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular de Cinturas/metabolismo , Distrofia Muscular de Cinturas/patología , Mioblastos/patología , Miostatina/metabolismo , Miostatina/farmacología , Receptor Tipo I de Factor de Crecimiento Transformador beta , Células Satélite del Músculo Esquelético/efectos de los fármacos , Transducción de Señal , Factor de Crecimiento Transformador beta1/genética
10.
Intern Med ; 61(8): 1241-1245, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-34615823

RESUMEN

Muscle phosphorylase b kinase (PHK) deficiency is a rare mild metabolic disorder caused by mutations of the PHKA1 gene encoding the αM subunit of PHK. A 16-year-old boy experienced myalgia during the maximal multistage 20-m shuttle run test targeting the maximal oxygen consumption. Although an ischemic forearm exercise test was normal, a muscle biopsy revealed subsarcolemmal glycogen accumulation. He harbored a novel insertion mutation in the PHKA1 gene that resulted in premature termination of the αM subunit close to the C-terminus. Compared with previously reported cases, his reduction in PHK activity was relatively mild.


Asunto(s)
Mialgia , Fosforilasa Quinasa , Adolescente , Enfermedades Genéticas Ligadas al Cromosoma X , Enfermedad del Almacenamiento de Glucógeno , Humanos , Masculino , Músculos , Mialgia/etiología , Fosforilasa Quinasa/genética , Fosforilasa Quinasa/metabolismo
11.
Am J Physiol Endocrinol Metab ; 300(3): E543-53, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21205933

RESUMEN

Myostatin, a member of the transforming growth factor (TGF)-ß superfamily, plays a potent inhibitory role in regulating skeletal muscle mass. Inhibition of myostatin by gene disruption, transgenic (Tg) expression of myostatin propeptide, or injection of propeptide or myostatin antibodies causes a widespread increase in skeletal muscle mass. Several peptides, in addition to myostatin propeptide and myostatin antibodies, can bind directly to and neutralize the activity of myostatin. These include follistatin and follistatin-related gene. Overexpression of follistatin or follistatin-related gene in mice increased the muscle mass as in myostatin knockout mice. Follistatin binds to myostatin but also binds to and inhibits other members of the TGF-ß superfamily, notably activins. Therefore, follistatin regulates both myostatin and activins in vivo. We previously reported the development and characterization of several follistatin-derived peptides, including FS I-I (Nakatani M, Takehara Y, Sugino H, Matsumoto M, Hashimoto O, Hasegawa Y, Murakami T, Uezumi A, Takeda S, Noji S, Sunada Y, Tsuchida K. FASEB J 22: 477-487, 2008). FS I-I retained myostatin-inhibitory activity without affecting the bioactivity of activins. Here, we found that inhibition of myostatin increases skeletal muscle mass and decreases fat accumulation in FS I-I Tg mice. FS I-I Tg mice also showed decreased fat accumulation even on a control diet. Interestingly, the adipocytes in FS I-I Tg mice were much smaller than those of wild-type mice. Furthermore, FS I-I Tg mice were resistant to high-fat diet-induced obesity and hepatic steatosis and had lower hepatic fatty acid levels and altered fatty acid composition compared with control mice. FS I-I Tg mice have improved glucose tolerance when placed on a high-fat diet. These data indicate that inhibiting myostatin with a follistatin-derived peptide provides a novel therapeutic option to decrease adipocyte size, prevent obesity and hepatic steatosis, and improve glucose tolerance.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Hígado Graso/prevención & control , Folistatina/biosíntesis , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Animales , Western Blotting , Dieta , Ácidos Grasos/metabolismo , Hígado Graso/patología , Folistatina/farmacología , Prueba de Tolerancia a la Glucosa , Hígado/metabolismo , Hígado/patología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Obesos , Ratones Transgénicos , Microscopía Electrónica de Rastreo , Obesidad/metabolismo , Fosforilación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína smad3/metabolismo , Triglicéridos/sangre
12.
Dev Growth Differ ; 53(1): 48-54, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21261610

RESUMEN

Small interfering RNA (siRNA)-mediated silencing of gene expression is rapidly becoming a powerful tool for molecular therapy. However, the rapid degradation of siRNAs and their limited duration of activity require efficient delivery methods. Atelocollagen (ATCOL)-mediated administration of siRNAs is a promising approach to disease treatment, including muscular atrophy. Herein, we report that ATCOL-mediated systemic administration of a myostatin-targeting siRNA into a caveolin-3-deficient mouse model of limb-girdle muscular dystrophy 1C (LGMD1C) induced a marked increase in muscle mass and a significant recovery of contractile force. These results provide evidence that ATCOL-mediated systemic administration of siRNAs may be a powerful therapeutic tool for disease treatment, including muscular atrophy.


Asunto(s)
Caveolina 3/deficiencia , Colágeno/metabolismo , Atrofia Muscular/terapia , Miostatina/genética , Animales , Caveolina 3/genética , Colágeno/genética , Femenino , Masculino , Ratones , Interferencia de ARN , ARN Interferente Pequeño
13.
J Clin Invest ; 116(11): 2924-34, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17039257

RESUMEN

Caveolin-3, the muscle-specific isoform of caveolins, plays important roles in signal transduction. Dominant-negative mutations of the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy 1C (LGMD1C) with loss of caveolin-3. However, identification of the precise molecular mechanism leading to muscular atrophy in caveolin-3-deficient muscle has remained elusive. Myostatin, a member of the muscle-specific TGF-beta superfamily, negatively regulates skeletal muscle volume. Here we report that caveolin-3 inhibited myostatin signaling by suppressing activation of its type I receptor; this was followed by hypophosphorylation of an intracellular effector, Mad homolog 2 (Smad2), and decreased downstream transcriptional activity. Loss of caveolin-3 in P104L mutant caveolin-3 transgenic mice caused muscular atrophy with increase in phosphorylated Smad2 (p-Smad2) as well as p21 (also known as Cdkn1a), a myostatin target gene. Introduction of the myostatin prodomain, an inhibitor of myostatin, by genetic crossing or intraperitoneal administration of the soluble type II myostatin receptor, another inhibitor, ameliorated muscular atrophy of the mutant caveolin-3 transgenic mice with suppression of p-Smad2 and p21 levels. These findings suggest that caveolin-3 normally suppresses the myostatin-mediated signal, thereby preventing muscular atrophy, and that hyperactivation of myostatin signaling participates in the pathogenesis of muscular atrophy in a mouse model of LGMD1C. Myostatin inhibition may be a promising therapy for LGMD1C patients.


Asunto(s)
Caveolina 3/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/metabolismo , Animales , Caveolina 3/deficiencia , Caveolina 3/genética , Línea Celular , Chlorocebus aethiops , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Fuerza Muscular , Atrofia Muscular/genética , Mutación/genética , Miostatina , Fosforilación , Unión Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Proteína Smad2/metabolismo , Transcripción Genética/genética , Transgenes/genética
14.
Neurosci Lett ; 436(3): 335-9, 2008 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-18406527

RESUMEN

The transthyretin (TTR) gene is mainly expressed in the liver and choroid plexus of the brain. Most cases of familial amyloidotic polyneuropathy (FAP) are caused by TTR gene mutations, and characterized by amyloid deposition in the peripheral nervous system. We hypothesized that the TTR gene may be expressed in the peripheral nervous system. We analyzed TTR gene expression in several parts of the human, mouse and rat peripheral nervous systems using RT-PCR. To determine the sites of TTR synthesis in the dorsal root ganglia (DRG), mouse DRG were examined by in situ hybridization, laser capture microdissection and RT-PCR, and immunohistochemistry. TTR mRNA was detected in the DRG and cauda equina of humans and rodents by RT-PCR. TTR mRNA was not detected in the sural nerve, lumbar plexus or sympathetic ganglia in humans, or in the sciatic nerve in rodents. In mouse DRG, TTR mRNA was localized in the peripheral glial cells. No TTR-like immunoreactivity was observed in these tissues except for the perineurium. The TTR gene is probably expressed in the peripheral glial cells of the DRG. TTR synthesis in the DRG may be important for the involvement of the peripheral nervous system in FAP.


Asunto(s)
Ganglios Espinales/metabolismo , Expresión Génica/fisiología , Prealbúmina/genética , Animales , Cauda Equina/metabolismo , Lóbulo Frontal/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Fosfopiruvato Hidratasa/genética , Fosfopiruvato Hidratasa/metabolismo , Prealbúmina/metabolismo , Ratas , Ratas Wistar
15.
eNeurologicalSci ; 6: 9-15, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29260008

RESUMEN

Previously, we reported that MyoD, a master gene for myogenic cells, could efficiently convert primary skin fibroblasts into myoblasts and myotubes, thereby effecting direct reprogramming. In this study, we further demonstrated that MyoD-expressing primary fibroblasts displayed rapid movement in culture, with a movement velocity that was significantly faster, almost four times, than mouse primary myoblasts. MyoD-transduced cells obtained the characteristics of Ca2 + release and electrically-stimulated contraction, which was comparable to C2C12 myotubes, suggesting that the essential features of muscle were observed in the transduced cells. Furthermore, the ability to fuse to the host myoblasts means that gene transfer from MyoD-transduced cells to host muscle cells could be obtained by cell fusion. In comparison with the iPS method (indirect reprogramming), our transduction method has a low risk for tumorigenesis and carcinogenesis because the starting cells are fibroblasts and the transduced cells are myoblasts, both normal and mortal cells. Accordingly, MyoD transduction of human skin fibroblasts using the adenoviral vector is a simple, inexpensive and promising candidate as a new cell transplantation therapy for patients with muscular disorders.

16.
J Neurol Sci ; 381: 55-58, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-28991715

RESUMEN

Familial amyloid polyneuropathy (FAP) is an autosomal dominant hereditary systemic amyloidosis caused by mutation of the transthyretin (TTR) gene, and usually shows sensory-dominant polyneuropathy and autonomic neuropathy at the initial stage. The pathogenesis of this neuropathy remains unknown, although several mechanisms, including mechanical compression, vessel occlusion, TTR toxicity and Schwann cell dysfunction have been proposed. We describe a patient with late-onset FAP caused by a TTR E61K mutation. Amyloid deposits were not detected in the endoneurium or perineurium of the sural nerve 7years after the onset of the disease, but a marked loss of nerve fibers was observed in the sural nerve. TTR-derived amyloid deposits were confirmed in the peroneus brevis muscle, salivary gland and heart tissue. DNA analysis revealed a heterozygous mutation in TTR. These findings suggest that proximal parts of the peripheral nervous system might be strongly affected by TTR aggregates or amyloid fibrils, and that the blood-nerve barrier in distal parts of peripheral nerves are initially preserved in this patient. This case indicates that several biopsy sites other than nerves may be helpful and necessary for the diagnosis of TTR amyloidosis in mild or late-onset FAP.


Asunto(s)
Neuropatías Amiloides Familiares/genética , Mutación , Prealbúmina/genética , Anciano , Neuropatías Amiloides Familiares/patología , Neuropatías Amiloides Familiares/fisiopatología , Neuropatías Amiloides Familiares/terapia , Diagnóstico Diferencial , Femenino , Humanos , Marcapaso Artificial , Nervios Periféricos/fisiopatología , Fenotipo
17.
J Biochem ; 162(6): 391-394, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28992104

RESUMEN

We developed a simplified and sensitive method to identify Alzheimer's disease (AD) biomarker candidates by a quantitative and targeted proteomic analysis (combination of liquid chromatography tandem mass spectrometry and multiplexed-multiple reaction monitoring/selected reaction monitoring analysis) of culture media from neurons differentiated from induced pluripotent stem cells (iPSCs) established from AD patients. We found that alpha-1-acid glycoprotein (ORM1) was decreased in the culture media of AD-iPSC-derived neurons, consistent with previous observations for AD patient cerebrospinal fluid, thus validating our new strategy. Moreover, our method is applicable for identifying biomarker candidates for other neurodegenerative disorders using patient-derived iPSCs.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Glicoproteínas/análisis , Células Madre Pluripotentes Inducidas/patología , Biomarcadores/análisis , Cromatografía Liquida , Humanos , Células Madre Pluripotentes Inducidas/química , Neuronas/química , Neuronas/patología , Proteómica , Espectrometría de Masas en Tándem
18.
FEBS Lett ; 580(18): 4463-8, 2006 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-16859688

RESUMEN

We examined whether pathogenesis in dystrophin-deficient (mdx) mice and laminin-alpha2-deficient (dy) mice is ameliorated by bone marrow transplantation (BMT). Green fluorescent protein (GFP) mice were used as donors. In mdx mice, BMT failed to produce any significant differences in muscle pathology, although some GFP-positive fibers with restored dystrophin expression were observed. In contrast, in the dy mice, BMT led to a significant increase in lifespan and an increase in growth rate, muscle strength, and respiratory function. We conclude that BMT improved outcome in dy mice but not mdx mice.


Asunto(s)
Trasplante de Médula Ósea , Distrofias Musculares/cirugía , Animales , Peso Corporal , Modelos Animales de Enfermedad , Laminina/genética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Noqueados , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Distrofias Musculares/congénito , Distrofias Musculares/patología , Respiración , Tasa de Supervivencia , Resultado del Tratamiento
19.
J Neurol Sci ; 247(1): 11-5, 2006 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16626749

RESUMEN

We studied the expression of peripheral myelin protein 22 (PMP22) gene in the human central nervous system (CNS). Northern blot analysis was performed with polyA+ RNA blots containing several parts of the human brain and the spinal cord using human PMP22 cDNA as a probe. As two alternative PMP22 transcripts have been reported and since exon 1A-containing transcripts are associated with myelin formation, the exon 1A fragment was also used to examine this transcript. Total PMP22 mRNA was significantly detected in most parts of brain and spinal cord, while exon 1A-containing transcripts were detected in the medulla, spinal cord and corpus callosum. PMP22-like immunoreactivity was identified in motor neurons and preganglionic sympathetic neurons in the spinal cord. PMP22 was also detected in pia mater of the spinal cord. These results suggest that PMP22 might play an important role in human CNS.


Asunto(s)
Encéfalo/metabolismo , Proteínas de la Mielina/biosíntesis , Médula Espinal/metabolismo , Encéfalo/anatomía & histología , Humanos , Inmunohistoquímica , Proteínas de la Mielina/genética , ARN Mensajero/biosíntesis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Médula Espinal/anatomía & histología
20.
Sci Rep ; 6: 34904, 2016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27721502

RESUMEN

Mutations in the gene MAPT encoding tau, a microtubules-associated protein, cause a subtype of familial neurodegenerative disorder, known as frontotemporal lobar degeneration tauopathy (FTLD-Tau), which presents with dementia and is characterized by atrophy in the frontal and temporal lobes of the brain. Although induced pluripotent stem cell (iPSC) technology has facilitated the investigation of phenotypes of FTLD-Tau patient neuronal cells in vitro, it remains unclear how FTLD-Tau patient neurons degenerate. Here, we established neuronal models of FTLD-Tau by Neurogenin2-induced direct neuronal differentiation from FTLD-Tau patient iPSCs. We found that FTLD-Tau neurons, either with an intronic MAPT mutation or with an exonic mutation, developed accumulation and extracellular release of misfolded tau followed by neuronal death, which we confirmed by correction of the intronic mutation with CRISPR/Cas9. FTLD-Tau neurons showed dysregulation of the augmentation of Ca2+ transients evoked by electrical stimulation. Chemogenetic or pharmacological control of neuronal activity-relevant Ca2+ influx by the introduction of designer receptors exclusively activated by designer drugs (DREADDs) or by the treatment with glutamate receptor blockers attenuated misfolded tau accumulation and neuronal death. These data suggest that neuronal activity may regulate neurodegeneration in tauopathy. This FTLD-Tau model provides mechanistic insights into tauopathy pathogenesis and potential avenues for treatments.


Asunto(s)
Calcio/metabolismo , Degeneración Lobar Frontotemporal/fisiopatología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Supervivencia Celular , Células Cultivadas , Humanos , Modelos Biológicos , Pliegue de Proteína , Proteínas tau/genética , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA