Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Calcif Tissue Int ; 114(5): 535-549, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38467838

RESUMEN

Heterotopic ossification (HO) is the process by which ectopic bone forms at an extraskeletal site. Inflammatory conditions induce plasminogen activator inhibitor 1 (PAI-1), an inhibitor of fibrinolysis, which regulates osteogenesis. In the present study, we investigated the roles of PAI-1 in the pathophysiology of HO induced by trauma/burn treatment using PAI-1-deficient mice. PAI-1 deficiency significantly promoted HO and increased the number of alkaline phosphatase (ALP)-positive cells in Achilles tendons after trauma/burn treatment. The mRNA levels of inflammation markers were elevated in Achilles tendons of both wild-type and PAI-1-deficient mice after trauma/burn treatment and PAI-1 mRNA levels were elevated in Achilles tendons of wild-type mice. PAI-1 deficiency significantly up-regulated the expression of Runx2, Osterix, and type 1 collagen in Achilles tendons 9 weeks after trauma/burn treatment in mice. In in vitro experiments, PAI-1 deficiency significantly increased ALP activity and mineralization in mouse osteoblasts. Moreover, PAI-1 deficiency significantly increased ALP activity and up-regulated osteocalcin expression during osteoblastic differentiation from mouse adipose-tissue-derived stem cells, but suppressed the chondrogenic differentiation of these cells. In conclusion, the present study showed that PAI-1 deficiency promoted HO in Achilles tendons after trauma/burn treatment partly by enhancing osteoblast differentiation and ALP activity in mice. Endogenous PAI-1 may play protective roles against HO after injury and inflammation.


Asunto(s)
Tendón Calcáneo , Trastornos Hemorrágicos , Osificación Heterotópica , Inhibidor 1 de Activador Plasminogénico , Inhibidor 1 de Activador Plasminogénico/deficiencia , Tenotomía , Animales , Osificación Heterotópica/metabolismo , Osificación Heterotópica/etiología , Tendón Calcáneo/metabolismo , Tendón Calcáneo/lesiones , Tendón Calcáneo/patología , Ratones , Inhibidor 1 de Activador Plasminogénico/metabolismo , Tenotomía/métodos , Osteogénesis/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Masculino , Osteoblastos/metabolismo , Diferenciación Celular , Modelos Animales de Enfermedad
2.
J Bone Miner Metab ; 42(3): 282-289, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38704516

RESUMEN

INTRODUCTION: Glucocorticoids delay fracture healing and induce osteoporosis. Angiogenesis plays an important role in bone repair after bone injury. Plasminogen activator inhibitor-1 (PAI-1) is the principal inhibitor of plasminogen activators and an adipocytokine that regulates metabolism. However, the mechanisms by which glucocorticoids delay bone repair remain unclear. MATERIALS AND METHODS: Therefore, we herein investigated the roles of PAI-1 and angiogenesis in glucocorticoid-induced delays in bone repair after femoral bone injury using PAI-1-deficient female mice intraperitoneally administered dexamethasone (Dex). RESULTS: PAI-1 deficiency significantly attenuated Dex-induced decreases in the number of CD31-positive vessels at damaged sites 4 days after femoral bone injury in mice. PAI-1 deficiency also significantly ameliorated Dex-induced decreases in the number of CD31- and endomucin-positive type H vessels and CD31-positive- and endomucin-negative vessels at damaged sites 4 days after femoral bone injury. Moreover, PAI-1 deficiency significantly mitigated Dex-induced decreases in the expression of vascular endothelial growth factor as well as hypoxia inducible factor-1α, transforming growth factor-ß1, and bone morphogenetic protein-2 at damaged sites 4 days after femoral bone injury. CONCLUSION: The present results demonstrate that Dex-reduced angiogenesis at damaged sites during the early bone-repair phase after femoral bone injury partly through PAI-1 in mice.


Asunto(s)
Dexametasona , Glucocorticoides , Neovascularización Fisiológica , Inhibidor 1 de Activador Plasminogénico , Animales , Ratones , Inhibidor 1 de Activador Plasminogénico/metabolismo , Femenino , Glucocorticoides/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Dexametasona/farmacología , Fémur/efectos de los fármacos , Fémur/metabolismo , Fémur/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Curación de Fractura/efectos de los fármacos , Ratones Noqueados , Ratones Endogámicos C57BL , Proteína Morfogenética Ósea 2/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Angiogénesis
3.
Calcif Tissue Int ; 112(3): 377-388, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36576505

RESUMEN

Extracellular vesicles (EVs) play crucial roles in physiological and pathophysiological processes. Although studies have described muscle-bone interactions via humoral factors, we reported that EVs from C2C12 muscle cells (Myo-EVs) suppress osteoclast formation. Current clinical evidence suggests that inflammation induces both sarcopenia and osteoporosis. Although tumor necrosis factor-α (TNF-α) is a critical proinflammatory factor, the influences of TNF-α on muscle-bone interactions and Myo-EVs are still unclear. In the present study, we investigated the effects of TNF-α stimulation of C2C12 cells on osteoclast formation and osteoblastic differentiation modulated by Myo-EVs in mouse cells. TNF-α significantly decreased the protein amount in Myo-EVs, but did not affect the Myo-EV size distribution. TNF-α treatment of C2C12 myoblasts significantly decreased the suppression of osteoclast formation induced by Myo-EVs from C2C12 myoblasts in mouse bone marrow cells. Moreover, TNF-α treatment of C2C12 myoblasts in mouse preosteoclastic Raw 264.7 cells significantly limited the Myo-EV-induced suppression of osteoclast formation and decreased the Myo-EV-induced increase in mRNA levels of osteoclast formation-related genes. On the other hand, TNF-α treatment of C2C12 muscle cells significantly decreased the degree of Myo-EV-promoted mRNA levels of Osterix and osteocalcin, as well as ALP activity in mouse mesenchymal ST-2 cells. TNF-α also significantly decreased miR196-5p level in Myo-EVs from C2C12 myoblasts in quantitative real-time PCR. In conclusion, TNF-α stimulation of C2C12 muscle cells blunts both the osteoclast formation suppression and the osteoblastic differentiation promotion that occurs due to Myo-EVs in mouse cells. Thus, TNF-α may disrupt the muscle-bone interactions by direct Myo-EV modulation.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Animales , Ratones , Factor de Necrosis Tumoral alfa/metabolismo , Diferenciación Celular , Células Musculares , Vesículas Extracelulares/metabolismo , ARN Mensajero/metabolismo , MicroARNs/metabolismo
4.
Endocr J ; 70(2): 161-171, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36198617

RESUMEN

Humoral factors that are secreted from skeletal muscles can regulate bone metabolism and contribute to muscle-bone relationships. Although extracellular vesicles (EVs) play important roles in physiological and pathophysiological processes, the roles of EVs that are secreted from skeletal muscles in bone repair have remained unclear. In the present study, we investigated the effects of the local administration of muscle cell-derived EVs on bone repair in control and streptozotocin-treated diabetic female mice. Muscle cell-derived EVs (Myo-EVs) were isolated from the conditioned medium from mouse muscle C2C12 cells by ultracentrifugation, after which Myo-EVs and gelatin hydrogel sheets were transplanted on femoral bone defect sites. The local administration of Myo-EVs significantly improved delayed bone repair that was induced by the diabetic state in mice 9 days after surgery. Moreover, this administration significantly enhanced the ratio of bone volume to tissue volume at the damaged sites 9 days after surgery in the control mice. Moreover, the local administration of Myo-EVs significantly blunted the number of Osterix-positive cells that were suppressed by the diabetic state at the damage sites after bone injury in mice. Additionally, Myo-EVs significantly blunted the mRNA levels of Osterix and alkaline phosphatase (ALP), and ALP activity was suppressed by advanced glycation end product 3 in ST2 cells that were treated with bone morphogenetic protein-2. In conclusion, we have shown for the first time that the local administration of Myo-EVs improves delayed bone repair that is induced by the diabetic state through an enhancement of osteoblastic differentiation in female mice.


Asunto(s)
Diabetes Mellitus Experimental , Vesículas Extracelulares , Ratones , Femenino , Animales , Diabetes Mellitus Experimental/metabolismo , Células Musculares , Huesos , Vesículas Extracelulares/metabolismo , Músculo Esquelético
5.
Am J Physiol Cell Physiol ; 323(1): C104-C115, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35649252

RESUMEN

Corneal fibroblasts are embedded within an extracellular matrix composed largely of collagen type 1, proteoglycans, and other proteins in the corneal stroma, and their morphology and function are subject to continuous regulation by collagen. During wound healing and in various pathological conditions, corneal fibroblasts differentiate into myofibroblasts characterized by the expression of α-smooth muscle actin (α-SMA). Endo180, also known as urokinase-type plasminogen activator (uPA) receptor-associated protein (uPARAP), is a collagen receptor. Here we investigated whether targeting of Endo180 and the uPA receptor (uPAR) by uPA might play a role in the regulation of α-SMA expression by culturing corneal fibroblasts derived from uPA-deficient (uPA-/-) or wild-type (uPA+/+) mice in a collagen gel or on plastic. The expression of α-SMA was upregulated, the amounts of full-length Endo180 and uPAR were increased, and the levels of both transforming growth factor-ß (TGF-ß) expression and Smad3 phosphorylation were higher in uPA-/- corneal fibroblasts compared with uPA+/+ cells under the collagen gel culture condition. Antibodies to Endo180 inhibited these effects of uPA deficiency on α-SMA and TGF-ß expression, whereas a TGF-ß signaling inhibitor blocked the effects on Smad3 phosphorylation and α-SMA expression. Our results suggest that uPA deficiency might promote the interaction between collagen and Endo180 and thereby increase α-SMA expression in a manner dependent on TGF-ß signaling. Expression of α-SMA is thus negatively regulated by uPA through targeting of Endo180 and uPAR.


Asunto(s)
Actinas , Activador de Plasminógeno de Tipo Uroquinasa , Actinas/metabolismo , Animales , Colágeno/metabolismo , Fibroblastos/metabolismo , Ratones , Músculo Liso/metabolismo , Receptores Mitogénicos , Factor de Crecimiento Transformador beta/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/genética , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo
6.
Int J Mol Sci ; 23(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35682638

RESUMEN

Fertilization is a key event for sexually reproducing plants. Pollen-stigma adhesion, which is the first step in male-female interaction during fertilization, requires proper pollen wall patterning. Callose, which is a ß-1.3-glucan, is an essential polysaccharide that is required for pollen development and pollen wall formation. Mutations in CALLOSE SYNTHASE 5 (CalS5) disrupt male meiotic callose accumulation; however, how CalS5 activity and callose synthesis are regulated is not fully understood. In this paper, we report the isolation of a kompeito-1 (kom-1) mutant defective in pollen wall patterning and pollen-stigma adhesion in Arabidopsis thaliana. Callose was not accumulated in kom-1 meiocytes or microspores, which was very similar to the cals5 mutant. The KOM gene encoded a member of a subclass of Rhomboid serine protease proteins that lacked active site residues. KOM was localized to the Golgi apparatus, and both KOM and CalS5 genes were highly expressed in meiocytes. A 220 kDa CalS5 protein was detected in wild-type (Col-0) floral buds but was dramatically reduced in kom-1. These results suggested that KOM was required for CalS5 protein accumulation, leading to the regulation of meiocyte-specific callose accumulation and pollen wall formation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucanos/metabolismo , Mutación , Polen/metabolismo
7.
Int J Mol Sci ; 23(1)2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35008904

RESUMEN

Glucocorticoids delay fracture healing and induce osteoporosis. However, the mechanisms by which glucocorticoids delay bone repair have yet to be clarified. Plasminogen activator inhibitor-1 (PAI-1) is the principal inhibitor of plasminogen activators and an adipocytokine that regulates metabolism. We herein investigated the roles of macrophages in glucocorticoid-induced delays in bone repair after femoral bone injury using PAI-1-deficient female mice intraperitoneally administered with dexamethasone (Dex). Dex significantly decreased the number of F4/80-positive macrophages at the damaged site two days after femoral bone injury. It also attenuated bone injury-induced decreases in the number of hematopoietic stem cells in bone marrow in wild-type and PAI-1-deficient mice. PAI-1 deficiency significantly weakened Dex-induced decreases in macrophage number and macrophage colony-stimulating factor (M-CSF) mRNA levels at the damaged site two days after bone injury. It also significantly ameliorated the Dex-induced inhibition of macrophage phagocytosis at the damaged site. In conclusion, we herein demonstrated that Dex decreased the number of macrophages at the damaged site during early bone repair after femoral bone injury partly through PAI-1 and M-CSF in mice.


Asunto(s)
Regeneración Ósea , Glucocorticoides/farmacología , Macrófagos/metabolismo , Inhibidor 1 de Activador Plasminogénico/metabolismo , Animales , Médula Ósea/patología , Regeneración Ósea/efectos de los fármacos , Recuento de Células , Dexametasona/farmacología , Femenino , Fémur/efectos de los fármacos , Fémur/lesiones , Fémur/patología , Regulación de la Expresión Génica/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Trastornos Hemorrágicos/patología , Macrófagos/efectos de los fármacos , Macrófagos/ultraestructura , Ratones Noqueados , Fagocitosis/efectos de los fármacos , Inhibidor 1 de Activador Plasminogénico/deficiencia
8.
Calcif Tissue Int ; 108(3): 364-376, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33090325

RESUMEN

Muscle/bone interaction has been recently noted. Extracellular vesicles (EVs) play a vital role in physiological and pathophysiological processes by transferring microRNA (miRNA) to distant tissues. We previously reported that EVs secreted from C2C12 myoblasts (Myo-EVs) suppress osteoclast differentiation. In the present study, we identified 4 miRNAs in Myo-EVs that suppressed osteoclast-like cell formation in Raw264.7 cells using small RNA sequencing analysis. Among them, miR-196a-5p expression was higher in C2C12 cells compared to mouse osteoblasts and bone marrow cells. Transfection of miR-196a-5p mimic suppressed the mRNA levels of osteoclast-related genes and mitochondrial energy metabolism induced by receptor activator of nuclear factor-κB ligand in Raw264.7 cells. In contrast, miR-196a-5p mimic enhanced osteoblastic differentiation in ST-2 cells and MC3T3-E1 cells. In conclusion, we demonstrated that miR-196-5p suppresses osteoclast-like cell formation and mitochondrial energy metabolism in mouse cells, suggesting that it might be a crucial factor for muscle/bone interaction via EVs.


Asunto(s)
Vesículas Extracelulares , MicroARNs/genética , Mioblastos/citología , Osteoclastos/citología , Animales , Diferenciación Celular , Línea Celular , Metabolismo Energético , Ratones , Mitocondrias/metabolismo , Células RAW 264.7
9.
Endocr J ; 68(12): 1421-1428, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34248092

RESUMEN

Muscle wasting is a complication in patients with diabetes and leads to a reduced quality of life. However, the detailed mechanisms of diabetes-induced muscle wasting remain unknown. Plasminogen activator inhibitor-1 (PAI-1), a serine protease inhibitor that suppresses plasminogen activator activity, is involved in the pathophysiology of various diseases, including diabetes. In the present study, we examined the role of endogenous PAI-1 in the decrease in muscle mass and the impaired grip strength induced by the diabetic state by employing streptozotocin (STZ)-treated PAI-1-deficient female mice. The analyses of skeletal muscles and grip strength were performed in PAI-1-deficient and wild-type mice 4 weeks after the induction of a diabetic state by STZ administration. PAI-1 deficiency did not affect muscle mass in the lower limbs measured by quantitative computed tomography or tissue weights of the tibialis anterior, gastrocnemius and soleus muscles of female mice with or without STZ treatment. On the other hand, PAI-1 deficiency significantly aggravated grip strength decreased by STZ in female mice. PAI-1 deficiency did not affect the mRNA levels of Pax7, MyoD, myogenin or myosin heavy chain in either the tibialis anterior or soleus muscles of female mice with or without STZ treatment. In conclusion, we revealed for the first time that PAI-1 deficiency aggravates grip strength impaired by the diabetic state in female mice, although it did not affect diabetes-decreased muscle mass.


Asunto(s)
Diabetes Mellitus Experimental , Inhibidor 1 de Activador Plasminogénico , Serpina E2/metabolismo , Animales , Diabetes Mellitus Experimental/complicaciones , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético , Inhibidor 1 de Activador Plasminogénico/genética , Calidad de Vida
10.
J Cell Physiol ; 234(6): 9687-9697, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30387130

RESUMEN

Plasminogen activator inhibitor-1 (PAI-1) is known as an inhibitor of fibrinolytic system. Previous studies suggest that PAI-1 is involved in the pathogenesis of osteoporosis induced by ovariectomy, diabetes, and glucocorticoid excess in mice. However, the roles of PAI-1 in early-stage osteogenic differentiation have remained unknown. In the current study, we investigated the roles of PAI-1 in osteoblastic differentiation of mesenchymal stem cells (MSCs) using wild-type (WT) and PAI-1-deficient (PAI-1 KO) mice. PAI-1 mRNA levels were increased with time during osteoblastic differentiation of MSCs or mesenchymal ST-2 cells. However, the increased PAI-1 levels declined at the mineralization phase in the experiment using MC3T3-E1 cells. PAI-1 deficiency significantly blunted the expression of osteogenic gene, such as osterix and alkaline phosphatase enhanced by bone morphogenetic protein (BMP)-2 in bone marrow-derived MSCs (BM-MSCs), adipose-tissue-derived MSCs (AD-MSCs), and bone marrow stromal cells of mice. Moreover, a reduction in endogenous PAI-1 levels by small interfering RNA significantly suppressed the expression of osteogenic gene in ST-2 cells. Plasmin did not affect osteoblastic differentiation of AD-MSCs induced by BMP-2 with or without PAI-1 deficiency. PAI-1 deficiency and a reduction in endogenous PAI-1 levels did not affect the phosphorylations of receptor-specific Smads by BMP-2 and transforming growth factor-ß in AD-MSCs and ST-2 cells, respectively. In conclusion, we first showed that PAI-1 is crucial for the differentiation of MSCs into osteoblasts in mice.


Asunto(s)
Diferenciación Celular , Trastornos Hemorrágicos/metabolismo , Trastornos Hemorrágicos/patología , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/patología , Inhibidor 1 de Activador Plasminogénico/deficiencia , Inhibidor 1 de Activador Plasminogénico/metabolismo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular , Fibrinolisina/farmacología , Fibrinólisis/efectos de los fármacos , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Osteogénesis/efectos de los fármacos , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas Smad/metabolismo
11.
Mod Rheumatol ; 29(6): 959-963, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30220231

RESUMEN

Objectives: Interleukin (IL)-1ß and matrix metalloproteinases (MMPs) play important roles in the pathogenesis of osteoarthritis. On the other hand, plasminogen activator inhibitor-1 (PAI-1), an inhibitor of fibrinolysis, exerts functions in the pathogenesis of various diseases. However, the functional roles of PAI-1 in the chondrocytes have been still remained unknown.Methods: In the present study, we investigated the roles of PAI-1 in the effects of IL-1ß on the chondrocytes using wild-type and PAI-1-deficient mice.Results: IL-1ß significantly elevated PAI-1 mRNA levels in the chondrocytes from wild-type mice. PAI-1 deficiency significantly blunted the mRNA levels of TGF-ß and IL-6 enhanced by IL-1ß in murine chondrocytes. Moreover, PAI-1 deficiency significantly decreased the mRNA levels of MMP-13, -3 and -9 as well as MMP-13 activity enhanced by IL-1ß in the chondrocytes. In addition, PAI-1 deficiency significantly reversed type II collagen mRNA levels suppressed by IL-1ß in the chondrocytes. On the other hand, active PAI-1 treatment significantly enhanced the mRNA levels of MMP-13, -3 and -9 as well as decreased type II collagen mRNA levels in the chondrocytes from wild-type mice.Conclusion: We first demonstrated that PAI-1 is involved in MMP expression enhanced by IL-1ß in murine chondrocytes. PAI-1 might be crucial for the cartilage matrix degradation and the impaired chondrogenesis by IL-1ß in mice.


Asunto(s)
Condrocitos/metabolismo , Eliminación de Gen , Metaloproteinasas de la Matriz/metabolismo , Inhibidor 1 de Activador Plasminogénico/genética , Animales , Células Cultivadas , Condrocitos/efectos de los fármacos , Condrogénesis , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Interleucina-1beta/farmacología , Interleucina-6/genética , Interleucina-6/metabolismo , Metaloproteinasas de la Matriz/genética , Ratones , Ratones Endogámicos C57BL , Inhibidor 1 de Activador Plasminogénico/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
12.
J Bone Miner Metab ; 36(2): 148-156, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28321652

RESUMEN

We recently revealed that plasminogen activator inhibitor-1 (PAI-1), a serine protease inhibitor, is involved in diabetes, osteoporosis and muscle wasting induced by glucocorticoid (GC) treatment in mice. In the present study, we investigated the detailed mechanisms by which GC induces muscle wasting through PAI-1 in vivo and in vitro. PAI-1 deficiency suppressed the mRNA levels of atrogin1 and muscle RING-Finger Protein 1 (MuRF1), ubiquitin ligases leading to muscle degradation, elevated by GC treatment in the gastrocnemius muscle of mice. In vitro study revealed that active PAI-1 treatment augmented the increase in atrogin1 mRNA levels enhanced by dexamethasone (Dex) in mouse myoblastic C2C12 cells. Moreover, a reduction in endogenous PAI-1 level by siRNA suppressed the mRNA levels of atrogin1 and MuRF1 enhanced by Dex in C2C12 cells. In contrast, a reduction in endogenous PAI-1 levels and active PAI-1 did not affect the phosphorylations of Akt and p70S6 kinase nor myogenic differentiation with or without Dex in C2C12 cells. In addition, PAI-1 deficiency blunted IGF-1 mRNA levels decreased by GC treatment in the gastrocnemius muscle of mice, although neither active PAI-1 nor a reduction in endogenous PAI-1 levels affected the levels of IGF-1 mRNA in C2C12 cells in the presence of Dex. In conclusion, our data suggest that paracrine PAI-1 is involved in GC-induced muscle wasting through the enhancement of muscle degradation in mice.


Asunto(s)
Glucocorticoides/farmacología , Músculo Esquelético/metabolismo , Inhibidor 1 de Activador Plasminogénico/metabolismo , Animales , Línea Celular , Dexametasona/farmacología , Femenino , Trastornos Hemorrágicos/metabolismo , Trastornos Hemorrágicos/patología , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones Noqueados , Desarrollo de Músculos/efectos de los fármacos , Proteínas Musculares/biosíntesis , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Inhibidor 1 de Activador Plasminogénico/deficiencia , Biosíntesis de Proteínas/efectos de los fármacos
13.
BMC Musculoskelet Disord ; 18(1): 392, 2017 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-28893232

RESUMEN

BACKGROUND: Subchondral osteopenia is important for the pathophysiology of osteoarthritis (OA). Although previous studies suggest that plasminogen activator inhibitor-1 (PAI-1), an inhibitor of fibrinolysis, is related to bone metabolism, its role in OA remains unknown. We therefore investigated the roles of PAI-1 in the subchondral bone in OA model mice. METHODS: Wild type (WT) and PAI-1-deficient (KO) mice were ovariectomized (OVX), and then destabilization of the medial meniscus (DMM) surgery was performed. RESULTS: DMM and OVX significantly decreased the trabecular bone mineral density of the subchondral bone evaluated by quantitative computed tomography in PAI-1 KO mice. The effects of OVX and/or PAI-1 deficiency on the OARSI score for the evaluation of the progression of knee degeneration were not significant. PAI-1 deficiency significantly augmented receptor activator nuclear factor κB ligand mRNA levels enhanced by IL-1ß in mouse primary osteoblasts, although it did not affect osteoblast differentiation. Moreover, PAI-1 deficiency significantly increased osteoclast formation from mouse bone marrow cells. CONCLUSION: We showed that PAI-1 deficiency accelerates the subchondral osteopenia after induction of OA in mice. PAI-1 might suppress an enhancement of bone resorption and subsequent subchondral osteopenia after induction of OA in mice.


Asunto(s)
Enfermedades Óseas Metabólicas/metabolismo , Enfermedades Óseas Metabólicas/patología , Osteoartritis/metabolismo , Osteoartritis/patología , Serpina E2/deficiencia , Animales , Enfermedades Óseas Metabólicas/etiología , Femenino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoartritis/complicaciones , Distribución Aleatoria
14.
Plant J ; 82(4): 596-608, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25788175

RESUMEN

In Arabidopsis leaf primordia, the expression of HD-Zip III, which promotes tissue differentiation on the adaxial side of the leaf primordia, is repressed by miRNA165/166 (miR165/166). Small RNAs, including miRNAs, can move from cell to cell. In this study, HD-Zip III expression was strikingly repressed by miR165/166 in the epidermis and parenchyma cells on the abaxial side of the leaf primordia compared with those on the adaxial side. We also found that the MIR165A locus, which was expressed in the abaxial epidermis, was sufficient to establish the rigid repression pattern of HD-Zip III expression in the leaf primordia. Ectopic expression analyses of MIR165A showed that the abaxial-biased miR165 activity in the leaf primordia was formed neither by a polarized distribution of factors affecting miR165 activity nor by a physical boundary inhibiting the cell-to-cell movement of miRNA between the adaxial and abaxial sides. We revealed that cis-acting factors, including the promoter, backbone, and mature miRNA sequence of MIR165A, are necessary for the abaxial-biased activity of miR165 in the leaf primordia. We also found that the abaxial-determining genes YABBYs are trans-acting factors that are necessary for the miR165 activity pattern, resulting in the rigid determination of the adaxial-abaxial boundary in leaf primordia. Thus, we proposed a molecular mechanism in which the abaxial-biased patterning of miR165 activity is confined.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , MicroARNs/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Arabidopsis/embriología , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Hojas de la Planta/embriología
15.
Plant J ; 81(2): 183-97, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25384462

RESUMEN

Pre-messenger RNA (pre-mRNA) splicing is essential in eukaryotic cells. In animals and yeasts, the DEAH-box RNA-dependent ATPase Prp16 mediates conformational change of the spliceosome, thereby facilitating pre-mRNA splicing. In yeasts, Prp16 also plays an important role in splicing fidelity. Conversely, PRP16 orthologs in Chlamydomonas reinhardtii and nematode do not have an important role in general pre-mRNA splicing, but are required for gene silencing and sex determination, respectively. Functions of PRP16 orthologs in higher plants have not been described until now. Here we show that the CLUMSY VEIN (CUV) gene encoding the unique Prp16 ortholog in Arabidopsis thaliana facilitates auxin-mediated development including male-gametophyte transmission, apical-basal patterning of embryonic and gynoecium development, stamen development, phyllotactic flower positioning, and vascular development. cuv-1 mutation differentially affects splicing and expression of genes involved in auxin biosynthesis, polar auxin transport, auxin perception and auxin signaling. The cuv-1 mutation does not have an equal influence on pre-mRNA substrates. We propose that Arabidopsis PRP16/CUV differentially facilitates expression of genes, which include genes involved in auxin biosynthesis, transport, perception and signaling, thereby collectively influencing auxin-mediated development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Empalme del ARN/fisiología
16.
Am J Physiol Endocrinol Metab ; 310(1): E15-23, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26530150

RESUMEN

Osteoblasts, osteoclasts, chondrocytes, and macrophages that participate in the bone repair process are derived from hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). However, the roles of these stem cells during the repair of injured bone tissue are still unclear. In the present study, we examined the effects of bone defect on HSCs and MSCs in bone marrow and spleen in 75 mice and its mechanism. We analyzed the HSC and MSC populations in these tissues of a mouse with femoral bone damage by using flow cytometry. The number of HSCs in the bone marrow of mice with damaged femurs was significantly lower than the number of these cells in the bone marrow of the contralateral intact femurs on day 2 after injury. Meanwhile, the number of MSCs in the bone marrow of mice with damaged femurs was significantly higher than that of the contralateral femurs. Both intraperitoneal administration of AMD3100, a C-X-C chemokine receptor 4 (CXCR4) antagonist, and local treatment with an anti-stromal cell-derived factor-1 (SDF-1) antibody blunted the observed decrease in HSC and increase in MSC populations within the bone marrow of injured femurs. In conclusion, the present study revealed that there is a concurrent decrease and increase in the numbers of HSCs and MSCs, respectively, in the bone marrow during repair of mouse femoral bone damage. Furthermore, the SDF-1/CXCR4 system was implicated as contributing to the changes in these stem cell populations upon bone injury.


Asunto(s)
Células de la Médula Ósea/fisiología , Regeneración Ósea/fisiología , Quimiocina CXCL12/fisiología , Células Madre Hematopoyéticas/fisiología , Células Madre Mesenquimatosas/fisiología , Animales , Anticuerpos/farmacología , Bencilaminas , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Regeneración Ósea/efectos de los fármacos , Huesos/citología , Huesos/lesiones , Recuento de Células , Quimiocina CXCL12/antagonistas & inhibidores , Ciclamas , Fémur/citología , Fémur/lesiones , Fémur/fisiología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de los fármacos , Compuestos Heterocíclicos/farmacología , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores CXCR4/antagonistas & inhibidores
17.
J Bone Miner Metab ; 34(5): 517-25, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26204847

RESUMEN

Fibrodysplasia ossificans progressiva (FOP) is a disorder of skeletal malformations and progressive heterotopic ossification. The constitutively activating mutation (R206H) of the bone morphogenetic protein type 1 receptor, activin-like kinase 2 (ALK2), is responsible for the pathogenesis of FOP. Although transfection of the causal mutation of FOP into myoblasts enhances osteoclast formation by transforming growth factor-ß (TGF-ß), the role of osteoclasts in heterotopic ossification is unknown. We therefore examined the effects of alendronate, SB431542 and SB203580 on heterotopic ossification induced by the causal mutation of FOP. Total bone mineral content as well as numbers of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated and alkaline phosphatase (ALP)-positive cells in heterotopic bone were significantly higher in muscle tissues implanted with ALK2 (R206H)-transfected mouse myoblastic C2C12 cells than in the tissues implanted with empty vector-transfected cells in nude mice. Alendronate, an aminobisphosphonate, did not affect total mineral content or numbers of TRAP-positive multinucleated and ALP-positive cells in heterotopic bone, which were enhanced by the implantation of ALK2 (R206H)-transfected C2C12 cells, although it significantly decreased serum levels of cross-linked C-telopeptide of type I collagen, a bone resorption index. Moreover, neither SB431542, an inhibitor of TGF-ß receptor type I kinase, nor SB203580, an inhibitor of p38 mitogen-activated protein kinase, affected the increase in heterotopic ossification due to the implantation of ALK2 (R206H)-transfected C2C12 cells. In conclusion, the present study indicates that osteoclast inhibition does not affect heterotopic ossification enhanced by FOP-related mutation.


Asunto(s)
Receptores de Activinas Tipo I/genética , Miositis Osificante/genética , Osificación Heterotópica/etiología , Osteoclastos/fisiología , Alendronato/farmacología , Fosfatasa Alcalina/análisis , Fosfatasa Alcalina/sangre , Animales , Benzamidas/farmacología , Calcio/sangre , Línea Celular , Colágeno Tipo I/sangre , Dioxoles/farmacología , Imidazoles/farmacología , Masculino , Ratones , Ratones Desnudos , Mutación , Mioblastos/trasplante , Osteoclastos/efectos de los fármacos , Péptidos/sangre , Fósforo/sangre , Piridinas/farmacología
18.
PLoS Genet ; 9(7): e1003655, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23935517

RESUMEN

The maintenance and reformation of gene expression domains are the basis for the morphogenic processes of multicellular systems. In a leaf primordium of Arabidopsis thaliana, the expression of FILAMENTOUS FLOWER (FIL) and the activity of the microRNA miR165/166 are specific to the abaxial side. This miR165/166 activity restricts the target gene expression to the adaxial side. The adaxial and abaxial specific gene expressions are crucial for the wide expansion of leaf lamina. The FIL-expression and the miR165/166-free domains are almost mutually exclusive, and they have been considered to be maintained during leaf development. However, we found here that the position of the boundary between the two domains gradually shifts from the adaxial side to the abaxial side. The cell lineage analysis revealed that this boundary shifting was associated with a sequential gene expression switch from the FIL-expressing (miR165/166 active) to the miR165/166-free (non-FIL-expressing) states. Our genetic analyses using the enlarged fil expression domain2 (enf2) mutant and chemical treatment experiments revealed that impairment in the plastid (chloroplast) gene expression machinery retards this boundary shifting and inhibits the lamina expansion. Furthermore, these developmental effects caused by the abnormal plastids were not observed in the genomes uncoupled1 (gun1) mutant background. This study characterizes the dynamic nature of the adaxial-abaxial specification process in leaf primordia and reveals that the dynamic process is affected by the GUN1-dependent retrograde signal in response to the failure of plastid gene expression. These findings advance our understanding on the molecular mechanism linking the plastid function to the leaf morphogenic processes.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Flores/genética , Hojas de la Planta/crecimiento & desarrollo , Plastidios/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Linaje de la Célula , Proteínas de Unión al ADN/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Morfogénesis/genética , Mutación , Hojas de la Planta/genética , Plastidios/metabolismo
19.
J Biol Chem ; 289(24): 16966-77, 2014 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-24798338

RESUMEN

Fibrodysplasia ossificans progressiva is characterized by extensive ossification within muscle tissues, and its molecular pathogenesis is responsible for the constitutively activating mutation (R206H) of the bone morphogenetic protein type 1 receptor, activin-like kinase 2 (ALK2). In this study, we investigated the effects of implanting ALK2 (R206H)-transfected myoblastic C2C12 cells into nude mice on osteoclast formation during heterotopic ossification in muscle and subcutaneous tissues. The implantation of ALK2 (R206H)-transfected C2C12 cells with BMP-2 in nude mice induced robust heterotopic ossification with an increase in the formation of osteoclasts in muscle tissues but not in subcutaneous tissues. The implantation of ALK2 (R206H)-transfected C2C12 cells in muscle induced heterotopic ossification more effectively than that of empty vector-transfected cells. A co-culture of ALK2 (R206H)-transfected C2C12 cells as well as the conditioned medium from ALK2 (R206H)-transfected C2C12 cells enhanced osteoclast formation in Raw264.7 cells more effectively than those with empty vector-transfected cells. The transfection of ALK2 (R206H) into C2C12 cells elevated the expression of transforming growth factor (TGF)-ß, whereas the inhibition of TGF-ß signaling suppressed the enhanced formation of osteoclasts in the co-culture with ALK2 (R206H)-transfected C2C12 cells and their conditioned medium. In conclusion, this study demonstrated that the causal mutation transfection of fibrodysplasia ossificans progressiva in myoblasts enhanced the formation of osteoclasts from its precursor through TGF-ß in muscle tissues.


Asunto(s)
Receptores de Activinas Tipo I/metabolismo , Músculo Esquelético/metabolismo , Miositis Osificante/genética , Osificación Heterotópica/metabolismo , Osteoclastos/metabolismo , Osteogénesis , Receptores de Activinas Tipo I/genética , Animales , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/metabolismo , Células Cultivadas , Medios de Cultivo Condicionados/farmacología , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Músculo Esquelético/patología , Mutación Missense , Mioblastos/citología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Mioblastos/trasplante , Células 3T3 NIH , Osificación Heterotópica/genética , Osteoclastos/citología , Ratas , Transducción de Señal , Tejido Subcutáneo/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
20.
Plant Cell Physiol ; 56(6): 1229-38, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25840087

RESUMEN

Plant developmental processes are co-ordinated with the status of cell metabolism, not only in mitochondria but also in plastids. In Arabidopsis thaliana, succinic semialdehyde (SSA), a GABA shunt metabolite, links the specific mitochondrial metabolic pathway to shoot development. To understand the mechanism of SSA-mediated development, we isolated a succinic semialdehyde dehydrogenase (ssadh) suppressor mutant, affected in its ability to catalyze SSA to succinic acid. We found that pleiotropic developmental phenotypes of ssadh are suppressed by a mutation in GLUTAMATE-1-SEMIALDEHYDE 2, 1-AMINOMUTASE 2 (GSA2), which encodes a plastidial enzyme converting glutatamate-1-semialdehyde to 5-aminolevulinic acid (5-ALA). In addition, a mutation in either HEMA1 or GSA1, two other enzymes for 5-ALA synthesis, also suppressed ssadh fully and partially, respectively. Furthermore, exogenous application of 5-ALA and SSA disturbed leaf development. These results suggest that metabolism in both mitochondria and plastids affect shoot development.


Asunto(s)
Ácido Aminolevulínico/metabolismo , Arabidopsis/genética , Genes del Cloroplasto , Pleiotropía Genética , Mutación/genética , Brotes de la Planta/crecimiento & desarrollo , Plastidios/genética , Ácido gamma-Aminobutírico/metabolismo , Secuencia de Aminoácidos , Ácido Aminolevulínico/farmacología , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Vías Biosintéticas/efectos de los fármacos , Vías Biosintéticas/genética , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes Supresores , Pleiotropía Genética/efectos de los fármacos , Meristema/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Fenotipo , Hojas de la Planta/genética , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/genética , Plastidios/efectos de los fármacos , Plastidios/metabolismo , Supresión Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA