Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 29(8): 11728-11738, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33984948

RESUMEN

Superconducting nanostrip photon detectors have been used as single-photon detectors, which can discriminate only photons' presence or absence. It has recently been found that they can discriminate the number of photons by analyzing the output signal waveform, and they are expected to be used in various fields, especially in optical-quantum-information processing. Here, we improve the photon-number-resolving performance for light with a high-average photon number by pattern matching of the output signal waveform. Furthermore, we estimate the positive-operator-valued measure of the detector by a quantum detector tomography. The result shows that the device has photon-number-resolving performance up to five photons without any multiplexing or arraying, indicating that it is useful as a photon-number-resolving detector.

2.
Phys Rev Lett ; 125(26): 260508, 2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33449716

RESUMEN

Optical approaches to quantum computation require the creation of multimode photonic quantum states in a controlled fashion. Here we experimentally demonstrate phase locking of two all-optical quantum memories, based on a concatenated cavity system with phase reference beams, for the time-controlled release of two-mode entangled single-photon states. The release time for each mode can be independently determined. The generated states are characterized by two-mode optical homodyne tomography. Entanglement and nonclassicality are preserved for release-time differences up to 400 ns, confirmed by logarithmic negativities and Wigner-function negativities, respectively.

3.
Phys Rev Lett ; 123(11): 113603, 2019 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-31573242

RESUMEN

We experimentally demonstrate storage and on-demand release of phase-sensitive, photon-number superposition states of the form α|0⟩+ße^{iθ}|1⟩ for an optical quantized oscillator mode. For this purpose, we newly developed a phase-probing mechanism compatible with a storage system composed of two concatenated optical cavities, which was previously employed for storage of phase-insensitive single-photon states [Phys. Rev. X 3, 041028 (2013)PRXHAE2160-330810.1103/PhysRevX.3.041028]. This is the first demonstration of all-optically storing highly nonclassical and phase-sensitive quantum states of light. The strong nonclassicality of the states after storage becomes manifest as a negative region in the corresponding Wigner function shifted away from the origin in phase space. This negativity is otherwise, without the phase information of the memory system, unobtainable. While our scheme includes the possibility of optical storage, on-demand release and synchronization of arbitrary single-rail qubit states, it is not limited to such states. In fact, our technique is extendible to more general phase-sensitive states such as multiphoton superposition or entangled states, and thus it represents a significant step toward advanced optical quantum information processing, where highly nonclassical states are utilized as resources.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA