Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 299
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 20(8): e1012409, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39146232

RESUMEN

Flaviviridae is a family of positive-stranded RNA viruses, including human pathogens, such as Japanese encephalitis virus (JEV), dengue virus (DENV), Zika virus (ZIKV), and West Nile virus (WNV). Nuclear localization of the viral core protein is conserved among Flaviviridae, and this feature may be targeted for developing broad-ranging anti-flavivirus drugs. However, the mechanism of core protein translocation to the nucleus and the importance of nuclear translocation in the viral life cycle remain unknown. We aimed to identify the molecular mechanism underlying core protein nuclear translocation. We identified importin-7 (IPO7), an importin-ß family protein, as a nuclear carrier for Flaviviridae core proteins. Nuclear import assays revealed that core protein was transported into the nucleus via IPO7, whereas IPO7 deletion by CRISPR/Cas9 impaired their nuclear translocation. To understand the importance of core protein nuclear translocation, we evaluated the production of infectious virus or single-round-infectious-particles in wild-type or IPO7-deficient cells; both processes were significantly impaired in IPO7-deficient cells, whereas intracellular infectious virus levels were equivalent in wild-type and IPO7-deficient cells. These results suggest that IPO7-mediated nuclear translocation of core proteins is involved in the release of infectious virus particles of flaviviruses.


Asunto(s)
Transporte Activo de Núcleo Celular , Núcleo Celular , Flavivirus , Humanos , Flavivirus/metabolismo , Flavivirus/fisiología , Animales , Núcleo Celular/metabolismo , Núcleo Celular/virología , Replicación Viral/fisiología , Proteínas del Núcleo Viral/metabolismo , Proteínas del Núcleo Viral/genética , Carioferinas/metabolismo , Carioferinas/genética , Infecciones por Flavivirus/metabolismo , Infecciones por Flavivirus/virología , Chlorocebus aethiops , Células HEK293
2.
Eur J Immunol ; 54(10): e2350957, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39030805

RESUMEN

Incomplete Freund's adjuvant (IFA) has been used for many years to induce autoimmune diseases in animal models, including experimental autoimmune encephalitis and collagen-induced arthritis. However, it remains unclear why it is necessary to emulsify autoantigen and heat-killed Mycobacterium tuberculosis (HKMtb) with IFA to induce experimental autoimmune diseases. Here, we found that immunization with self-antigen and HKMtb was insufficient to induce autoimmune diseases in mice. Furthermore, IFA or one of its components, mineral oil, but not mannide monooleate, was required for the development of experimental autoimmune disease. Immunization with autoantigen and HKMtb emulsified in mineral oil facilitated innate immune activation and promoted the differentiation of pathogenic CD4+ T cells, followed by their accumulation in neuronal tissues. Several water-soluble hydrocarbon compounds were identified in mineral oil. Of these, immunization with HKMtb and autoantigen emulsified with the same amount of hexadecane or tridecylcyclohexane as mineral oil induced the development of experimental autoimmune encephalitis. In contrast, immunization with HKMtb and autoantigen emulsified with tridecylcyclohexane, but not hexadecane, at doses equivalent to those found in mineral oil, resulted in neuronal dysfunction. These data indicate that tridecylcyclohexane in mineral oil is a critical component in the induction of experimental autoimmune disease.


Asunto(s)
Autoantígenos , Encefalomielitis Autoinmune Experimental , Adyuvante de Freund , Mycobacterium tuberculosis , Animales , Ratones , Mycobacterium tuberculosis/inmunología , Adyuvante de Freund/inmunología , Adyuvante de Freund/administración & dosificación , Autoantígenos/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Ciclohexanos , Ratones Endogámicos C57BL , Femenino , Modelos Animales de Enfermedad , Linfocitos T CD4-Positivos/inmunología , Enfermedades Autoinmunes/inmunología , Adyuvantes Inmunológicos , Inmunidad Innata , Lípidos
3.
Proc Natl Acad Sci U S A ; 119(36): e2202730119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36044553

RESUMEN

Protein secretion in cancer cells defines tumor survival and progression by orchestrating the microenvironment. Studies suggest the occurrence of active secretion of cytosolic proteins in liver cancer and their involvement in tumorigenesis. Here, we investigated the identification of extended-synaptotagmin 1 (E-Syt1), an endoplasmic reticulum (ER)-bound protein, as a key mediator for cytosolic protein secretion at the ER-plasma membrane (PM) contact sites. Cytosolic proteins interacted with E-Syt1 on the ER, and then localized spatially inside SEC22B+ vesicles of liver cancer cells. Consequently, SEC22B on the vesicle tethered to the PM via Q-SNAREs (SNAP23, SNX3, and SNX4) for their secretion. Furthermore, inhibiting the interaction of protein kinase Cδ (PKCδ), a liver cancer-specific secretory cytosolic protein, with E-Syt1 by a PKCδ antibody, decreased in both PKCδ secretion and tumorigenicity. Results reveal the role of ER-PM contact sites in cytosolic protein secretion and provide a basis for ER-targeting therapy for liver cancer.


Asunto(s)
Neoplasias Hepáticas , Proteínas R-SNARE , Sinaptotagmina I , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Transporte de Proteínas , Proteínas R-SNARE/metabolismo , Sinaptotagmina I/metabolismo , Microambiente Tumoral
4.
Genes Cells ; 28(6): 457-465, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36945130

RESUMEN

The extracellular-signal-regulated-kinase (ERK) signaling pathway is essential for cell proliferation and is frequently deregulated in human tumors such as pancreatic cancers. ACAGT-007a (GT-7), an anti-cancer compound, stimulates ERK phosphorylation, thereby inducing growth inhibition and apoptosis in T3M4 pancreatic cancer cells. However, how GT-7 stimulates ERK phosphorylation and induces apoptosis in ERK-active T3M4 cells remains unclear. To look into the mechanism, we performed a spatiotemporal analysis of ERK phosphorylation mediated by GT-7 in T3M4 cells. The immunoblotting showed that GT-7 stimulates ERK phosphorylation within 1 h, which was more remarkable after 2 h. Importantly, apoptosis induction as evaluated by the cleaved Caspase-3 was observed only after 2-h incubation with GT-7. The immunofluorescence staining revealed the enrichment of phosphorylated ERK (phospho-ERK) in the nucleus upon 1-h incubation with GT-7. Fractionation experiments showed that GT-7 increases phospho-ERK levels in the cytoplasm within 1 h, whereas nuclear phospho-ERK accumulation is observed after 2-h incubation with GT-7. MEK inhibition by U0126 significantly diminishes nuclear phospho-ERK distribution and apoptosis induction stimulated by GT-7. Thus, GT-7 may initiate the induction of ERK phosphorylation in the cytoplasm, which leads to phospho-ERK enrichment in the nucleus. This nuclear phospho-ERK accumulation by GT-7 precedes and may underlie apoptosis induction in T3M4.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular , Neoplasias Pancreáticas , Humanos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fosforilación , Transducción de Señal , Neoplasias Pancreáticas/tratamiento farmacológico , Apoptosis , Sistema de Señalización de MAP Quinasas , Neoplasias Pancreáticas
5.
Alcohol Alcohol ; 59(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38145944

RESUMEN

BACKGROUND: Alcohol is a major abused drug worldwide that contributes substantially to health and social problems. These problems result from acute alcohol overuse as well as chronic use, leading to alcohol use disorder (AUD). A major goal of this field is to establish a treatment for alcohol abuse and dependence in patients with AUD. The central molecular mechanisms of acute alcohol actions have been extensively investigated in rodent models. AIMS: One of the central mechanisms that may be involved is glycogen synthase kinase-3ß (GSK-3ß) activity, a key enzyme involved in glycogen metabolism but which has crucial roles in numerous cellular processes. Although the exact mechanisms leading from acute alcohol actions to these chronic changes in GSK-3ß function are not yet clear, GSK-3ß nonetheless constitutes a potential therapeutic target for AUD by reducing its function using GSK-3ß inhibitors. This review is focused on the correlation between GSK-3ß activity and the degree of alcohol consumption. METHODS: Research articles regarding investigation of effect of GSK-3ß on alcohol consumption in rodents were searched on PubMed, Embase, and Scopus databases using keywords "glycogen synthase kinase," "alcohol (or ethanol)," "intake (or consumption)," and evaluated by changes in ratios of pGSK-3ßSer9/pGSK-3ß. RESULTS: In animal experiments, GSK-3ß activity decreases in the brain under forced and voluntary alcohol consumption while GSK-3ß activity increases under alcohol-seeking behavior. CONCLUSIONS: Several pieces of evidence suggest that alterations in GSK-3ß function are important mediators of chronic ethanol actions, including those related to alcohol dependence and the adverse effects of chronic ethanol exposure.


Asunto(s)
Encéfalo , Etanol , Animales , Humanos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Etanol/efectos adversos , Encéfalo/metabolismo , Consumo de Bebidas Alcohólicas/metabolismo , Fosforilación
6.
Cryobiology ; 115: 104885, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38513997

RESUMEN

Human induced pluripotent stem (hiPS) cells have demonstrated promising potential in regenerative medical therapeutics. After successful clinical trials, the demand for hiPS cells has steadily increased. Therefore, the optimization of hiPS cell freezing processes for storage and transportation is essential. Here, we presented a computer-aided exploration of multiobjective optimal temperature profiles in slow freezing for hiPS cells. This study was based on a model that calculates cell survival rates after thawing, and the model was extended to evaluate cell potentials until 24 h after seeding. To estimate parameter values for this extension, freezing experiments were performed using constant cooling rates. Using quality and productivity indicators, we evaluated 16,206 temperature profiles using our model, and a promising profile was obtained. Finally, an experimental investigation of the profile was undertaken, and the contribution of the temperature profile to both quality and productivity was confirmed.


Asunto(s)
Supervivencia Celular , Criopreservación , Congelación , Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/citología , Criopreservación/métodos , Temperatura , Simulación por Computador
7.
Biotechnol Bioeng ; 120(2): 593-607, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36369977

RESUMEN

Cellular homeostasis is assumed to be regulated by the coordination of dynamic behaviors. Lack of efficient methods for synchronizing large quantities of cells makes studying cell culture strategies for bioprocess development challenging. Here, we demonstrate a novel application of botulinum hemagglutinin (HA), an E-cadherin function-blocking agent, to synchronize behavior-driven mechanical memory in human induced pluripotent stem cell (hiPSC) cultures. Application of HA to hiPSCs resulted in a decrease in actin bundling and disruption of colony formation in a concentration-and time-dependent manner. Interestingly, cytoskeleton rearrangement in cells with prolonged exposure to HA resulted in mechanical memory synchronization with Yes-associated protein, which increased pluripotent cell homogeneity. Synchronized hiPSCs have higher capability to differentiate into functional hepatocytes than unsynchronized hiPSCs, resulting in improved efficiency and robustness of hepatocyte differentiation. Thus, our strategy for cell behavior synchronization before differentiation induction provides an approach against the instability of differentiation of pluripotent cells.


Asunto(s)
Clostridium botulinum , Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Diferenciación Celular , Técnicas de Cultivo de Célula , Hepatocitos
8.
J Cell Physiol ; 236(7): 4985-4996, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33305410

RESUMEN

Three-dimensional (3D) culture platforms have been explored to establish physiologically relevant cell culture environment and permit expansion scalability; however, little is known about the mechanisms underlying the regulation of pluripotency of human induced pluripotent stem cells (hiPSCs). This study elucidated epigenetic modifications contributing to pluripotency of hiPSCs in response to 3D culture. Unlike two-dimensional (2D) monolayer cultures, 3D cultured cells aggregated with each other to form ball-like aggregates. 2D cultured cells expressed elevated levels of Rac1 and RhoA; however, Rac1 level was significantly lower while RhoA level was persisted in 3D aggregates. Compared with 2D monolayers, the 3D aggregates also exhibited significantly lower myosin phosphorylation. Histone methylation analysis revealed remarkable H3K4me3 upregulation and H3K27me3 maintenance throughout the duration of 3D culture; in addition, we observed the existence of naïve pluripotency signatures in cells grown in 3D culture. These results demonstrated that hiPSCs adapted to 3D culture through alteration of the Rho-Rho kinase-phospho-myosin pathway, influencing the epigenetic modifications and transcriptional expression of pluripotency-associated factors. These results may help design culture environments for stable and high-quality hiPSCs.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Técnicas de Cultivo de Célula/métodos , Células Madre Pluripotentes Inducidas/metabolismo , Línea Celular , Epigénesis Genética/genética , Código de Histonas/genética , Humanos , Células Madre Pluripotentes Inducidas/citología , Proteína de Unión al GTP rac1/biosíntesis , Proteína de Unión al GTP rhoA/biosíntesis
9.
FASEB J ; 34(12): 16224-16242, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33058343

RESUMEN

Importin α proteins play a central role in the transport of cargo from the cytoplasm to the nucleus. In this study, we observed that male knock-out mice for importin α4, which is encoded by the Kpna4 gene (Kpna4-/- ), were subfertile and yielded smaller litter sizes than those of wild-type (WT) males. In contrast, mice lacking the closely related importin α3 (Kpna3-/- ) were fertile. In vitro fertilization and sperm motility assays demonstrated that sperm from Kpna4-/- mice had significantly reduced quality and motility. In addition, acrosome reaction was also impaired in Kpna4-/- mice. Transmission electron microscopy revealed striking defects, including abnormal head morphology and multiple axoneme structures in the flagella of Kpna4-/- mice. A five-fold increase in the frequency of abnormalities in Kpna4-/- mice compared to WT mice indicates the functional importance of importin α4 in normal sperm development. Moreover, Nesprin-2, which is a component of the linker of nucleus and cytoskeleton complex, was expressed at lower levels in sperm from Kpna4-/- mice and was localized with abnormal axonemes, suggesting incorrect formation of the nuclear membrane-cytoskeleton structure during spermiogenesis. Proteomics analysis of Kpna4-/- testis showed significantly altered expression of proteins related to sperm formation, which provided evidence that genetic loss of importin α4 perturbed chromatin status. Collectively, these findings indicate that importin α4 is critical for establishing normal sperm morphology in mice, providing new insights into male germ cell development by highlighting the requirement of importin α4 for normal fertility.


Asunto(s)
Fertilidad/genética , Infertilidad Masculina/genética , Carioferinas/genética , Motilidad Espermática/genética , Espermatozoides/anomalías , alfa Carioferinas/genética , Reacción Acrosómica/genética , Animales , Flagelos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Espermatogénesis/genética , Testículo/anomalías
10.
Biotechnol Bioeng ; 118(12): 4537-4549, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34460101

RESUMEN

Fully realizing the enormous potential of stem cells requires developing efficient bioprocesses and optimizations founded in mechanobiological considerations. Here, we emphasize the importance of mechanotransduction as one of the governing principles of stem cell bioprocesses, underscoring the need to further explore the behavioral mechanisms involved in sensing mechanical cues and coordinating transcriptional responses. We identify the sources of intrinsic, extrinsic, and external noise in bioprocesses requiring further study, and discuss the criteria and indicators that may be used to assess and predict cell-to-cell variability resulting from environmental fluctuations. Specifically, we propose a conceptual framework to explain the impact of mechanical forces within the cellular environment, identify key cell state determinants in bioprocesses, and discuss downstream implementation challenges.


Asunto(s)
Biofisica , Reactores Biológicos , Mecanotransducción Celular/fisiología , Células Madre , Biotecnología , Técnicas de Cultivo de Célula , Humanos , Células Madre/citología , Células Madre/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA