Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 118(3): 1177-1185, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33270214

RESUMEN

Islet transplantation is emerging as a therapeutic option for type 1 diabetes, albeit, only a small number of patients meeting very stringent criteria are eligible for the treatment because of the side effects of the necessary immunosuppressive therapy and the relatively short time frame of normoglycemia that most patients achieve. The challenge of the immune-suppressive regimen can be overcome through microencapsulation of the islets in a perm-selective coating of alginate microbeads with poly-l-lysine or poly- l-ornithine. In addition to other issues including the nutrient supply challenge of encapsulated islets a critical requirement for these cells has emerged as the need to engineer the microenvironment of the encapsulation matrix to mimic that of the native pancreatic scaffold that houses islet cells. That microenvironment includes biological and mechanical cues that support the viability and function of the cells. In this study, the alginate hydrogel was modified to mimic the pancreatic microenvironment by incorporation of extracellular matrix (ECM). Mechanical and biological changes in the encapsulating alginate matrix were made through stiffness modulation and incorporation of decellularized ECM, respectively. Islets were then encapsulated in this new biomimetic hydrogel and their insulin production was measured after 7 days in vitro. We found that manipulation of the alginate hydrogel matrix to simulate both physical and biological cues for the encapsulated islets enhances the mechanical strength of the encapsulated islet constructs as well as their function. Our data suggest that these modifications have the potential to improve the success rate of encapsulated islet transplantation.


Asunto(s)
Alginatos/química , Materiales Biomiméticos/química , Células Inmovilizadas/metabolismo , Microambiente Celular , Células Secretoras de Insulina/metabolismo , Andamios del Tejido/química , Supervivencia Celular , Células Inmovilizadas/citología , Matriz Extracelular Descelularizada/química , Humanos , Insulina/biosíntesis , Células Secretoras de Insulina/citología
2.
J Surg Res ; 264: 90-98, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33794389

RESUMEN

BACKGROUND: The Slit-Robo pathway is a key regulator of angiogenesis and cellular function in experimental models. Slit3 proteins exhibit both proangiogenic and antiangiogenic properties, but the exact mechanism remains unclear. It is theorized that Slit3 may be a potential treatment for vascular diseases and cancer. METHODS: Slit3 labeled with I-125 was encapsulated in microbeads composed of low-viscosity alginate of high-glucuronic acid content, first coated with poly-L-ornithine for various durations and finally with low-viscosity high mannuronic acid. Gamma counter was used to measure microbead encapsulation efficiency and Slit3 release. Markers of angiogenesis were assessed with Boyden chamber, scratch wound, and Matrigel tube formation assays using human umbilical vein and mouse endothelial cells. RESULTS: On incubation of Slit3-loaded microbeads, there was an initial burst phase release of Slit3 for the first 24 h followed by sustained release for 6 to 12 d. Microbead composition determined encapsulation efficiency and rate of release; Slit3 encapsulation was most efficient in microbeads with lower low-viscosity alginate of high-glucuronic acid content concentrations (1.5%) and no poly-L-ornithine coating. Compared with controls (media alone), Slit3 microbeads significantly inhibited in vitro cellular migration, endothelial cell migration for wound closure at 24 and 48 h and endothelial tube formation (P < 0.001, respectively). CONCLUSIONS: Slit3 can be effectively encapsulated and delivered via a controlled release pattern using alginate microbeads. Microbead encapsulation reduces in vitro endothelial tube formation and inhibits cellular migration to impair angiogenesis. Thus, Slit3 microparticles may be explored as a therapeutic option to mitigate tumor proliferation.


Asunto(s)
Alginatos/química , Portadores de Fármacos/química , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Proteínas de la Membrana/administración & dosificación , Neovascularización Patológica/tratamiento farmacológico , Animales , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Composición de Medicamentos/métodos , Liberación de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Proteínas de la Membrana/farmacocinética , Ratones , Microesferas , Neoplasias/irrigación sanguínea , Neoplasias/tratamiento farmacológico , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/farmacocinética
3.
BJU Int ; 121(2): 301-312, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28805303

RESUMEN

OBJECTIVES: To determine the effects of controlled release of insulin-like growth factor 1 (IGF-1) from alginate-poly-L-ornithine-gelatine (A-PLO-G) microbeads on external urethral sphincter (EUS) tissue regeneration in a rat model of stress urinary incontinence (SUI), as SUI diminishes the quality of life of millions, particularly women who have delivered vaginally, which can injure the urethral sphincter. Despite several well-established treatments for SUI, growth factor therapy might provide an alternative to promote urethral sphincter repair. MATERIALS AND METHODS: In all, 44 female Sprague-Dawley rats were randomised into four groups: vaginal distension (VD) followed by periurethral injection of IGF-1-A-PLO-G microbeads (VD + IGF-1 microbeads; 1 × 104 microbeads/1 mL normal saline); VD + empty microbeads; VD + saline; or sham-VD + saline (sham). RESULTS: Urethral function (leak-point pressure, LPP) was significantly lesser 1 week after VD + saline [mean (sem) 23.9 (1.3) cmH2 O] or VD + empty microbeads [mean (sem) 21.7 (0.8) cmH2 O) compared to the sham group [mean (sem) 44.4 (3.4) cmH2 O; P < 0.05), indicating that the microbeads themselves do not create a bulking or obstructive effect in the urethra. The LPP was significantly higher 1 week after VD + IGF-1 microbeads [mean (sem) 28.4 (1.2) cmH2 O] compared to VD + empty microbeads (P < 0.05), and was not significantly different from the LPP in sham rats, demonstrating an initiation of a reparative effect even at 1 week after VD. Histological analysis showed well-organised skeletal muscle fibres and vascular development in the EUS at 1 week after VD + IGF-1 microbeads, compared to substantial muscle fibre attenuation and disorganisation, and less vascular formation at 1 week after VD + saline or VD + empty microbeads. CONCLUSION: Periurethral administration of IGF-1-A-PLO-G microbeads facilitates recovery from SUI by promoting skeletal myogenesis and revascularisation. This therapy is promising, but detailed and longer term studies in animal models and humans are needed.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/farmacología , Desarrollo de Músculos/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Uretra/efectos de los fármacos , Incontinencia Urinaria de Esfuerzo/fisiopatología , Animales , Preparaciones de Acción Retardada/farmacología , Modelos Animales de Enfermedad , Femenino , Músculo Esquelético/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Uretra/patología , Uretra/fisiopatología , Incontinencia Urinaria de Esfuerzo/tratamiento farmacológico , Incontinencia Urinaria de Esfuerzo/patología
4.
BMC Dev Biol ; 16: 8, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27068127

RESUMEN

BACKGROUND: It has been suggested that the ectopic expression of PDX1, a dominant pancreatic transcription factor, plays a critical role in the developmental programming of the pancreas even from cells of unrelated tissues such as keratinocytes and amniotic fluid stem cells. In this study we have chosen to drive pancreatic development in human amnion epithelial cells by inducing endogenous PDX1 expression. Further, we have investigated the role of Epidermal Growth Factor (EGF) and Poly-L-Ornithine (PLO) on this differentiation process. RESULTS: Human amnion epithelial cells expressed high levels of endogenous PDX1 upon transduction with an adenoviral vector expressing murine Pdx1. Other markers of various stages of pancreatic differentiation such as NKX6.1, SOX17, RFX6, FOXA2, CFTR, NEUROD1, PAX4 and PPY were also expressed upon Pdx1 transduction. Although initial expression of pancreatic progenitor markers was higher in culture conditions lacking EGF, for a sustained and increased expression EGF was required. Culture on PLO further increased the positive impact of EGF. CONCLUSION: Pancreatic marker expression subsequent to mPdx1 transduction suggests that this approach may facilitate the in vitro differentiation of hAECs into cells of the endocrine pancreas. This result may have important implications in diabetes therapy.


Asunto(s)
Amnios/citología , Diferenciación Celular/efectos de los fármacos , Factor de Crecimiento Epidérmico/farmacología , Células Epiteliales/citología , Proteínas de Homeodominio/metabolismo , Péptidos/farmacología , Transactivadores/metabolismo , Animales , Biomarcadores/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Transducción Genética
5.
Ann Surg ; 264(1): 169-79, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26649588

RESUMEN

OBJECTIVES: Our study aims at producing acellular extracellular matrix scaffolds from the human pancreas (hpaECMs) as a first critical step toward the production of a new-generation, fully human-derived bioartificial endocrine pancreas. In this bioartificial endocrine pancreas, the hardware will be represented by hpaECMs, whereas the software will consist in the cellular compartment generated from patient's own cells. BACKGROUND: Extracellular matrix (ECM)-based scaffolds obtained through the decellularization of native organs have become the favored platform in the field of complex organ bioengineering. However, the paradigm is now switching from the porcine to the human model. METHODS: To achieve our goal, human pancreata were decellularized with Triton-based solution and thoroughly characterized. Primary endpoints were complete cell and DNA clearance, preservation of ECM components, growth factors and stiffness, ability to induce angiogenesis, conservation of the framework of the innate vasculature, and immunogenicity. Secondary endpoint was hpaECMs' ability to sustain growth and function of human islet and human primary pancreatic endothelial cells. RESULTS: Results show that hpaECMs can be successfully and consistently produced from human pancreata and maintain their innate molecular and spatial framework and stiffness, and vital growth factors. Importantly, hpaECMs inhibit human naïve CD4 T-cell expansion in response to polyclonal stimuli by inducing their apoptosis and promoting their conversion into regulatory T cells. hpaECMs are cytocompatible and supportive of representative pancreatic cell types. DISCUSSION: We, therefore, conclude that hpaECMs has the potential to become an ideal platform for investigations aiming at the manufacturing of a regenerative medicine-inspired bioartificial endocrine pancreas.


Asunto(s)
Matriz Extracelular/metabolismo , Páncreas , Ingeniería de Tejidos , Andamios del Tejido , Humanos , Islotes Pancreáticos/metabolismo , Organogénesis , Páncreas/metabolismo , Regeneración , Ingeniería de Tejidos/métodos
6.
J Urol ; 191(3): 850-9, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23973520

RESUMEN

PURPOSE: Cellular therapy induced transient urodynamic improvement in a rat model of Parkinson disease in which bladder dysfunction was noted after unilateral injection of 6-hydroxydopamine into the medial forebrain bundle. We sought to prolong the effect by injecting allogeneic rat bone marrow mesenchymal stromal cells before and after microencapsulation into the substantia nigra pars compacta. MATERIALS AND METHODS: Female rats underwent unilateral stereotactic injection of 6-hydroxydopamine in the medial forebrain bundle. Injection was performed in the ipsilateral substantia nigra pars compacta using vehicle alone or vehicle with nonmicroencapsulated or microencapsulated rat bone marrow derived mesenchymal stromal cells. Rats were evaluated by cystometry 7, 14, 28 and 42 days after treatment. Brains were extracted for immunostaining. RESULTS: At 42 days the nonmicroencapsulated group had lower threshold and intermicturition pressure, spontaneous activity and AUC than vehicle treated animals. Rats that received microencapsulated cells had lower threshold pressure at 28 days and lower spontaneous activity at 42 days than vehicle treated rats. Microencapsulated and nonmicroencapsulated rat bone marrow derived mesenchymal stromal cells were noted in the substantia nigra pars compacta up to 42 days after transplantation. At 42 days tyrosine hydroxylase positive neurons were more numerous in the substantia nigra pars compacta of the nonmicroencapsulated group, followed by the microencapsulated and vehicle treated groups. CONCLUSIONS: Urodynamic effects of the 6-hydroxydopamine lesion persisted up to 42 days after vehicle injection. Transplantation of nonmicroencapsulated rat bone marrow derived mesenchymal stromal cells improved urodynamic pressure by 42 days after treatment more markedly than microencapsulated cells. This was associated with more tyrosine hydroxylase positive neurons in the treated substantia nigra pars compacta of the nonmicroencapsulated group, suggesting that functional improvement requires a juxtacrine effect.


Asunto(s)
Médula Ósea/fisiopatología , Tratamiento Basado en Trasplante de Células y Tejidos , Trasplante de Células Madre Mesenquimatosas , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Urodinámica , Animales , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Inmunohistoquímica , Microscopía Confocal , Oxidopamina , Ratas , Ratas Sprague-Dawley , Sustancia Negra/fisiopatología
7.
Microvasc Res ; 90: 23-9, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23978335

RESUMEN

In recent years, great advances have been made in the use of islet transplantation as a treatment for type I diabetes. Indeed, it is possible that stimulation of local neovascularization upon transplantation could improve functional graft outcomes. In the present study, we investigate the use of multilayered alginate microbeads to provide a sustained delivery of FGF-1, and whether this results in increased neovascularization in vivo. Multilayered alginate microbeads, loaded with either 150ng or 600ng of FGF-1 in the outer layer, were surgically implanted into rats using an omentum pouch model and compared to empty microbead implants. Rats were sacrificed at 4days, 1week, and 6weeks. Staining for CD31 showed that both conditions of FGF-1 loaded microbeads resulted in a significantly higher vessel density at all time points studied. Moreover, at 6weeks, alginate microbeads containing 600ng FGF-1 provided a greater vascular density compared to both the control group and the microbeads loaded with 150ng FGF-1. Omenta analyzed via staining for smooth muscle alpha actin showed no variation in mural cell density at either 4days or 1week. At 6weeks, however, omenta exposed to microbeads loaded with 600ng FGF-1 showed an increase in mural cell staining compared to controls. These results suggest that the sustained delivery of FGF-1 from multilayered alginate microbeads results in a rapid and persistent vascular response. An increase in the local blood supply could reduce the number of islets required for transplantation in order to achieve clinical efficacy.


Asunto(s)
Alginatos/química , Inductores de la Angiogénesis/farmacología , Portadores de Fármacos , Factor 1 de Crecimiento de Fibroblastos/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Epiplón/irrigación sanguínea , Actinas/metabolismo , Inductores de la Angiogénesis/administración & dosificación , Inductores de la Angiogénesis/química , Animales , Biomarcadores/metabolismo , Preparaciones de Acción Retardada , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Factor 1 de Crecimiento de Fibroblastos/administración & dosificación , Factor 1 de Crecimiento de Fibroblastos/química , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
8.
Pathobiology ; 80(4): 194-202, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23652283

RESUMEN

Islet transplantation has been shown to be a viable treatment option for patients afflicted with type 1 diabetes. However, the lack of availablity of human pancreases and the need to use risky immunosuppressive drugs to prevent transplant rejection remain two major obstacles to the routine use of islet transplantation in diabetic patients. Successful development of a bioartificial pancreas using the approach of microencapsulation with perm-selective coating of islets in hydrogels for graft immunoisolation holds tremendous promise for diabetic patients because it has great potential to overcome these two barriers. In this review article, we will discuss the need for a bioartificial pancreas, provide a detailed description of the microencapsulation process, and review the status of the technology in clinical development. We will also critically review the various factors that will need to be taken into consideration in order to achieve the ultimate goal of routine clinical application.


Asunto(s)
Diabetes Mellitus Tipo 1/terapia , Composición de Medicamentos/métodos , Páncreas Artificial , Páncreas/fisiología , Alginatos/química , Ácido Glucurónico/química , Rechazo de Injerto/prevención & control , Ácidos Hexurónicos/química , Humanos , Trasplante de Islotes Pancreáticos
9.
Ann Biomed Eng ; 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36913086

RESUMEN

There is an unrelenting interest in the development of a reliable bioartificial pancreas construct since the first description of this technology of encapsulated islets by Lim and Sun in 1980 because it promised to be a curative treatment for Type 1 Diabetes Mellitus (T1DM). Despite the promise of the concept of encapsulated islets, there are still some challenges that impede the full realization of the clinical potential of the technology. In this review, we will first present the justification for continued research and development of this technology. Next, we will review key barriers that impede progress in this field and discuss strategies that can be used to design a reliable construct capable of effective long-term performance after transplantation in diabetic patients. Finally, we will share our perspectives on areas of additional work for future research and development of the technology.

10.
Am J Clin Exp Urol ; 11(6): 559-577, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148930

RESUMEN

Lower urinary tract dysfunction (LUTD) encompasses a range of debilitating conditions that affect both sexes and different age groups. Understanding the underlying neurobiological mechanisms contributing to LUTD has emerged as a critical avenue for the development of targeted therapeutic strategies. Brain-derived neurotrophic factor (BDNF), a prominent member of the neurotrophin family, has attracted attention due to its multiple roles in neural development, plasticity, and maintenance. This review examines the intricate interplay between neurobiological factors and LUTD, focusing on the central involvement of BDNF. The review emphasizes the bidirectional relationship between LUTD and BDNF and explores how LUTD-induced neural changes may affect BDNF dynamics and vice versa. Growth factor therapy and the combined administration of controlled release growth factors and stem cells are minimally invasive treatment strategies for neuromuscular injury. Among the many growth factors and cytokines, brain-derived neurotrophic factor (BDNF) plays a prominent role in neuromuscular repair. As an essential neurotrophin, BDNF is involved in the modulation of neuromuscular regeneration through tropomyosin receptor kinase B (TrkB). Increasing BDNF levels facilitates the regeneration of the external urethral sphincter and contributes to the regulation of bladder contraction. Treatments targeting the BDNF pathway and sustained release of BDNF may become novel treatment options for urinary incontinence and other forms of lower urinary tract dysfunction. This review discusses the applications of BDNF and the theoretical basis for its use in the treatment of lower urinary tract dysfunction, including urinary incontinence (UI), overactive bladder (OAB), and benign prostatic hyperplasia (BPH), and in the clinical diagnosis of bladder dysfunction.

11.
Ann Biomed Eng ; 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37436565

RESUMEN

Tissue-engineering and cell-based strategies provide an intriguing approach to treat complex conditions such as those of the endocrine system. We have previously developed a cell-based hormone therapy (cHT) to address hormonal insufficiency associated with the loss of ovarian function. To assess how the cHT strategy may achieve its efficacy, we developed a mathematical model to determine if known autocrine, paracrine, and endocrine effects of the native hypothalamus-pituitary-ovary (HPO) axis could explain our previously observed effects in ovariectomized rats following treatment with cHT. Our model suggests that cHT constructs participate in the complex machinery of the HPO axis. We were able to describe the in vivo behaviors of estrogen, progesterone, follicle-stimulating hormone (FSH), luteinizing hormone (LH), inhibin, and androgen with good accuracy. A sensitivity analysis indicated that some parameters impact the broader HPO system more than others, but that most changes in model parameters led to proportional changes in the system. We also conducted a predictive analysis on the effect of cHT dose on HPO axis hormones and found that, with the exception of estrogen, the other HPO hormones analyzed reach a saturation level within the physically possible number of constructs.

12.
Acta Biomater ; 171: 261-272, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37742726

RESUMEN

A strategy that seeks to combine the biophysical properties of inert encapsulation materials like alginate with the biochemical niche provided by pancreatic extracellular matrix (ECM)-derived biomaterials, could provide a physiomimetic pancreatic microenvironment for maintaining long-term islet viability and function in culture. Herein, we have demonstrated that incorporating human pancreatic decellularized ECM within alginate microcapsules results in a significant increase in Glucose Stimulation Index (GSI) and total insulin secreted by encapsulated human islets, compared to free islets and islets encapsulated in only alginate. ECM supplementation also resulted in long-term (58 days) maintenance of GSI levels, similar to that observed in free islets at the first time point (day 5). At early time points in culture, ECM promoted gene expression changes through ECM- and cell adhesion-mediated pathways, while it demonstrated a mitochondria-protective effect in the long-term. STATEMENT OF SIGNIFICANCE: The islet isolation process can damage the islet extracellular matrix, resulting in loss of viability and function. We have recently developed a detergent-free, DI-water based method for decellularization of human pancreas to produce a potent solubilized ECM. This ECM was added to alginate for microencapsulation of human islets, which resulted in significantly higher stimulation index and total insulin production, compared to only alginate capsules and free islets, over long-term culture. Using ECM to preserve islet health and function can improve transplantation outcomes, as well as provide novel materials and platforms for studying islet biology in microfluidic, organ-on-a-chip, bioreactor and 3D bioprinted systems.


Asunto(s)
Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Humanos , Secreción de Insulina , Páncreas/metabolismo , Insulina/farmacología , Matriz Extracelular/metabolismo , Alginatos/farmacología
13.
Ann Surg ; 255(5): 867-80, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22330032

RESUMEN

The present review illustrates the state of the art of regenerative medicine (RM) as applied to surgical diseases and demonstrates that this field has the potential to address some of the unmet needs in surgery. RM is a multidisciplinary field whose purpose is to regenerate in vivo or ex vivo human cells, tissues, or organs to restore or establish normal function through exploitation of the potential to regenerate, which is intrinsic to human cells, tissues, and organs. RM uses cells and/or specially designed biomaterials to reach its goals and RM-based therapies are already in use in several clinical trials in most fields of surgery. The main challenges for investigators are threefold: Creation of an appropriate microenvironment ex vivo that is able to sustain cell physiology and function in order to generate the desired cells or body parts; identification and appropriate manipulation of cells that have the potential to generate parenchymal, stromal and vascular components on demand, both in vivo and ex vivo; and production of smart materials that are able to drive cell fate.


Asunto(s)
Cirugía General/tendencias , Medicina Regenerativa , Animales , Materiales Biocompatibles/uso terapéutico , Prótesis Vascular , Trasplante de Células , Sulfatos de Condroitina/uso terapéutico , Colágeno/uso terapéutico , Procedimientos Quirúrgicos Dermatologicos , Tracto Gastrointestinal/cirugía , Insuficiencia Cardíaca/terapia , Humanos , Fallo Renal Crónico/cirugía , Laringe/cirugía , Trasplante de Hígado , Enfermedades Respiratorias/cirugía , Piel Artificial , Andamios del Tejido , Cicatrización de Heridas/fisiología , Heridas y Lesiones/cirugía
14.
Biomed Microdevices ; 14(3): 461-9, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22245953

RESUMEN

Current applications of the microencapsulation technique include the use of encapsulated islet cells to treat Type 1 diabetes, and encapsulated hepatocytes for providing temporary but adequate metabolic support to allow spontaneous liver regeneration, or as a bridge to liver transplantation for patients with chronic liver disease. Also, microcapsules can be used for controlled delivery of therapeutic drugs. The two most widely used devices for microencapsulation are the air-syringe pump droplet generator and the electrostatic bead generator, each of which is fitted with a single needle through which droplets of cells suspended in alginate solution are produced and cross-linked into microbeads. A major drawback in the design of these instruments is that they are incapable of producing sufficient numbers of microcapsules in a short-time period to permit mass production of encapsulated and viable cells for transplantation in large animals and humans. We present in this paper a microfluidic approach to scaling up cell and protein encapsulations. The microfluidic chip consists of a 3D air supply and multi-nozzle outlet for microcapsule generation. It has one alginate inlet and one compressed air intlet. The outlet has 8 nozzles, each having 380 micrometers inner diameter, which produce hydrogel microspheres ranging from 500 to 700 µm in diameter. These nozzles are concentrically surrounded by air nozzles with 2 mm inner diameter. There are two tubes connected at the top to allow the air to escape as the alginate solution fills up the chamber. A variable flow pump 115 V is used to pump alginate solution and Tygon® tubing is used to connect in-house air supply to the air channel and peristaltic/syringe pump to the alginate chamber. A pressure regulator is used to control the flow rate of air. We have encapsulated islets and proteins with this high throughput device, which is expected to improve product quality control in microencapsulation of cells, and hence the outcome of their transplantation.


Asunto(s)
Células Inmovilizadas/trasplante , Islotes Pancreáticos/metabolismo , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Alginatos/metabolismo , Animales , Técnicas de Cultivo de Célula , Enfermedad Crónica , Diabetes Mellitus Tipo 1/terapia , Sistemas de Liberación de Medicamentos/métodos , Diseño de Equipo/métodos , Ácido Glucurónico/metabolismo , Ácidos Hexurónicos/metabolismo , Islotes Pancreáticos/citología , Hepatopatías/terapia , Trasplante de Hígado , Microesferas , Ratas
15.
J Mater Sci Mater Med ; 23(4): 903-12, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22350778

RESUMEN

Alginate microbeads have been investigated clinically for a number of therapeutic interventions, including drug delivery for treatment of ischemic tissues, cell delivery for tissue regeneration, and islet encapsulation as a therapy for type I diabetes. The physical properties of the microbeads play an important role in regulating cell behavior, protein release, and biological response following implantation. In this research alginate microbeads were synthesized, varying composition (mannuronic acid to guluronic acid ratio), concentration of alginate and needle gauge size. Following synthesis, the size, volume fraction, and morphometry of the beads were quantified. In addition, these properties were monitored over time in vitro in the presence of varying calcium levels in the microenvironment. The initial volume available for solute diffusion increased with alginate concentration and mannuronic (M) acid content, and bead diameter decreased with M content but increased with needle diameter. Interestingly, microbeads eroded completely in saline in less than 3 weeks regardless of synthesis conditions much faster than what has been observed in vivo. However, microbead stability was increased by the addition of calcium in the culture medium. Beads synthesized with low alginate concentration and high G content exhibited a more rapid change in physical properties even in the presence of calcium. These data suggest that temporal variations in the physical characteristics of alginate microbeads can occur in vitro depending on synthesis conditions and microbead environment. The results presented here will assist in optimizing the design of the materials for clinical application in drug delivery and cell therapy.


Asunto(s)
Alginatos/química , Materiales Biocompatibles/química , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Técnicas In Vitro , Proteínas/química
16.
J Public Health Res ; 11(3): 22799036221115772, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36003189

RESUMEN

Diabetes is an epidemic in the United States and is ranked as the sixth leading cause of death in the District of Columbia. According to the US Census population in 2010, >52,000 out of 610,000 residents have been diagnosed with diabetes. The highest prevalence was noted in wards 4, 5, 7, and 8, with the worst impact recorded in ward 8. The diabetes death rate among African Americans is five times that for Caucasians living in Colombia district, according to the DC department of health. There is an 11% disparity in the prevalence of diabetes when comparing black- and white people in the district (14% and 3%, respectively). This amounts to more than double the 6% disparity in the national population. This is also evident at both district and nationwide levels (prevalence of diabetes among people with no high school diploma, 21%; that in college graduates, 5%). The incidence of end-stage renal disease (ESRD), a life-threatening condition and diabetes-related complication is increasing in Colombia district and is rated as the number one cause of death from diabetes. In 2010, the newly diagnosed ESRD cases (420) and total number of ESRD cases due to diabetes (642) in the district were twice that of neighboring states (Maryland, Virginia, and West Virginia) and the entire US. In this review, the importance of implementing an evidence-based public health program in solving the epidemic of diabetes among the black community living in Ward 8 is emphasized. This study applies to every poor or minority ethnic group worldwide and in the US.

17.
Ann Biomed Eng ; 50(10): 1177-1186, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35804253

RESUMEN

Exosomes are enclosed within a single outer membrane and exemplify a specific subtype of secreted vesicles. Exosomes transfer signalling molecules, including microRNAs (miRNAs), messenger RNA (mRNA), fatty acids, proteins, and growth factors, making them a promising therapeutic tool. In routine bioartificial pancreas fabrication, cells are immobilized in polymeric hydrogels lacking attachment capability for cells and other biological cues. In this opinion article, we will discuss the potential role that exosomes and their specific biofactors may play to improve and sustain the function of this bioartificial construct. We will particularly discuss the challenges associated with their isolation and characterization. Since stem cells are an attractive source of exosomes, we will present the advantages of using exosomes in place of stem cells in medical devices including the bioartificial pancreas. We will provide literature evidence of active biofactors in exosomes to support their incorporation in the matrix of encapsulated islets. This will include their potential beneficial effect on hypoxic injury to encapsulated islets. In summary, we propose that the biofactors contained in secreted exosomes have significant potential to enhance the performance of islets encapsulated in polymeric material hydrogels with perm-selective properties to provide immunoisolation for islet transplants as an insulin delivery platform in diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1 , Exosomas , Trasplante de Islotes Pancreáticos , Alginatos , Diabetes Mellitus Tipo 1/terapia , Humanos , Hidrogeles , Páncreas
18.
Ann Biomed Eng ; 50(3): 291-302, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35072884

RESUMEN

In this research we have used different cytokines and progesterone to enhance the immunomodulatory capacity of placental-derived stem cells (PLSCs) prior to their encapsulation. We assessed the effect of microencapsulation of the cells without (control) or after 3-day treatment with interferon gamma (INFγ), interleukin10 (IL-10), or progesterone (P4). Treated PLSCs demonstrated strong immunosuppressive effects on phytohemagglutinin (PHA)-activated peripheral blood mononuclear cells (PBMNCs). INFγ treatment resulted in the strongest immune inhibition among the treated groups. The treatments enhanced soluble human leukocyte antigen (sHLAG) secretion compared to control. The IL-10-treated group showed the highest effect on HLAG secretion compared to other groups. Alginate encapsulation of PLSCs did not affect cell viability, or sHLAG secretion. Also, after treatment the encapsulated PLSCs inhibited PHA-activated PBMNCs in the same manner as unencapsulated cells. We studied two groups of encapsulated PLSCs, one without perm-selective poly-L-ornithine (PLO)-coating and the other with PLO-coating, and measured levels of sHLAG secreted. We found no difference in sHLAG secretion between both groups. In summary, our data show that immunomodulatory function of the PLSC is not affected by encapsulation. These findings provide good promise for potential use of encapsulated PLSCs for immunomodulation treatment of disease by stem cell therapy.


Asunto(s)
Arginina/análogos & derivados , Interleucina-2/metabolismo , Leucocitos Mononucleares/metabolismo , Arginina/metabolismo , Proliferación Celular , Femenino , Humanos , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Placenta/metabolismo , Embarazo
19.
Transpl Int ; 24(3): 223-32, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21062367

RESUMEN

In the last two decades, regenerative medicine has shown the potential for "bench-to-bedside" translational research in specific clinical settings. Progress made in cell and stem cell biology, material sciences and tissue engineering enabled researchers to develop cutting-edge technology which has lead to the creation of nonmodular tissue constructs such as skin, bladders, vessels and upper airways. In all cases, autologous cells were seeded on either artificial or natural supporting scaffolds. However, such constructs were implanted without the reconstruction of the vascular supply, and the nutrients and oxygen were supplied by diffusion from adjacent tissues. Engineering of modular organs (namely, organs organized in functioning units referred to as modules and requiring the reconstruction of the vascular supply) is more complex and challenging. Models of functioning hearts and livers have been engineered using "natural tissue" scaffolds and efforts are underway to produce kidneys, pancreata and small intestine. Creation of custom-made bioengineered organs, where the cellular component is exquisitely autologous and have an internal vascular network, will theoretically overcome the two major hurdles in transplantation, namely the shortage of organs and the toxicity deriving from lifelong immunosuppression. This review describes recent advances in the engineering of several key tissues and organs.


Asunto(s)
Trasplante de Órganos , Medicina Regenerativa , Animales , Bioingeniería , Trasplante de Córnea , Tracto Gastrointestinal/irrigación sanguínea , Tracto Gastrointestinal/cirugía , Corazón/fisiología , Humanos , Intestinos/trasplante , Riñón/irrigación sanguínea , Trasplante de Riñón , Hígado/irrigación sanguínea , Trasplante de Hígado , Páncreas/irrigación sanguínea , Trasplante de Páncreas , Regeneración , Células Madre , Ingeniería de Tejidos/métodos , Andamios del Tejido , Tráquea/irrigación sanguínea , Tráquea/trasplante , Inmunología del Trasplante , Trasplantes
20.
Exp Biol Med (Maywood) ; 246(24): 2570-2578, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34666516

RESUMEN

In this minireview, we briefly outline the hallmarks of diabetes, the distinction between type 1 and type 2 diabetes, the global incidence of diabetes, and its associated comorbidities. The main goal of the review is to highlight the great potential of encapsulated pancreatic islet transplantation to provide a cure for type 1 diabetes. Following a short overview of the different approaches to islet encapsulation, we provide a summary of the merits and demerits of each approach of the encapsulation technology. We then discuss various attempts to clinical translation with each model of encapsulation as well as the factors that have mitigated the full clinical realization of the promise of the encapsulation technology, the progress that has been made and the challenges that remain to be overcome. In particular, we pay significant attention to the emerging strategies to overcome these challenges. We believe that these strategies to enhance the performance of the encapsulated islet constructs discussed herein provide good platforms for additional work to achieve successful clinical translation of the encapsulated islet technology.


Asunto(s)
Diabetes Mellitus Tipo 1/terapia , Trasplante de Islotes Pancreáticos/métodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA