Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nano Lett ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39038223

RESUMEN

This study delves into the intriguing properties of the 1H/1T-TaS2 van der Waals heterostructure, focusing on the transparency of the 1H layer to the charge density wave of the underlying 1T layer. Despite the sizable interlayer separation and metallic nature of the 1H layer, positive bias voltages result in a pronounced superposition of the 1T charge density wave structure on the 1H layer. The conventional explanation relying on tunneling effects proves insufficient. Through a comprehensive investigation combining low-temperature scanning tunneling microscopy, scanning tunneling spectroscopy, non-contact atomic force microscopy, and first-principles calculations, we propose an alternative interpretation. The transparency effect arises from a weak yet substantial electronic coupling between the 1H and 1T layers, challenging prior understanding of the system. Our results highlight the critical role played by interlayer electronic interactions in van der Waals heterostructures to determine the final ground states of the systems.

2.
J Am Chem Soc ; 144(46): 21389-21397, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36367921

RESUMEN

Selective activation and controlled functionalization of C-H bonds in organic molecules is one of the most desirable processes in synthetic chemistry. Despite progress in heterogeneous catalysis using metal surfaces, this goal remains challenging due to the stability of C-H bonds and their ubiquity in precursor molecules, hampering regioselectivity. Here, we examine the interaction between 9,10-dicyanoanthracene (DCA) molecules and Au adatoms on a Ag(111) surface at room temperature (RT). Characterization via low-temperature scanning tunneling microscopy, spectroscopy, and noncontact atomic force microscopy, supported by theoretical calculations, revealed the formation of organometallic DCA-Au-DCA dimers, where C atoms at the ends of the anthracene moieties are bonded covalently to single Au atoms. The formation of this organometallic compound is initiated by a regioselective cleaving of C-H bonds at RT. Hybrid quantum mechanics/molecular mechanics calculations show that this regioselective C-H bond cleaving is enabled by an intermediate metal-organic complex which significantly reduces the dissociation barrier of a specific C-H bond. Harnessing the catalytic activity of single metal atoms, this regioselective on-surface C-H activation reaction at RT offers promising routes for future synthesis of functional organic and organometallic materials.


Asunto(s)
Oro , Compuestos Organometálicos , Temperatura , Compuestos Organometálicos/química , Catálisis , Microscopía de Túnel de Rastreo
3.
Nano Lett ; 21(1): 861-867, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33305570

RESUMEN

The ability to engineer geometrically well-defined antidots in large triangulene homologues allows for creating an entire family of triangulene quantum rings (TQRs) with tunable high-spin ground state, crucial for next-generation molecular spintronic devices. Herein, we report the synthesis of an open-shell [7]triangulene quantum ring ([7]TQR) molecule on Au(111) through the surface-assisted cyclodehydrogenation of a rationally designed kekulene derivative. Bond-resolved scanning tunneling microscopy (BR-STM) unambiguously imaged the molecular backbone of a single [7]TQR with a triangular zigzag edge topology, which can be viewed as [7]triangulene decorated with a coronene-like antidot in the center. Additionally, dI/dV mapping reveals that both inner and outer zigzag edges contribute to the edge-localized and spin-polarized electronic states of [7]TQR. Both experimental results and spin-polarized density functional theory calculations indicate that [7]TQR retains its open-shell septuple ground state (S = 3) on Au(111). This work demonstrates a new route for the design of high-spin graphene quantum rings for future quantum devices.

4.
Angew Chem Int Ed Engl ; 60(1): 439-445, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-32886405

RESUMEN

Recently π-d conjugated coordination polymers have received a lot of attention owing to their unique material properties, although synthesis of long and defect-free polymers remains challenging. Herein we introduce a novel on-surface synthesis of coordination polymers with quinoidal ligands under ultra-high vacuum conditions, which enables formation of flexible coordination polymers with lengths up to hundreds of nanometers. Moreover, this procedure allows the incorporation of different transition-metal atoms with four- or two-fold coordination. Remarkably, the two-fold coordination mode revealed the formation of wires constituted by (electronically) independent 12-membered antiaromatic macrocycles linked together through two C-C single bonds.

5.
Nanotechnology ; 27(27): 274005, 2016 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-27242270

RESUMEN

We present a numerical model that allows us to study the response of an oscillating probe in electrostatic force spectroscopy to charge switching in quantum dots at various time scales. The model provides more insight into the behavior of frequency shift and dissipated energy under different scanning conditions when measuring a temporarily charged quantum dot on a surface. Namely, we analyze the dependence of the frequency shift, the dissipated energy, and their fluctuations on the resonance frequency of the tip and on the electron tunneling rates across the tip-quantum dot and quantum dot-sample junctions. We discuss two complementary approaches to simulating the charge dynamics, a stochastic and a deterministic one. In addition, we derive analytic formulas valid for small amplitudes, describing relations between the frequency shift, dissipated energy, and the characteristic rates driving the charging and discharging processes.

6.
Phys Rev Lett ; 115(13): 136101, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26451568

RESUMEN

The forces between two single molecules brought into contact, and their connection with charge transport through the molecular junction, are studied here using non contact AFM, STM, and density functional theory simulations. A carbon monoxide molecule approaching an acetylene molecule (C_{2}H_{2}) initially feels weak attractive electrostatic forces, partly arising from charge reorganization in the presence of molecular . We find that the molecular contact is chemically passive, and protects the electron tunneling barrier from collapsing, even in the limit of repulsive forces. However, we find subtle conductance and force variations at different contacting sites along the C_{2}H_{2} molecule attributed to a weak overlap of their respective frontier orbitals.

7.
ACS Nano ; 18(13): 9576-9583, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38518264

RESUMEN

Precise control of multiple spin states on the atomic scale presents a promising avenue for designing and realizing magnetic switches. Despite substantial progress in recent decades, the challenge of achieving control over multiconfigurational reversible switches in low-dimensional nanostructures persists. Our work demonstrates multiple, fully reversible plasmon-driven spin-crossover switches in a single π-d metal-organic chain suspended between two electrodes. The plasmonic nanocavity stimulated by external visible light allows for reversible spin crossover between low- and high-spin states of different cobalt centers within the chain. We show that the distinct spin configurations remain stable for minutes under cryogenic conditions and can be nonperturbatively detected by conductance measurements. This multiconfigurational plasmon-driven spin-crossover demonstration extends the available toolset for designing optoelectrical molecular devices based on SCO compounds.

8.
Phys Rev Lett ; 111(10): 106803, 2013 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-25166692

RESUMEN

Quantum degeneracy is an important concept in quantum mechanics with large implications to many processes in condensed matter. Here, we show the consequences of electron energy level degeneracy on the conductance and the chemical force between two bodies at the atomic scale. We propose a novel way in which a scanning probe microscope can detect the presence of degenerate states in atomic-sized contacts even at room temperature. The tunneling conductance G and chemical binding force F between two bodies both tend to decay exponentially with distance in a certain distance range, usually maintaining direct proportionality G∝F. However, we show that a square relation G∝F2 arises as a consequence of quantum degeneracy between the interacting frontier states of the scanning tip and a surface atom. We demonstrate this phenomenon on the Si(111)-(7×7) surface reconstruction where the Si adatom possesses a strongly localized dangling-bond state at the Fermi level.

9.
J Phys Condens Matter ; 35(33)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37168002

RESUMEN

Two-dimensional (2D) layered group IV-VI semiconductors attract great interest due to their potential applications in nanoelectronics. Depending on the dimensionality, different phases of the same material can present completely different electronic and optical properties, expanding its applications. Here, we present a combined experimental and theoretical study of the atomic structure and electronic properties of epitaxial SnSe structures grown on a metallic Au(111) substrate, forming almost defect-free 2D layers. We describe a coverage-dependent transition from a metallicß-SnSe to a semiconductingα-SnSe phase. The combination of scanning tunneling microscopy/spectroscopy, non-contact atomic force microscopy, x-ray photoelectron spectroscopy/diffraction and angle-resolved photoemission spectroscopy, complemented by density functional theory, provides a comprehensive study of the geometric and electronic structure of both phases. Our work demonstrates the possibility to grow two distinct SnSe phases on Au(111) with high quality and on a large scale. The strong interaction with the substrate allows the stabilization of the previously experimentally unreportedß-SnSe, while the ultra-thin films of orthorhombicα-SnSe are structurally and electronically equivalent to bulk SnSe.

10.
ACS Nano ; 16(10): 16402-16413, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36200735

RESUMEN

One-dimensional metal-organic chains often possess a complex magnetic structure susceptible to modification by alteration of their chemical composition. The possibility to tune their magnetic properties provides an interesting playground to explore quasi-particle interactions in low-dimensional systems. Despite the great effort invested so far, a detailed understanding of the interactions governing the electronic and magnetic properties of the low-dimensional systems is still incomplete. One of the reasons is the limited ability to characterize their magnetic properties at the atomic scale. Here, we provide a comprehensive study of the magnetic properties of metal-organic one-dimensional (1D) coordination polymers consisting of 2,5-diamino-1,4-benzoquinonediimine ligands coordinated with Co or Cr atoms synthesized under ultrahigh-vacuum conditions on a Au(111) surface. A combination of integral X-ray spectroscopy with local-probe inelastic electron tunneling spectroscopy corroborated by multiplet analysis, density functional theory, and inelastic electron tunneling simulations enables us to obtain essential information about their magnetic structures, including the spin magnitude and orientation at the magnetic atoms, as well as the magnetic anisotropy.

11.
Phys Rev Lett ; 106(17): 176101, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21635051

RESUMEN

First-principles calculations show that the rich variety of image patterns found in carbon nanostructures with the atomic force and scanning tunneling microscopes can be rationalized in terms of the chemical reactivity of the tip and the distance range explored in the experiments. For weakly reactive tips, the Pauli repulsion dominates the atomic contrast and force maxima are expected on low electronic density positions as the hollow site. With reactive tips, the interaction is strong enough to change locally the hybridization of the carbon atoms, making it possible to observe atomic resolution in both the attractive and the repulsive regime although with inverted contrast. Regarding STM images, we show that in the near-contact regime, due to current saturation, bright spots correspond to hollow positions instead of atomic sites, providing an explanation for the most common hexagonal pattern found in the experiments.

12.
Nanotechnology ; 22(29): 295710, 2011 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-21685559

RESUMEN

A Si adatom on a Si(111)-(7 × 7) reconstructed surface is a typical atomic feature that can rather easily be imaged by a non-contact atomic force microscope (nc-AFM) and can be thus used to test the atomic resolution of the microscope. Based on our first principles density functional theory (DFT) calculations, we demonstrate that the structure of the termination of the AFM tip plays a decisive role in determining the appearance of the adatom image. We show how the AFM image changes depending on the tip-surface distance and the composition of the atomic apex at the end of the tip. We also demonstrate that contaminated tips may give rise to image patterns displaying so-called 'sub-atomic' features even in the attractive force regime.

13.
Nat Commun ; 11(1): 1337, 2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32165626

RESUMEN

Intramolecular charge transfer processes play an important role in many biological, chemical and physical processes including photosynthesis, redox chemical reactions and electron transfer in molecular electronics. These charge transfer processes are frequently influenced by the dynamics of their molecular or atomic environments, and they are accompanied with energy dissipation into this environment. The detailed understanding of such processes is fundamental for their control and possible exploitation in future technological applications. Most of the experimental studies of the intramolecular charge transfer processes so far have been carried out using time-resolved optical spectroscopies on large molecular ensembles. This hampers detailed understanding of the charge transfer on the single molecular level. Here we build upon the recent progress in scanning probe microscopy, and demonstrate the control of mixed valence state. We report observation of single electron transfer between two ferrocene redox centers within a single molecule and the detection of energy dissipation associated with the single electron transfer.

14.
Nat Commun ; 9(1): 122, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29317638

RESUMEN

Scanning probe microscopy has been extensively applied to probe interfacial water in many interdisciplinary fields but the disturbance of the probes on the hydrogen-bonding structure of water has remained an intractable problem. Here, we report submolecular-resolution imaging of the water clusters on a NaCl(001) surface within the nearly noninvasive region by a qPlus-based noncontact atomic force microscopy. Comparison with theoretical simulations reveals that the key lies in probing the weak high-order electrostatic force between the quadrupole-like CO-terminated tip and the polar water molecules at large tip-water distances. This interaction allows the imaging and structural determination of the weakly bonded water clusters and even of their metastable states with negligible disturbance. This work may open an avenue for studying the intrinsic structure and dynamics of ice or water on surfaces, ion hydration, and biological water with atomic precision.

15.
Nat Commun ; 8: 15155, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28443645

RESUMEN

Electronegativity is a fundamental concept in chemistry. Despite its importance, the experimental determination has been limited only to ensemble-averaged techniques. Here, we report a methodology to evaluate the electronegativity of individual surface atoms by atomic force microscopy. By measuring bond energies on the surface atoms using different tips, we find characteristic linear relations between the bond energies of different chemical species. We show that the linear relation can be rationalized by Pauling's equation for polar covalent bonds. This opens the possibility to characterize the electronegativity of individual surface atoms. Moreover, we demonstrate that the method is sensitive to variation of the electronegativity of given atomic species on a surface due to different chemical environments. Our findings open up ways of analysing surface chemical reactivity at the atomic scale.

16.
Nat Commun ; 7: 11560, 2016 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-27230940

RESUMEN

How electronic charge is distributed over a molecule determines to a large extent its chemical properties. Here, we demonstrate how the electrostatic force field, originating from the inhomogeneous charge distribution in a molecule, can be measured with submolecular resolution. We exploit the fact that distortions typically observed in high-resolution atomic force microscopy images are for a significant part caused by the electrostatic force acting between charges of the tip and the molecule of interest. By finding a geometrical transformation between two high-resolution AFM images acquired with two different tips, the electrostatic force field or potential over individual molecules and self-assemblies thereof can be reconstructed with submolecular resolution.

17.
Nat Commun ; 6: 7766, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26178193

RESUMEN

Atomic force microscopy is capable of resolving the chemical structure of a single molecule on a surface. In previous research, such high resolution has only been obtained at low temperatures. Here we demonstrate that the chemical structure of a single molecule can be clearly revealed even at room temperature. 3,4,9,10-perylene tetracarboxylic dianhydride, which is strongly adsorbed onto a corner-hole site of a Si(111)-(7 × 7) surface in a bridge-like configuration is used for demonstration. Force spectroscopy combined with first-principle calculations clarifies that chemical structures can be resolved independent of tip reactivity. We show that the submolecular contrast over a central part of the molecule is achieved in the repulsive regime due to differences in the attractive van der Waals interaction and the Pauli repulsive interaction between different sites of the molecule.

18.
ACS Nano ; 9(9): 9180-7, 2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26256407

RESUMEN

Chemical doping is one of the most suitable ways of tuning the electronic properties of graphene and a promising candidate for a band gap opening. In this work we report a reliable and tunable method for preparation of high-quality boron and nitrogen co-doped graphene on silicon carbide substrate. We combine experimental (dAFM, STM, XPS, NEXAFS) and theoretical (total energy DFT and simulated STM) studies to analyze the structural, chemical, and electronic properties of the single-atom substitutional dopants in graphene. We show that chemical identification of boron and nitrogen substitutional defects can be achieved in the STM channel due to the quantum interference effect, arising due to the specific electronic structure of nitrogen dopant sites. Chemical reactivity of single boron and nitrogen dopants is analyzed using force-distance spectroscopy by means of dAFM.

19.
ACS Nano ; 8(7): 7318-24, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-24884035

RESUMEN

We report a straightforward method to produce high-quality nitrogen-doped graphene on SiC(0001) using direct nitrogen ion implantation and subsequent stabilization at temperatures above 1300 K. We demonstrate that double defects, which comprise two nitrogen defects in a second-nearest-neighbor (meta) configuration, can be formed in a controlled way by adjusting the duration of bombardment. Two types of atomic contrast of single N defects are identified in scanning tunneling microscopy. We attribute the origin of these two contrasts to different tip structures by means of STM simulations. The characteristic dip observed over N defects is explained in terms of the destructive quantum interference.

20.
ACS Nano ; 7(3): 2686-92, 2013 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-23432213

RESUMEN

In this paper, we show that simultaneous noncontact atomic force microscopy (nc-AFM) and scanning tunneling microscopy (STM) is a powerful tool for molecular discrimination on the Si(111)-7 × 7 surface, even at room temperature. Using density functional theory modeling, we justify this approach and show that the force response allows us to distinguish straightforwardly between molecular adsorbates and common defects, such as vacancies. Finally, we prove that STM/nc-AFM method is able to determine attachment sites of molecules deposited on semiconductor surface at room temperature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA