Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(12)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35743041

RESUMEN

Grain legumes play a significant role in smallholder farming systems in Africa because of their contribution to nutrition and income security and their role in fixing nitrogen. Biological Nitrogen Fixation (BNF) serves a critical role in improving soil fertility for legumes. Although much research has been conducted on rhizobia in nitrogen fixation and their contribution to soil fertility, much less is known about the distribution and diversity of the bacteria strains in different areas of the world and which of the strains achieve optimal benefits for the host plants under specific soil and environmental conditions. This paper reviews the distribution, characterization, and commercialization of elite rhizobia strains in Africa.


Asunto(s)
Fabaceae , Rhizobium , Fabaceae/microbiología , Fijación del Nitrógeno , Suelo , Simbiosis
2.
Phytopathology ; 111(4): 703-712, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32997606

RESUMEN

Napier grass stunt (NGS) phytoplasma, a phloem-limited bacterium, infects Napier grass leading to severe yield losses in East Africa. The infected plants are strongly inhibited in growth and biomass production. In this study, phytoplasma-induced morphological changes of the vascular system and physiological changes were analyzed and compared with uninfected plants. The study showed that the phytoplasmas are more abundant in source leaves and range from 103 bacteria/µg total DNA in infected roots to 106 in mature Napier grass leaves. Using microscopical, biochemical, and physiological tools, we demonstrated that the ultrastructure of the phloem and sieve elements is severely altered in the infected plants, which results in the reduction of both the mass flow and the translocation of photoassimilates in the infected leaves. The reduced transport rate inhibits the photochemistry of photosystem II in the infected plants, which is accompanied by loss of chloroplastic pigments in response to the phytoplasma infection stress eventually resulting in yellowing of diseased plants. The phytoplasma infection stress also causes imbalances in the levels of defense-related antioxidants, glutathione, ascorbic acid, reactive oxygen species (ROS), and-in particular-hydrogen peroxide. This study shows that the infection of NGS phytoplasma in the phloem of Napier grass has an impact on the primary metabolism and activates a ROS-dependent defense response.


Asunto(s)
Phytoplasma , Floema , Enfermedad por Fitoplasma , Enfermedades de las Plantas , Hojas de la Planta
3.
Int J Mol Sci ; 22(24)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34948378

RESUMEN

Phytoplasmas are bacterial pathogens that live mainly in the phloem of their plant hosts. They dramatically manipulate plant development by secreting effector proteins that target developmental proteins of their hosts. Traditionally, the effects of individual effector proteins have been studied by ectopic overexpression using strong, ubiquitously active promoters in transgenic model plants. However, the impact of phytoplasma infection on the host plants depends on the intensity and timing of infection with respect to the developmental stage of the host. To facilitate investigations addressing the timing of effector protein activity, we have established chemical-inducible expression systems for the three most well-characterized phytoplasma effector proteins, SECRETED ASTER YELLOWS WITCHES' BROOM PROTEIN 11 (SAP11), SAP54 and TENGU in transgenic Arabidopsis thaliana. We induced gene expression either continuously, or at germination stage, seedling stage, or flowering stage. mRNA expression was determined by quantitative reverse transcription PCR, protein accumulation by confocal laser scanning microscopy of GFP fusion proteins. Our data reveal tight regulation of effector gene expression and strong upregulation after induction. Phenotypic analyses showed differences in disease phenotypes depending on the timing of induction. Comparative phenotype analysis revealed so far unreported similarities in disease phenotypes, with all three effector proteins interfering with flower development and shoot branching, indicating a surprising functional redundancy of SAP54, SAP11 and TENGU. However, subtle but mechanistically important differences were also observed, especially affecting the branching pattern of the plants.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Bacterianas/genética , Phytoplasma/genética , Enfermedades de las Plantas/genética , Plantas Modificadas Genéticamente/genética , Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Phytoplasma/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA